UNRAVELING THE GENETIC EFFECTS AND DECIPHERING THE MOLECULAR MECHANISMS UNDERLYING THE TOLERANCE TO PHOSPHORUS DEFICIENCY IN POPCORN PLANTS

ROSIMEIRE BARBOZA BISPO

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO – UENF

> CAMPOS DOS GOYTACAZES - RJ FEBRUARY – 2024

UNRAVELING THE GENETIC EFFECTS AND DECIPHERING THE MOLECULAR MECHANISMS UNDERLYING THE TOLERANCE TO PHOSPHORUS DEFICIENCY IN POPCORN PLANTS

ROSIMIERE BARBOZA BISPO

"Thesis presented to the Centro de Ciências e Tecnologias Agropecuárias of the Universidade Estadual do Norte Fluminense Darcy Ribeiro, as part of the requirements for obtaining the title of Doctor of Science in Genetics and Plant Breeding."

Advisor: Prof. Antônio Teixeira do Amaral Junior

CAMPOS DOS GOYTACAZES - RJ FEBRUARY – 2024

FICHA CATALOGRÁFICA

UENF - Bibliotecas

Elaborada com os dados fornecidos pela autora.

B622 Bispo, Rosimeire Barboza.

Unraveling the genetic effects and deciphering the molecular mechanisms underlying the tolerance to phosphorus deficiency in popcorn plants / Rosimeire Barboza Bispo. - Campos dos Goytacazes, RJ, 2024.

154 f. : il. Bibliografia: 63 - 75.

Tese (Doutorado em Genética e Melhoramento de Plantas) - Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Ciências e Tecnologias Agropecuárias, 2024. Orientador: Antonio Teixeira do Amaral Junior.

1. Estresse nutricional. 2. Análise dialélica. 3. Proteômica. 4. *Zea mays L. var. everta*. I. Universidade Estadual do Norte Fluminense Darcy Ribeiro. II. Título.

CDD - 631.5233

UNRAVELING THE GENETIC EFFECTS AND DECIPHERING THE MOLECULAR MECHANISMS UNDERLYING THE TOLERANCE TO PHOSPHORUS DEFICIENCY IN POPCORN PLANTS

ROSIMEIRE BARBOZA BISPO

"Thesis presented to the Centro de Ciências e Tecnologias Agropecuárias of the Universidade Estadual do Norte Fluminense Darcy Ribeiro, as part of the requirements for obtaining the title of Doctor of Science in Genetics and Plant Breeding."

Approved on February 23rd, 2024.

Examining committee:

Prof. Vitor Batista Pinto (D.Sc. Genetics and Breeding) - UENF Prof. Ricardo Enrique Bressan-Sphith (D.Sc. Plant Production) - UENF Dr. Sophie Alvarez (Ph.D./ Plant Biology) University of Nebraska- Lincoln/UNL

Prof. Antônio Teixeira do Amaral Junior (D.Sc, Genetics and Breeding) - UENF (Advisor)

DEDICATION

"It's not what the world holds for you, but what you bring to the world."

Anne with an E

ACKNOWLEDGMENTS

To God, for placing such wonderful people in my life and for all the opportunities I've had.

To everyone in my family who is always by my side and believes in me, especially my grandparents Luiz (*In memoriam*) and Joséfa, my parents Alírio and Maria and my sisters Marciele, Rosieli, Liliane and Rosimara (my soulmate).

To my advisor, Professor Dr. Antônio Teixeira do Amaral Junior, for the opportunity, trust, friendship, and all the support over these years, you were essential to this achievement.

To Professors Eliemar Campostrini and Vitor Batista Pinto for their contributions and co-orientation in this study.

To the friends of the Popcorn Breeding Group, Divino, Valter, Samuel, Jhean, Uéliton, Bruna, and others, for their company, trust, help and friendship. Especially Talles de Oliveira Santos, for his partnership in the laboratory and in the travels, thank you for everything.

To my laboratory colleagues at the University of Nebraska - Lincoln, Mike, Anne, and especially to Professor Sophie Alvarez, for all the teachings and learning during my sandwich Ph.D.

To my friends from Lincoln, Nebraska, Ana, Felipe, Rafael, and Raissa, thank you for all the moments together, and especially to Denny and Roy, for being like a family during this time. To the secretary of the Graduate Program in Genetics and Plant Breeding, José Daniel, for all his support throughout the years.

To the Universidade Estadual do Norte Fluminense Darcy Ribeiro and the Graduate Program in Genetics and Plant Breeding for the opportunity of education and completion of my Ph.D.

To CAPES, for granting me a scholarship, and to other research funding organizations that contributed to my education.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Finance Code 001.

SUMMARY

ABSTRACT		xi
1. INTRODUCTI	ON	XIII
2. OBJECTIVES	-	3
2.1 Objective	s of the first chapter	3
2.2 Objective	of the second chapter	3
3. CHAPTERS	·	4
3.1 MORPHO PHOSPHORUS	OPHYSIOLOGICAL APPROACH TO HETEROSIS IN USE EFFICIENCY IN POPCORN	4
3.1.1 INTRO	DUCTION	4
3.1.2 LITER	ATURE REVIEW	6
3.1.2.1	General aspects of popcorn	6
3.1.2.2	Improving maize for phosphorus use efficiency	8
3.1.3 MATERI	ALS AND METHODS	
3.1.3.1 Geno	otypes and growing conditions	10
3.1.3.2 Traits	s evaluated	12
3.1.3.2.1	Morphological traits	12
3.1.3.2.2	Concentration, utilization rates, and efficiency of P	12
3.1.3.2.3	Chlorophyll fluorescence measurements	13
3.1.3.2.4	Leaf pigments	13
3.1.3.2.5	Gas exchange measurements	13
3.1.3.2.6	Estimating heterosis	14
3.1.3.2.7	Statistical analysis	14
3.1.4 RESULT	S	15
3.1.4.1 Plan	t growth traits and phosphorus use efficiency	15
3.1.4.2 Chlo measurements	rophyll fluorescence, leaf pigments, and exchange	19

3.1.5 DISCUS	SION	.22
3.1.5.1 Imp	act of P availability on growth traits and P use efficiency in	
popcorn geno	otypes	.22
3.1.5.2 Effe	ect of P supply on chlorophyll fluorescence, leaf pigments, and	05
	e measurements in popcorn genotypes	.25
deficiency?	v can genetic gains be maximized in popcorn under P	.27
3.1.6 CONCL	USION	.28
3.2 UNRAVI	ELING THE MECHANISMS OF EFFICIENT PHOSPHORUS	
UTILIZATION I	N POPCORN (Zea mays L. VAR. EVERTA): INSIGHTS FRO	Μ
PROTEOMICS	AND METABOLITES ANALYSIS	.30
3.2.1 INTRO		.30
3.2.2 LITER	ATURE REVIEW	.32
3.2.2.1	Phosphorus within Plants: Uptake, Utilization and	00
Remobiliza		.32
3.2.2.2		.34
3.2.3 MATER		.36
3.2.3.1	Plant materials and treatment	.36
3.2.3.2	Physiological measurements	.38
3.2.3.2.1	Leaf gas exchange measurements	.38
3.2.3.2.2	Leaf chlorophyll content	.38
3.2.3.2.3	Dry matter	.38
3.2.3.2.4	Phosphorus concentration	.38
3.2.3.2.5	P utilization and efficiency indexes	.39
3.2.3.2.6	Statistical analysis	.39
3.2.3.3	Proteomics	.39
3.2.3.3.1	Material handling	.39
3.2.3.3.2	Protein extraction and digestion	.40
3.2.3.3.3	Proteomic analysis	.40
3.2.3.3.4	Gene ontology and enrichment pathway analysis	.42
3.2.3.4	Metabolomic Analysis	.42
3.2.3.4.1	Sample Preparation for LC-MS/MS	.42
3.2.3.4.2	LC-MS/MS, polyphenols and phytohormones analysis	.43
3.2.3.4.3	Statistical analysis	.43
3.2.4 RESULT	۲ S	.44
3.2.4.1	Physiological responses of popcorn to phosphorus deficiency	.44
3.2.4.2	Proteome profile of popcorn leaves	.47

	3.2.4.3	Functional analysis of DEPs involved in the response to P	
	deficiency		.49
	3.2.4.4	Metabolite analysis	.56
3.2.	5 DISCUS	SION	.58
	3.2.5.1	Effects of P deficiency and adaptation mechanisms	.58
	3.2.5.2 and energy	P deficiency impacts the photosynthesis, electron transfer cha metabolism in L80	in .58
	3.2.5.3	P starvation affects ribosomal protein biosynthesis	.60
	3.2.5.4	Protective mechanisms involved in the oxidative stress	
	response		.61
3.2.	6 CONCL	USIONS	.62
RE	ERENCES		.63
AP	PENDIX		.76

LIST OF FIGURES

Figure 6. A- Line L80 under low P supply. B- Line P7 under low P supply......45

Figure 7. Photosynthetic traits in two popcorn inbred lines L80 and P7 under high (HP) and low (LP) phosphorus levels. *A*- net CO₂ assimilation rate (**A**); *gs*- stomatal conductance (**B**); *E*- transpiration (**C**); *Ci*- internal CO₂ concentration (**D**)......46

Figure 11. GO enrichment analysis of DEPs uniquely down-regulated in L80_LP or P7 LP......50

Figure 13. KEGG pathway enrichment analysis of the DEPs uniquely down- and upregulated in L80 and P7......53

LIST OF TABLES

Table 2. Summary of the joint and individual analyses of variance, means, standard deviations, and heterosis (H %) of physiological traits associated with gas exchange, chlorophyll fluorescence, and leaf pigment measurements of popcorn lines and hybrids in diallel grown under contrasting conditions of P availability......20

ABSTRACT

Bispo, Rosimeire Barboza; D.Sc.; Universidade Estadual do Norte Fluminense Darcy Ribeiro; February 2024; Unraveling the genetic effects and deciphering the molecular mechanisms underlying the tolerance to phosphorus deficiency in popcorn plants; Advisor: Antônio Teixeira do Amaral Junior; Counselors: Eliemar Campostrini and Vitor Batista Pinto.

Agriculture expansion combined with the need for sustainable farming activities is a major drive for breeders to introduce plant cultivars better adapted to abiotic stress conditions such as nutrient deficiency. Phosphorus (P) plays a crucial role in photosynthesis and, consequently, in plant growth. Moreover, P is a non-renewable resource, requiring the extraction of limited reserves of phosphate rocks. This instigates considerable interest in the development of crop varieties capable of providing higher yields while utilizing available soil P more efficiently. In this context, the objective of this study is to investigate the genetic effects governing growth traits, phosphorus use efficiency (PUE), foliar gas exchange, and photochemical efficiency in four S₇ popcorn lines (P2 and P7, efficient and responsive to P; L75 and L80, inefficient and unresponsive to P) and their respective 12 F_{1s} hybrids under two contrasting P conditions: high P (100% - 31.00 mg NH₄H₂PO₄ L⁻¹) and low P (0.5% - 0.15 mg NH₄H₂PO₄ L⁻¹). Additionally, the study aims to investigate the differential

expression of proteins and the production of metabolites in two popcorn lines (P7 and L80) to elucidate the molecular mechanisms involved in the response to P deficiency. The first chapter focused on estimating the genetic effects influencing the control of morphophysiological traits associated with PUE in four popcorn lines subjected to contrasting P conditions. Utilizing the diallel analysis proposed by Griffing (1956), additive, non-additive, and reciprocal genetic effects governing these traits were calculated. In both P conditions, non-additive genetic effects were more prominent, indicating that exploiting heterosis represents the most viable strategy for developing cultivars with greater PUE efficiency. Additionally, the concentration of flavonoids emerged as a promising trait for differentiating genotypes in both P conditions. In the second chapter, physiological, proteomic, and comparative metabolomic approaches were employed to unravel differences in the response to P availability in two contrasting lines for PUE, P7 and L80, under low (LP) and high (HP) P conditions, as described in the first chapter. Under LP conditions, chlorophyll and anthocyanin concentrations were not significant between P7 and L80, while the concentration of flavonoids was almost twice as high in P7. Comparative proteomic analysis revealed differentially expressed proteins (DEPs) associated with photosynthesis, protein biosynthesis, secondary metabolites, and energy metabolism exclusively under LP conditions. Furthermore, distinct mechanisms of redox regulation and oxidative stress were identified in the two lines. Enzymes such as glutathione transferase, involved in detoxifying reactive oxygen species (ROS), arogenate dehydratase, chalcone-flavanone isomerase, and glycosyltransferase related to flavonoid biosynthesis were accumulated exclusively in the P7 line. Additionally, metabolomic analysis data revealed that flavonoids such as apigenin, luteolin, kaempferol, quercetin, and syringic acid were more abundantly accumulated in P7. These results highlight significant differences in response mechanisms between the lines, paving the way for future research and agronomic improvements aimed at developing popcorn varieties more resistant to low P conditions.

Keywords: Nutritional stress, Diallel analysis, Proteomics, Zea mays L. var. everta

xii

RESUMO

Bispo, Rosimeire Barboza; D.Sc.; Universidade Estadual do Norte Fluminense Darcy Ribeiro; February, 2024; Unraveling the genetic effects and deciphering the molecular mechanisms underlying the tolerance to phosphorus deficiency in popcorn plants; Orientador: Antônio Teixeira do Amaral Junior; Conselheiros: Eliemar Campostrini e Vitor Batista Pinto.

A expansão da agricultura, aliada à necessidade de práticas agrícolas sustentáveis, constitui um forte estímulo para os melhoristas introduzirem variedades de plantas mais adaptadas às condições de estresse abiótico, como a deficiência de nutrientes. O fósforo (P) desempenha um papel crucial na fotossíntese e, por conseguinte, no crescimento das plantas. Além disso, o P é um recurso não renovável, requerendo extração de reservas limitadas de rochas fosfáticas. Isso instiga um interesse considerável no desenvolvimento de variedades de culturas capazes de proporcionar maiores rendimentos enguanto utilizam de maneira mais eficiente o P disponível no solo. Neste sentido, o objetivo deste estudo é investigar os efeitos genéticos que regem às características de crescimento, eficiência no uso de P (PUE), as trocas gasosas foliares e eficiência fotoquímica em quatro linhagens S₇ de milho-pipoca (P2 e P7 eficientes e responsivas ao P; L75 e L80 ineficientes e não responsivas ao P) e os respectivos 12 híbridos F_{1s}, em duas condições contrastantes de P: alto P (100% - 31,00 mg NH₄H₂PO₄ L⁻¹) e baixo P (0,5% - 0,15) mg NH₄H₂PO₄ L^{-1}). Além disso, o estudo visa investigar a expressão diferencial de proteínas e a produção de metabólitos de duas linhagens de milho-pipoca (P7 e

L80) a fim de elucidar os mecanismos moleculares envolvidos na resposta à deficiência de P. O primeiro capítulo concentrou-se na estimativa dos efeitos genéticos que influenciam o controle de características morfofisiológicas associadas à PUE em quatro linhagens de milho-pipoca submetidas a condições contrastantes de P. Utilizando a análise dialélica proposta por Griffing (1956), foram calculados os efeitos genéticos aditivos, não-aditivos e recíprocos que regem essas características. Em ambas as condições de P, os efeitos genéticos não-aditivos foram mais proeminentes, indicando que a exploração da heterose representa a estratégia mais viável para o desenvolvimento de cultivares com maior eficiência em PUE. Além disso a concentração de flavonóides surgiu como uma característica promissora na diferenciação de genótipos em ambas as condições de P. No segundo capítulo abordagens fisiológicas, de proteômica e metabolômica comparativa foram empregadas com o objetivo de desvendar as diferenças na resposta à disponibilidade de P em duas linhagens contrastante para a PUE, P7 e L80, sob baixo (LP) e alto (HP) P, conforme descrito no primeiro capítulo. Em condições de LP, a concentração de clorofila e antocianinas não apresentou diferenças significativas entre P7 e L80, enquanto a concentração de flavonoides foi quase duas vezes maior em P7. A análise de proteômica comparativa revelou que proteínas diferencialmente expressas (DEPs) associadas à fotossíntese, biossíntese de proteínas, metabólitos secundários e metabolismo energético foram observadas exclusivamente na condição de LP. Além disso, foram identificados mecanismos distintos de regulação redox e estresse oxidativo nas duas linhagens. Enzimas como glutationa transferase, envolvidas na desintoxicação de espécies reativas de oxigênio (ROS), arogenato desidratase, chalcona-flavonona isomerase e glicosiltransferase relacionadas à biossíntese de flavonoides foram acumuladas exclusivamente na linhagem P7. Adicionalmente, os dados da análise metabolômica revelou que flavonoides como apigenina, luteolina, kaempferol, quercetina e o ácido fenólico siríngico foram mais abundantemente acumulados em P7. Esses resultados evidenciam diferenças significativas nos mecanismos de resposta entre as linhagens. Isso abre caminho para futuras pesquisas e aprimoramentos agronômicos, com o objetivo de desenvolver variedades de milhopipoca mais resistentes a condições de baixo teor de P.

Palavras-chave: Estresse nutricional, Análise dialélica, Proteômica, *Zea mays* L. var. *everta*

1. INTRODUCTION

The expansion of agriculture, along with the need for sustainable cultivation, represents one of the major challenges for the scientific community working on the development of new cultivars adapted to abiotic stress conditions (Gerhardt et al., 2017; Silva et al., 2019). Among the stressors, the low availability of phosphorus (P) is of great importance because its natural source is finite, and deficiency of this mineral limits plant growth and development (Zhang et al., 2014; Sun et al., 2018; Schegoscheski Gerhardt et al., 2019).

It is estimated that less than 20% of phosphate fertilizer applied to soils is taken up by crops due to factors such as plant uptake capacity, soil buffering effects, or the duration of mineral contact with roots (Cordell and White, 2014). A significant portion of the applied mineral that is not available to crops leaches into lakes and rivers, resulting in severe environmental impacts (Mpanga et al., 2019).

An alternative to mitigate the consequences associated with excessive P use is to develop materials/cultivars more efficiently in both acquisition and internal use. Studies have attempted to understand the physiological and genetic basis of morphological traits related to plant responses to low soil P, using model species as well as maize. Methods available for such studies and the generation of novel genotypes include diallel crosses (DoVale and Fritsche-Neto, 2013; Colombo et al., 2018). These represent genetic designs for generating combinations of contrasting genotypes, allowing the identification of progeny that include traits such as P use efficiency and productivity, as well as allelic interactions (Gerhardt et al., 2017; Schegoscheski Gerhardt et al., 2019). Genotypes obtained from diallels are a valuable source of material, where trait variances have already been resolved and interactions have been studied. Such genotypes, which differ in P use efficiency, differ in their success in triggering different adaptive mechanisms that can be contrasted with traits previously studied in the diallel. These mechanisms work to enhance P uptake and utilization and involve changes at the physiological, morphological, and molecular levels, including changes in gene expression and subsequent protein expression (Ayadi et al., 2015; Zhan et al., 2019; Luo et al., 2020).

The main morphological and physiological changes in response to low P occur in the roots and consist of: reduction in primary root growth and the development of longer and denser root hairs (Lan et al, 2018); release of organic acids and acid phosphatases to liberate inorganic phosphate (Pi) from organic sources (López-Arredondo et al., 2014; Zhang et al., 2014); and activation of high-affinity Pi transporter genes (Liu et al., 2016; Mlodzińska and Zboińska, 2016; Zhan et al., 2019). Molecular mechanisms involved in P use efficiency in plants have identified proteins involved in different pathways, such as photosynthesis, carbohydrate metabolism, energy metabolism, secondary metabolism, signal transduction, protein synthesis, and defense mechanisms (Li et al., 2014; Zhang et al., 2014).

Proteins involved in the ethylene pathway are important because they may be associated with cell expansion and capillary root development (Song et al., 2016; Shibata and Sugimoto, 2019). Ethylene also plays a role in mediating the response to nutrient deficiency (García et al., 2015; Dubois et al., 2018; Huang et al., 2020). In addition, acid phosphatases and cysteines are important proteins as they contribute to internal Pi homeostasis (Huang et al., 2019; Mo et al., 2019; Ruan et al., 2019). Proteins involved in the sucrose pathway may interfere with the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which are essential for photosynthetic processes in response to Pi deficiency (Li et al., 2017).

Therefore, a more comprehensive investigation of the response among different genotypes at the proteomic level may provide insight into whether the efficiency of P use is related to the efficiency of its acquisition or internal utilization (Zhang et al., 2016). However, a significant amount of this information remains unclear for popcorn.

2. OBJECTIVES

2.1 Objectives of the first chapter

- To analyze the genetic mechanisms underlying the differences in growth traits, P use efficiency, leaf gas exchange, and photochemical efficiency in popcorn genotypes under two phosphorus supply conditions; and
- To investigate the effects of heterosis on the phenotypic expression of these traits.

2.2 Objective of the second chapter

• To investigate the response mechanisms of two popcorn inbred lines, one Pefficient and one P-inefficient, under low and high phosphorus availability through proteomic and metabolite analysis

3. CHAPTERS

3.1 MORPHOPHYSIOLOGICAL APPROACH TO HETEROSIS IN PHOSPHORUS USE EFFICIENCY IN POPCORN

3.1.1 INTRODUCTION

Studies reveal that 30% of the world's arable soils face phosphorus (P) deficiency (MacDonald et al., 2011; Alewell et al., 2020). The lack of this nutrient in such areas can reduce crop yields by 30% to 40% (Malhotra et al., 2018). Tropical regions are particularly affected due to the presence of highly weathered and acidic soils, with strong capacity to sequester iron and aluminum ions, thereby limiting the availability of phosphorus for plant absorption (Yadav et al., 2017; Mabagala, 2022).

As a result, less than 20% of the phosphate fertilizer applied to soils is absorbed by plants and the reasons for the low efficiency are the buffering of the soil, or the lack of adequate contact between the mineral and the roots (Cordell and White, 2014). Faced with this limitation to maintain crop productivity, farmers have employed extensive applications of phosphate fertilizers derived from phosphate rock. However, this resource is finite, non-renewable, and plays a fundamental role in sustaining global food production (Scholz et al., 2013; Yang et al., 2017; Grieger et al., 2023). In high yield cropping systems, intensive fertilization with inorganic phosphate (Pi) has been associated to significant water pollution (Mpanga et al., 2019), while in low yield systems, prevailing in developing countries, the scarcity of Pi availability is a major constraint on agricultural production (Galindo-Castaños et al., 2018; Langhans et al., 2022).

Therefore, the pursuit of cultivars with enhanced P utilization is crucial for three primary reasons: firstly, fertilizers represent a substantial portion of agricultural production costs; secondly, the indiscriminate and excessive application of fertilizers exert a significant environmental impact, resulting in contamination of water sources; and lastly, the production of phosphate fertilizers relies on non-renewable mineral sources (Parentoni et al., 2012). Consequently, researchers and breeders are seeking timely strategies to enhance the phosphorus use efficiency and mitigate the adverse effects associated with its excessive use in agriculture. To achieve this goal, ongoing studies are focused on the development of crops that enhance both the acquisition (Lynch, 2007) and utilization (Taghinasab et al., 2018; Wacker-Fester et al., 2019; Santos et al., 2022) of P. This research aims the reduction of production costs, preserve the environment, and ensure the sustained availability of this essential nutrient in agriculture.

Identifying genotypes that produce more biomass per unit of P applied is an alternative for sustainable agricultural production. Studies on different crops have used physiological traits associated with the photosynthetic process to select genotypes displaying superior growth performance in phosphorus deficient soils (Carstensen et al., 2019; Chea et al., 2021; Kumar et al., 2021; Kayoumu et al., 2023). The aim is to identify varieties with greater efficiency in using available P, thereby reducing the dependence on phosphate fertilizers, and promoting sustainable agricultural practices.

Breeding programs play a role in the development of cultivars with enhanced phosphorus use efficiency (PUE) in the soil, taking into account the genetic action linked to agronomic and physiological traits. Studies carried out with corn and popcorn plants reveal that the genetic action of dominance significantly influences the expression of PUE under conditions of P deficiency (Fritsche-Neto et al., 2010; Caixeta et al., 2013; Almeida et al., 2018; Gerhardt et al., 2019). Nevertheless, further research is essential to understand how heterosis manifests itself in the initial stages of plant development and to investigate the physiological mechanisms underlying this performance under conditions of P deficiency. Additionally, exploring

the influence of genetic control on traits associated with carbon assimilation, water loss, leaf pigmentation, and photochemical efficiency will contribute to a more comprehensive understanding of how popcorn genotypes respond to the expression of PUE.

With these considerations in mind, this study aimed to analyze the genetic mechanisms responsible for the discrepancies in growth traits, P use efficiency, leaf gas exchange, and photochemical efficiency, under optimal conditions and in scenarios of phosphorus deficiency in the rhizosphere. Furthermore, it was sought out to investigate the effects of heterosis on the phenotypic expression of these traits.

3.1.2 LITERATURE REVIEW

3.1.2.1 General aspects of popcorn

Popcorn, scientifically known as *Zea mays* L. var. *everta* (Sturtev) L.H. Bailey (Galinat, 1979), is a subspecies of *Zea mays* L. It is a monocotyledonous plant belonging to the family Poaceae, tribe Maydeae, genus *Zea*, and species *mays* (*Zea mays* L.) (Goodman and Smith, 1987). Like common corn, both have the same number of chromosomes (n = 10) (Ranum et al., 2014).

Currently, five major types of maize are known: flint, dent, popcorn, sweet, and floury. This classification is due to differences in the quantity, quality, and composition of the grain endosperm (Noor and Igbal, 2017). In addition to grain differences, popcorn differs from common corn in other characteristics. Popcorn plants have thinner stalks, generally fewer leaves, and smaller but more numerous ears that are positioned higher, making them more prone to lodging and stalk breakage and more susceptible to diseases such as stalk rot, ear rot, and grain rot (Sawazaki, 2001).

However, the primary characteristic that distinguishes popcorn from all other types of maize is the formation of large flakes when the kernels explode in response to heating (Ziegler, 2000). This characteristic is referred to as "expansion" or "popping" capacity (Larish and Brewbaker, 1999). The expansion capacity of

popcorn is simply the ratio of the volume of expanded popcorn to the initial volume or weight of the grains subjected to popping (Guadagnin, 1996). When the kernels are exposed to temperatures above 180°C, they expand due to the presence of oil and moisture in the kernel (Silva et al., 1993). The higher the expansion capacity, the better the quality of the popcorn (Sawazaki, 2001).

In addition, popcorn kernels can vary in shape (round, flat, pointed), size, and color (pink, cream, red, purple, black, blue), with white and yellow being the most common colors. The round, pearl-like popcorn with yellow to orange endosperm is the most commercially accepted variety (Sawazaki, 2001).

Regarding the geographic origin of maize, some believe that it was one of the first plants cultivated by farmers between 7,000 and 10,000 years ago. Evidence of maize as a food source has been found in some archaeological sites in Mexico, where small maize cobs estimated to be over 5,000 years old have been found in caves (Ranum et al., 2014).

Despite the historical evidence, various hypotheses have been proposed regarding the origin of maize. Some authors suggest that maize originated from a wild grass called teosinte, which is quite different from modern maize (Beadle, 1939). Others suggest the formation of a hybrid between two wild grasses - a perennial subspecies of teosinte, *Zea diploperennis*, and a species of *Tripsacum* (Ranum et al., 2014).

Similarly, the origin of popcorn is not fully understood. Mangelsdorf and Smith (1949) collected evidence of an ancient popcorn specimen found at the "Bat Cave" archaeological site in New Mexico, dated to 2,500 B.C., which sparked discussions about the origin of popcorn and its relationship to other maize species (Ziegler, 2000). Since then, several hypotheses have been proposed regarding the origin of popcorn. Erwin (1950) proposed that popcorn arose from a mutation of flint endosperm maize. On the other hand, Brunson (1955), based on archaeological evidence, found that popcorn popping is a quantitative trait controlled by many genes, making Erwin's hypothesis unlikely. Thus, the debate over the origin of popcorn continues to this day. However, the most widely accepted hypothesis today is that maize originated in central Mexico about 9,000 years ago from a wild grass called teosinte (Iltis, 1983).

In economic terms, popcorn stands out as a snack with significant economic value added (Jele et al., 2014), and its popularity continues to grow on a global scale. The Global Popcorn Market 2021 report predicts a remarkable increase, estimating that the popcorn market will reach an impressive US\$16.9 billion by 2027. Notably, the United States and China dominate the global production rankings, underscoring the widespread appeal of this delicious treat. Nationally, the state of Mato Grosso is the largest producer of this cereal, with 268,402 thousand tons produced in a cultivated area of 60,017 hectares during the 2018 agricultural year, the largest in recent years (Kist, 2019). In addition to Mato Grosso, Rio Grande do Sul also contributes to the popcorn supply, with the average yield ranging from 5,500 to 7,200 kilograms per hectare during the 2018/19 harvest.

3.1.2.2 Improving maize for phosphorus use efficiency

It is estimated that 90% of phosphate rock is used for food production, with 82% going to fertilizer, 5% to animal feed, and only 2-3% to food additives (Schroder, 2010). Furthermore, phosphorus resources are unevenly distributed among users, with Morocco controlling 40% of the estimated remaining global reserves (Cordel and White 2014; Scholz and Wellmer, 2015).

In addition, studies indicate that 30% of the world's arable soils are deficient in phosphorus and require mineral fertilization to improve crop yields (MacDonald et al., 2011). To maintain high crop productivity, continuous application of inorganic phosphorus (Pi) to the soil is required (Jiang et al., 2017). In the absence of alternatives, farmers use significant amounts of non-renewable rock phosphatederived Pi fertilizers (Heuer et al., 2017; Yang et al., 2017).

However, in high-input cropping systems, intensive P fertilization leads to significant water pollution (Mpanga et al., 2019), while in low-input systems common in developing countries, low phosphorus availability is a major constraint to agricultural production (Galindo-Castañeda et al., 2018). Given this scenario, one strategy to mitigate the impacts associated with P use is to develop crops that enhance both phosphorus acquisition (Lynch, 2007) and utilization (Jiang et al., 2017; Taghinasab et al., 2018; Schegoscheski-Gherardt et al., 2019; Wacker-Fester et al., 2019).

Breeding programs have worked to develop cultivars that respond more efficiently to phosphorus deficiency. Studies on genetic variability and selection of maize genotypes for phosphorus use efficiency have been conducted (Machado et al., 1999; Brasil et al., 2007; Fidelis et al., 2010; Reais et al., 2017). However, for a deeper understanding of the factors involved in phosphorus use efficiency in maize, approaches to investigate the type of gene action associated with this ability have become more frequent.

Fritsche-Neto et al. (2010) investigated the genetic effects controlling the inheritance of traits associated with phosphorus use efficiency in 15 maize hybrids and found that non-additive effects were more important for these traits, suggesting that selection should be made in hybrid combinations. In another study analyzing root system length and aboveground dry matter accumulation in 41 maize hybrids under high and low phosphorus availability, DoVale and Fritsche-Neto (2013) showed that efficient phosphorus acquisition by the plant led to more efficient phosphorus use, with non-additive genetic effects also being more important. Similarly, Colombo et al. (2018) also found a predominance of non-additive effects on grain yield at different levels of phosphate fertilization and identified superior materials that were efficient and responsive to both high and low phosphorus levels.

Heterosis, often manifested by vigorous growth in F_{1s} hybrids, can be exploited to improve crop yield under conditions of low P availability. In the case of maize breeding, heterosis has been widely used for decades to increase yield potential and improve adaptation to stress (Araús et al., 2010; Chairi et al., 2016). Nevertheless, the genetic effects and physiological mechanisms associated with heterosis performance under P deficiency conditions require further investigation. Furthermore, unlike common corn, popcorn remains relatively underexplored and lacks studies aimed at improving phosphorus use efficiency (PUE).

Knowing the type of gene action associated with a particular trait helps breeders choose the best selection strategy, leading to greater gains. A common strategy used by breeders in breeding programs is diallel analysis (Meirelles et al., 2016; Liu at al., 2018). This involves crossing parents that carry favorable genes for a particular trait of interest, and through the expression of heterosis, superior hybrids can be obtained. In addition, diallel crosses involving reciprocal parents allow inference of reciprocal effects that may be under the influence of extrachromosomal genes (Cruz et al., 2014).

Diallel analysis has shown great promise in various corn studies. For example, Meirelles et al. (2016) used the diallel approach to identify superior materials that were efficient and responsive to low phosphorus levels. On the other hand, Liu et al. (2018) evaluated the influence of root traits in six inbred lines and their hybrids in a complete diallel for higher productivity under low and high phosphorus levels.

In popcorn, Schegoscheski-Gerhardt et al. (2019) used diallel analysis to evaluate 28 hybrids and their parents at two locations and under two contrasting soil

phosphorus conditions. The authors found that the best strategy for obtaining efficient and responsive genotypes under low phosphorus conditions is to exploit heterosis, using parents with higher expression of expansion capacity. Promising hybrids identified included P7 × L80, P7 × L59, P7 × L76, and P6 × L80, and they can be considered as options for cultivation in phosphorus-deficient soils.

However, despite the progress made in genetic breeding to understand the genetic mechanisms involved in efficient phosphorus use, little attention has been paid to this relationship in popcorn cultivation. In Brazil, for example, only two public research centers (IAC – Instituto Agronômico de Campinas - and UENF – Universidade Estadual do Norte Fluminense Darcy Ribeiro) have cultivars registered with the Ministério da Agricultura, Pecuária e Abastecimento (MAPA), with thirteen from IAC and fifteen from UENF. Of the fifteen varieties registered by UENF, three (UENF P-01, UENF P-02, UENF P-03) are efficient under low soil phosphorus levels, highlighting the importance of research institutions in developing materials that benefit both the economic and environmental sectors.

3.1.3 MATERIALS AND METHODS

3.1.3.1 Genotypes and growing conditions

Four inbreeding lines (S₇) of popcorn - P2, P7, L75, and L80 - and their respective 12 F_{1s} hybrids, including reciprocal combinations, were evaluated. The P2 line is derived from the CMS-42 composite, adapted to the tropical climate; P7 comes from the hybrid IAC112, adapted to temperate and tropical climates; and L75 and L80 are derived from the open-pollinated variety 'Viçosa', adapted to temperate and tropical climates. These lines were selected based on previous studies in conditions of P limitation in the soil and classified agronomically as efficient (P2 and P7) and inefficient (L75 and L80) in the use of phosphorus in field conditions (Gerhardt et al., 2017). Additionally, there was a selection for the P use efficiency (PUE) in the greenhouse, based on the content of phosphorus in the plant and dry matter (Silva et al., 2019). Following the order of the female and male parents, hybrids P2×P7, P2×L75, P2×L80, P7×P2, P7×L75, P7×L80, L75×P2, L75×P7, L75×L80, L80×P2, L80×P7 and L80×L75 were used.

An experiment was carried out at the North Fluminense State University Darcy Ribeiro facility (21°9′23″ S; 41°10′40″ W, 14 m altitude) from May to July 2021. The experimental set up took place in a greenhouse with a system of lysimeters comprised of PVC tubes split lengthways and sealed at the bottom. The cultivation was carried out under protected conditions, with the greenhouse covered by transparent plastic and shade. The lysimeters were filled with a substrate of sand washed in deionized water.

The experiment was arranged in a randomized complete block in a factorial design with two levels of phosphorus availability with three replications per genotype. Initially, three seeds were sown per tube, and ten days after germination the seedlings were thinned out, leaving just one plant per tube. The spacing between plants was 25 cm, while the distance between rows was set at 1 m, corresponding to a planting density of 40,000 plants ha⁻¹. To monitor the climatic conditions inside the greenhouse, temperature, air humidity, and photosynthetically active radiation data were collected using a WatchDog 2000 Series mini climatological station from Spectrum Technologies Inc., Aurora, IL, USA (Figure 1).

Figure 1. Average, maximum, and minimum temperature ($^{\circ}$ C), relative humidity (RH, %), and photosynthetically active radiation (PAR, µmol m⁻² s⁻¹) over the dates and phenological stages (V) of popcorn plant growth in two conditions of P availability (May to July 2021).

Two phosphorus (P) availability conditions were established in the substrate based on the Hoagland and Arnon (1950) nutrient solution, with modifications to the

P supply through NH₄H₂PO₄. Under the high P condition, the substrate received 100% of the P supply (31.00 mg L⁻¹); in contrast, the low P condition received only 0.5% of the P supply, equivalent to 0.15 mg L⁻¹. Each tube containing one plant received 100 mL of deionized water daily. In the high P condition, the plants were supplied with 158.00 mg L⁻¹ of P, whereas those in the low P condition received 0.68 mg L⁻¹ of P. The nutrient solution was applied daily from the V2 stage to the V6 stage of the plants. The pH was kept between 5.5 and 5.9. In their respective treatments, the nutrient solution was applied to acclimatize the seedlings to P metabolism at 25% strength for three days and at 50% strength for two days. After the acclimatization period, the plants in the high P condition received 200 mL of the nutrient solution received 0.15 mg L⁻¹ of P (100% of the strength), whereas the plants in the low P condition received 0.15 mg L⁻¹ of P (100% of the strength).

3.1.3.2 Traits evaluated

3.1.3.2.1 Morphological traits

At the end of the experiment, which means 45 days after sowing, measurements were taken to assess various plant traits. Plant height (PH) was measured from the soil surface to the last developed leaf. Stalk diameter (SD) was assessed in the middle third of the plants. Leaf area (LA) was calculated by multiplying the maximum leaf length (LL) by its maximum width (LW) and multiplying the result by 0.75 (Pearce et al., 1975). The leaf dry matter (LDM), stalk (SDM), and roots (RDM) were determined after separating and drying these plant parts in an oven at 65 °C for 72 hours. The shoot dry mass (STDM) was obtained by adding the dry mass of the leaves and the stalk. The root/shoot ratio (R/S) was calculated by dividing the dry mass of the roots by the dry mass of the shoots.

3.1.3.2.2 Concentration, utilization rates, and efficiency of P

After the drying process, the leaf, stem, and root samples were ground to quantify phosphorus concentration in 1g of dry matter. For this, extraction was performed by sulfuric digestion (HNO₃ and H_2O_2), and in the extract, P was determined by spectrophotometry (Specord 2010, Analytik Jena, Jena, Germany) using the molybdate method (da Silva Santos et al., 2014). Phosphorus content was

determined by multiplying the concentration of phosphorus in 1 g of dry matter of each sample by the corresponding dry weight (mg P/ plant).

The P accumulation was calculated by multiplying the P concentration obtained in 1g of dry matter from each sample by its corresponding dry weight. Based on the P concentration, the following estimates were obtained: i) P use efficiency (PUE: dry mass of the shoot divided by the total P applied); ii) P absorption efficiency (PUpE: P concentration in the plant divided by the total P applied); and iii) P utilization efficiency (PUtE: dry mass of the shoot field by the shoot divided by the P content in the plant).

3.1.3.2.3 Chlorophyll fluorescence measurements

Chlorophyll fluorescence was assessed one day before the end of the experiment (44 days after sowing). Measurements were taken in the middle third of the last expanded leaf, which is the first leaf counted from the apex of the plant. The evaluation period occurred between 11:30 a.m. and 1:30 p.m., using the MultispeQ v2.0 (Michigan State University, USA). Through the MultispeQ, the following estimates were obtained: PSII electron transport quantum yield (Φ PSII), non-photochemical quenching parameter (NPQt) (Tietz et al., 2017), non-regulated energy dissipation (Φ NO), and regulated energy dissipation (Φ NPQ) (Kramer et al., 2004). In addition, the ratio between non-photochemical extinction efficiency and non-regulated energy dissipation (NPQt/ Φ NO) was calculated.

3.1.3.2.4 Leaf pigments

The leaf chlorophyll levels (Chl), flavonoids (Flav), and nitrogen balance index (NBI) were measured in the same leaf area where chlorophyll fluorescence was assessed using a Dualex® portable leaf pigment meter (FORCE-A, Orsay, France).

3.1.3.2.5 Gas exchange measurements

Gas exchange assessments were carried out 45 days after sowing, specifically at the V6 stage, between 9:00 and 11:00 am. The first fully expanded leaf was measured from the apex of the plant, in the middle third of the leaf, in an area of approximately 600 mm². An Infra-Red Gas Analyzer - IRGA (model LI-6400, LI-COR, Lincoln, NE) was used for this purpose. During the evaluations, the

photosynthetically active radiation (PAR) was maintained at 600 μ mol m⁻² s⁻¹, the CO₂ concentration inside the LI-6400 chamber was kept at 400 μ mol mol⁻¹, and the relative air humidity and temperature were kept at 60% and 25 °C, respectively.

The gas exchange traits evaluated were net CO_2 assimilation rate (A), transpiration (E), stomatal conductance (*gs*), and intercellular CO_2 concentration (*Ci*). In addition, two relative efficiencies were calculated: the instantaneous carboxylation efficiency (*A*/*Ci*), representing the ratio between the net CO_2 assimilation rate (*A*) and the intercellular CO_2 concentration (*Ci*); and the carboxylation efficiency index and the leaf phosphorus content (*A*/LPC), defined as the ratio between the net CO_2 assimilation rate (*A*) and the leaf phosphorus content (*L*PC).

3.1.3.2.6 Estimating heterosis

For each trait, heterosis (H) was calculated by the difference between the average value obtained by the hybrid (F₁) and the average values obtained by its parents (MP), expressed in percentage, according to the following expression: $H = \left(\frac{F_1 - MP}{MP}\right) \times 100$ (Hallauer et al., 2010).

3.1.3.2.7 Statistical analysis

An individual analysis of variance was carried out for each trait studied, considering the different conditions of phosphorus availability. The statistical model used was: $Y_{ij} = \mu + G_i + B_j + \varepsilon_{ij}$, in which Y_{ij} is the observed value of the *i*-th genotype in the *j*-th block; μ is the general constant; G_i is the effect attributed to the *i*-th genotype; B_j is the effect of block *j*; and ε_{ij} is the experimental error associated with the observation Y_{ij} .

A joint analysis of variance was conducted using the following statistical model: $Y_{ijk} = \mu + G_i + B/Pj_k + P_j + GP_{ij} + \varepsilon_{ijk}$, in which Y_{ijk} is the observation of the *i*-th genotype in the *j*-th P condition in the *k*-th block; μ is the general constant; G_i is the fixed effect of the *i*-th genotype; B/Pj_k is the random effect of the *k*-th block within the P *j* condition; P_j is the fixed effect of the *j*-th P condition; GP_{ij} is the fixed effect of the interaction between the *i*-th genotype and the *j*-th P condition; and ε_{ijk} is the average experimental random error associated with the observation Y_{ijk} with NID (0, σ^2). The effects of the genitors and hybrids were partitioned for each trait.

Statistical analyses were conducted using SAS 9.4 software (SAS Institute Inc., Cary, NC, USA).

Combinatorial abilities were analyzed using method I of diallel analysis proposed by Griffing (1956). The effects of the genitors, hybrids, and reciprocals were evaluated, considering the effect of the genotypes to be fixed. The general combining ability (GCA) and specific combining ability (SCA) of the genotypes were obtained using the following model: $Y_{ij} = \mu + g_i + g_j + s_{ij} + r_{ij} + \varepsilon_{ij}$, in which Y_{ij} is the mean value of the hybrid combination ($i \neq j$) or the genitor (i = j); μ is the overall mean; g_i , g_j are the effects of the general combining ability of the *i*-th or *j*-th genitor (i, j = 1, 2, 3, and 4); s_{ij} is the effect of specific combining ability for crosses between genitors of order *i* and *j*; r_{ij} is the reciprocal effect that quantifies the differences resulting from genitor *i* or *j* when used as the male or female genitor in cross *ij*; and ε_{ij} is the average experimental error associated with the observation of order *ij*.

The quadratic components expressing the genetic variability associated with GCA (ϕ_g), SCA (ϕ_s), and reciprocal effects (ϕ_{rc}) were estimated. These components were calculated using the following formulas: $\phi g = \frac{QMG-Q}{2p}$, $\phi s = QMS - QMR$, and $\phi rc = \frac{QMRC-QMR}{2}$. In this formula, QMG represents the mean square of the general combining ability, QMS is the mean square of the specific combining ability, QMRC is the mean square of the reciprocal effect, QMR is the mean square of the residue and *p* is the number of parents.

The effects of the quadratic components were converted into percentages of the total effects. Statistical-genetic analyses were carried out using Genes software (Cruz, 2013).

3.1.4 RESULTS

3.1.4.1 Plant growth traits and phosphorus use efficiency

The joint analysis revealed significant effects for both phosphorus level (P) and genotypes (G), and a significant G × P interaction for all plant growth traits, P

accumulation, and efficiency. When comparing the two conditions of P availability, it became clear that the deficiency of this nutrient had a more pronounced negative impact on the parent lines, significantly affecting all the growth traits and P accumulation (Table 1).

Significant reductions between the two P conditions were exhibited in the parent lines, surpassing 80.00% in traits such as leaf area (LA, 83.27%), leaf dry matter (LDM, 93.84%), stalk dry matter (SDM, 95.17%), and root dry matter (RDM, 86.67%). The hybrids also showed marked reductions in these traits, reaching values of 78.20%, 90.37%, 88.06%, and 77.19%, respectively (Table 1).

Regarding P accumulation in both parent lines and hybrids, remarkable reductions exceeding 90% were observed as a consequence of P deficiency. In contrast, the plants from the parent lines exhibited an average accumulation of 0.61 and 0.07 mg P/plant in the shoot and root, respectively, while the hybrids achieved a higher average accumulation of 1.06 and 0.11 mg P/plant (Table 1). An increase in P efficiency for both the parent lines and hybrids, with a significant increase in the P use efficiency (PUE), P absorption efficiency (PUpE), and P utilization efficiency (PUtE), was observed. Average increases of 92.86%, 86.46%, and 93.44% were observed for these traits in the parent lines, while the hybrids exhibited even more significant increases, reaching 96.34%, 91.41%, and 95.76%, respectively (Table 1).

Under high phosphorus (P) condition, no significant differences in plant growth traits and P use efficiency were observed between lines and hybrids (III), except for P accumulation in the leaf (LPC) and root (RPC) (Table 1). However, in low P condition, significant differences were identified for most of these traits, except for leaf width (LW), root/shoot ratio (R/S), and P absorption efficiency (PUpE) (Table 1).

Due to the greater impact of low P conditions on the lines, the heterosis for the evaluated traits was more pronounced under these conditions. Significant heterosis percentages were observed for SDM and RDM, with 86.82% and 105.25%, respectively (Table 1). Traits related to P content, such as shoot P content (SPC) and root P content (RPC), also exhibited substantial heterosis percentages, reaching 77.83% and 103.50%, respectively. Furthermore, regarding P efficiency, the PUE and PUtE exhibited significant heterosis rates of 78.07% and 89.09%, respectively (Table 1).

	Joint Analysis		nalysis	High P			Low P				
Traits	G	Ρ	G × P	Lines (I)	Hybrids (II)	L × H (III)	Н%	Lines (I)	Hybrids (II)	L × H (III)	Н%
PH	**	**	**	28.22 ± 3.43**	30.30 ± 3.70**	ns	11.56	11.44 ± 1.27*	13.70 ± 1.23**	**	20.94
SD	**	**	**	12.26 ± 1.24**	12.53 ± 1.14**	ns	5.98	3.81 ± 0.42^{ns}	$4.60 \pm 0.48^{*}$	**	25.32
LL	**	**	**	68.91 ± 4.16**	71.59 ± 6.87**	ns	0.25	37.51 ± 2.12 ^{ns}	42.48 ± 2.73**	**	14.42
LW	*	**	*	3.74 ± 0.35 ^{ns}	3.69 ± 0.42^{ns}	ns	-5.64	2.58 ± 0.17 ^{ns}	2.72 ± 0.25**	ns	3.16
LA	**	**	**	632.93 ± 88.35**	668.50 ± 104.26 ^{ns}	ns	6.33	96.32 ± 4.74 ^{ns}	117.96 ± 10.68**	**	21.75
LDM	**	**	**	3.41 ± 0.51**	3.74 ± 0.62**	ns	18.11	0.21 ± 0.01**	0.36 ± 0.03**	**	70.50
SDM	**	**	**	2.07 ± 0.41**	2.01 ± 0.48**	ns	6.04	0.10 ± 0.01**	0.24 ± 0.05**	**	86.82
RDM	**	**	**	1.05 ± 0.15**	1.14 ± 0.20**	ns	14.88	$0.14 \pm 0.01^{*}$	0.26 ± 0.04**	**	105.25
R/S	**	**	**	0.20 ± 0.04^{ns}	$0.20 \pm 0.05^{\text{ns}}$	ns	-2.94	$0.45 \pm 0.04^*$	$0.46 \pm 0.06^{**}$	ns	18.50
LPC	**	**	**	11.59 ± 1.24**	13.08 ± 1.69**	**	18.83	0.46 ± 0.07 ^{ns}	0.74 ± 0.12**	**	63.71
SPC	**	**	**	7.35 ± 0.99**	7.42 ± 1.26**	ns	4.28	$0.15 \pm 0.06^*$	0.32 ± 0.07**	**	77.83
STPC	**	**	**	18.94 ± 1.95**	20.50 ± 2.81**	ns	12.78	0.61 ± 0.11 ^{ns}	1.06 ± 0.16**	**	62.53
RPC	**	**	**	1.09 ± 0.11**	1.35 ± 0.16**	**	37.81	0.07 ± 0.01**	0.11 ± 0.01**	**	103.50
PUE	**	**	**	$0.035 \pm 0.003^{**}$	0.037 ± 0.008**	ns	13.84	$0.42 \pm 0.05^{*}$	0.82 ± 0.11**	**	78.07
PUpE	**	**	**	0.13 ± 0.025 ^{ns}	0.14 ± 0.02**	ns	14,84	0.96 ± 0.28^{ns}	1.53 ± 0.33**	ns	64,57
PUtE	**	**	**	$0.042 \pm 0.006^{**}$	0.046 ± 0.007**	ns	14,06	0.61 ± 0.07 ^{ns}	1.17 ± 0.14**	**	89,09

Table 1. Summary of the joint and individual analyses of variance, means, standard deviations, and heterosis (H %) for morphological traits and P use efficiency in popcorn inbred lines and hybrids in diallel grown under different P availability.

G – genotypes; P - phosphorus conditions; PH – plant height (cm); SD – stalk diameter (mm); LL – leaf length (cm); LW – leaf width (cm); LA – leaf area (cm²); LDM – leaf dry mass (g); SDM – stalk dry mass (g); RDM – root dry mass (g); R/S – root to shoot ratio; LPC – leaf phosphorus content; SPC – stalk phosphorus content; STPC – shoot phosphorus content; RPC – root phosphorus content; PUE – phosphorus use efficiency; PUpE – phosphorus uptake efficiency; and PUtE – phosphorus utilization efficiency. The values in the Lines and Hybrids columns represent the means ± standard deviations of the respective evaluated genotypes and their statistical differences within the parent lines and hybrids; L x H – statistical differences between the lines and hybrids according to the partition of line and hybrid effects. Factor Analysis: genotype (G), phosphorus availability condition (P), and genotype x phosphorus availability condition (G × P). I, II, and III represent the level of significance between lines, between hybrids, and between lines and hybrids, respectively. Significance levels: * p < 0.05; ** p < 0.01; and ns = not significant.

Although significance was observed in the quadratic components associated with general combining ability (ϕ_g) and the reciprocal effect (ϕ_{rc}) for most of the growth traits, P accumulation and P efficiencies, the most crucial component influencing these traits and explaining the majority of the genetic variability was the quadratic component linked to specific combining ability (ϕ_s). Therefore, dominance effects were more pronounced in both conditions of P availability.

Under the low P conditions, traits exhibited the most significant influence of the genetic effects of dominance (ϕ_s) were LL (69.3%), LDM, SDM, and RDM (65.6%, 66.2% and 70.6%, respectively), SPC and RPC (68.6% and 73.4%, respectively), PUE (70.2%) and PUtE (77.5%). Conversely, in the high P condition, traits demonstrating the greatest impact of dominance genetic effects were: LDM and RDM (43.1% and 49.7%, respectively), LPC, SPC, APC, and RPC (56.8%, 43.4%, 51.1%, and 65.5%, respectively), and PUE (46.9%) and PUtE (50.5%) (Figure 2).

Figure 2. Importance (expressed as %) of the quadratic components related to general (ϕ_g) and specific combining ability (ϕ_s) and reciprocal effects (ϕ_{rc}) and residual effects for the traits: PH – plant height (cm); SD – stalk diameter (mm); LL – leaf length (cm); LW – leaf width (cm); LA – leaf area (cm2); LDM – leaf dry mass (g); SDM – stalk dry mass (g); RDM – root dry mass (g); R/S – root to shoot ratio; LPC – leaf phosphorus content; SPC – stalk phosphorus content; APC – aboveground phosphorus content; RPC – root phosphorus content; PUE – phosphorus use efficiency; PUpE – phosphorus uptake efficiency; and PUtE – phosphorus utilization efficiency.

3.1.4.2 Chlorophyll fluorescence, leaf pigments, and exchange measurements

Among the traits related to chlorophyll fluorescence, only NPQt, Φ NO, and NPQt/ Φ NO exhibited significance for genotypes (G), phosphorus conditions (P), and the G × P interaction (Table 2). For leaf pigments and gas exchange traits, significant differences were identified between G and P and the interaction between G × P for all the traits analyzed, except for *gs* (Table 2).

P deficiency negatively impacted the Φ PSII and Φ NO traits, resulting in reductions of 79.07% and 48.48% in the parent lines and 78.05% and 69.44% in the hybrids, respectively (Table 2). However, the traits NPQt, Φ NPQ, and the NPQt/ Φ NO ratio increased in both parent lines and hybrids in response to the lack of P (Table 2). Significant reductions were also observed in chlorophyll (Chl) and the nitrogen balance index (NBI), with values of 57.80% and 65.84% in the lines and 50.52% and 77.78% in the hybrids, respectively. On the other hand, the flavonoid content (Flav) increased under low phosphorus conditions in both lines and hybrids.

Under P deficiency, significant reductions in *A* of 75.66%, *gs* of 66.67%, and instantaneous carboxylation efficiency (A/Ci) of 88.89% were observed in the parent lines, representing the most substantial losses (greater than 60.00%). In the hybrids, the reductions were approximately 72.11%, 61.11%, and 90.00%, respectively (Table 2). On the other hand, *Ci* and the carboxylation efficiency index concerning the leaf phosphorus content (A/LPC) increased with P deficiency by 59.24% and 88.89% in the parent lines and by 51.20% and 78.77% in the hybrids, respectively.

When comparing the parent lines to the hybrids (III; Table 2), a significant difference was observed for NPQt and NPQt/ Φ NO in the high P condition and for NPQt, Φ NO, and NPQt/ Φ NO in the low P condition (Table 2). Chlorophyll concentration (Chl) was significantly different in the low P condition, while the gas exchange traits (*A*, *Ci*, and *A*/*Ci*) were significant in both P conditions (Table 2).
Traita	Joint Analysis			High P			Low P				
l raits	G	Ρ	G × P	Lines (I)	Hybrids (II)	L × H (III)	Н%	Lines (I)	Hybrids (II)	L × H (III)	Н%
NPQt	**	**	**	$0.69 \pm 0.05^{\rm ns}$	0.64 ± 0.06^{ns}	*	-4.68	5.55 ± 0.86**	8.59 ± 1.35**	**	140.71
ΦΡSΙΙ	ns	**	**	0.43 ± 0.06^{ns}	0.41 ± 0.07^{ns}	ns	-3.73	$0.43 \pm 0.02^{\text{ns}}$	$0.09 \pm 0.02^{**}$	ns	-28.27
ΦΝΟ	**	**	**	0.33 ± 0.03^{ns}	0.36 ± 0.04^{ns}	ns	6.00	$0.17 \pm 0.05^{*}$	0.11 ± 0.02**	**	-68.78
ΦΝΡQ	ns	**	ns	0.23 ± 0.04^{ns}	0.23 ± 0.03^{ns}	ns	-2.06	0.75 ± 0.08^{ns}	0.79 ± 0.07**	ns	14.74
NPQt/ΦNO	**	**	**	2.12 ± 0.36 ^{ns}	1.82 ± 0.25 *	**	-10.71	52.30 ± 5.96**	154.77 ± 20.70**	**	529.56
Chl	**	**	**	36.90 ± 2.34 ^{ns}	37.71 ± 1.86 ^{ns}	ns	2.87	15.57 ± 2.95 ^{ns}	18.66 ± 2.65**	**	22.63
Flav	**	**	**	0.22 ± 0.05**	0.16 ± 0.03**	**	-15.99	$0.27 \pm 0.08^{*}$	$0.43 \pm 0.06^{**}$	**	64.87
NBI	**	**	**	212.52 ± 53.26 ^{ns}	371.06 ± 71.83**	**	41.19	72.60 ± 10.00**	82.44 ± 34.35**	ns	-20.45
Α	**	**	**	18.24 ± 2.27 ^{ns}	19.47 ± 1.68**	*	8.70	$4.44 \pm 1.02^{*}$	5.43 ± 1.01**	**	18.07
gs	**	**	ns	0.18 ± 0.05^{ns}	0.18 ± 0.04**	ns	7.28	$0.06 \pm 0.01^{\text{ns}}$	0.07 ± 0.01**	ns	6.53
E	**	**	**	0.84 ± 0.11 ^{ns}	$0.86 \pm 0.14^{*}$	ns	1.57	$0.50 \pm 0.05^{\text{ns}}$	0.49 ± 0.08**	ns	-3.85
Ci	**	**	**	205,70 ± 28,03 ^{ns}	190,35 ± 19,77**	*	-0,14	509.66 ± 55,62**	398.16 ± 51,32**	**	-21,56
A/ Ci	**	**	**	$0.09 \pm 0.01^{\rm ns}$	0.10 ± 0.01**	**	8.72	0.001 ± 0.003*	0.01 ± 0.006**	**	85.79
A/LPC	**	**	**	1.75 ± 0.23**	1.69 ± 0.31**	ns	-12.02	10.06 ± 2.88*	7.96 ± 2.19**	**	-31.35

Table 2. Summary of the joint and individual analyses of variance, means, standard deviations, and heterosis (H %) of physiological traits associated with gas exchange, chlorophyll fluorescence, and leaf pigment measurements of popcorn lines and hybrids in diallel grown under contrasting conditions of P availability.

G – genotypes; P - phosphorus conditions; NPQt – non-photochemical quenching parameter; Φ PSII – PSII electron transport quantum yield; Φ NO – non-regulated energy dissipation; Φ NPQ – regulated energy dissipation; NPQt/ Φ NO- non-photochemical quenching to non-regulated energy dissipation efficiency ratio; Chl – relative chlorophyll content; Flav – relative flavonoid content; and NBI – nitrogen balance index; *A* – net CO₂ assimilation rate (µmol CO₂ m⁻² s⁻¹); *g*_s – stomatal conductance (mol H₂O m⁻² s⁻¹); *E* – transpiration (mmol H₂O m⁻² s⁻¹); *Ci* – internal CO₂ concentration (µmol CO₂ m⁻² s⁻¹); *A*/*Ci* – instantaneous carboxylation efficiency; *A*/*LPC* – carboxylation efficiency ratio to leaf phosphorus content. The values in the Lines and Hybrids columns represent the means ± standard deviations of the respective evaluated genotypes and their statistical differences within the parent lines and hybrids; L x H – statistical differences between the parent lines and hybrids according to the partition of line and hybrid effects. Factor Analysis: genotype (G), phosphorus availability condition (P), and genotype x phosphorus availability condition (G × P). I, II, and III represent the level of significance between lines, between hybrids, and between lines and hybrids, respectively. Significance levels: * *p* < 0.05; ** *p* < 0.01; and ns = not significant.

In the low P condition, the heterosis estimates were negative for Φ NO (-68.78%), while they were positive for NPQt and Φ NPQ/ Φ NO, with values of 140.41%, and 529.56%, respectively (Table 2). The heterosis estimates for Chl and Flav were 22.63% and 64.87%, respectively, in the low P condition (Table 2). Concerning the gas exchange traits, there was no significant impact of heterosis for gs and E in both P conditions. For *A*, and *A*/*Ci*, the heterosis estimates were 8.70% and 8.72% for high P, respectively, and 18.07% and 85.79% for low P. On the other hand, negative heterosis estimates were observed for the other traits (Table 2).

The analysis of variance revealed that under optimum P conditions, the components related to general (ϕ_g) and specific (ϕ_s) combining ability were not statistically significant (*P*>0.05) for most physiological traits due to the high residual contribution (Supplementary Table 2 and Figure 3). However, under low P conditions, the quadratic components ϕ_s and ϕ_{rc} were statistically significant (*P*>0.05), and these are the main components responsible for the genetic variability of the gas exchange, chlorophyll fluorescence and leaf pigment traits (Supplementary Table 2 and Figure 3).

Figure 3. Importance (expressed as %) of quadratic components related to general (ϕg) and specific combining ability (ϕs) , reciprocal (ϕrc) , and residual effects for traits related to photosynthesis, chlorophyll fluorescence, and leaf pigments. A - net CO₂ assimilation rate (μ mol CO₂ m⁻² s⁻¹); gs – stomatal conductance (mol H₂O m⁻² s⁻¹); E – transpiration (mmol H₂O m⁻² s⁻¹); Ci – internal CO₂ concentration (µmol CO₂ m⁻¹) ² s⁻¹); A/Ci – instantaneous carboxylation efficiency; A/LPC – carboxylation efficiency ratio to leaf phosphorus content; NPQt - non-photochemical quenching parameter; ΦPSII – PSII electron transport quantum yield; ΦNO – non-regulated energy dissipation; ΦNPQ – regulated energy dissipation; NPQt/ΦNO – nonphotochemical guenching to non-regulated energy dissipation efficiency ratio; Chl - relative chlorophyll content; Flav - relative flavonoid content; and NBI - nitrogen balance index.

3.1.5 DISCUSSION

3.1.5.1 Impact of P availability on growth traits and P use efficiency in popcorn genotypes

Adequate phosphorus availability is crucial for plant growth and development, playing an essential role in photosynthesis and plant biomass production (Carstensen et al., 2018; Dusenge et al., 2019; Kayoumu et al., 2023). In the case

NBI

of cereals such as corn, seedlings utilize P reserves from the seed during the initial days after sowing (Nadeem et al., 2011; Nadeem et al., 2012). From this period onwards, the supply of inorganic phosphate (Pi) and its absorption by the roots become essential for continued plant growth and development. Pi, along with CO₂, and water, constitutes the primary products of photosynthesis (Rychter, 2005). Consequently, low levels of Pi in the chloroplast diminish ATP production, affect CO₂ assimilation in the Calvin cycle and impede the conversion of NADPH to NADP+, resulting in reduction of plant biomass production (Dusenge et al., 2019; Suzuki et al., 2022).

Although the P deficiency significantly reduced the growth of all the plants, the hybrids exhibited a remarkable ability to accumulate greater amounts of this nutrient, as indicated by the values of the P contents accumulated in the lines (Table 1). This distinctive accumulation pattern aligns with findings of previous studies, such as millet genotypes exposed to various P supplements (Maharajan et al., 2019), as well as rice (Pinit et al., 2020) and cotton (Kayoumu et al., 2023) cultivars exhibiting diverse traits of Pi accumulation. Hence, the difference observed in P accumulation capacity between the lines and the hybrids suggests that the hybrids, although affected by the limited availability of P, are coping better than their parents.

The leaf plays a key role in photosynthesis, generating the majority of the carbohydrates essential for plant growth and development (Wang et al., 2018). In contrast to some studies reporting no significant differences in leaf area (LA) in response to P levels in other crops, such as soybeans, cowpeas, wheat, and corn (Bechtaoui et al., 2021), the present study revealed that LA was affected by the lack of P. The observed greater leaf length (LL) in the hybrids may confer an advantage to their overall performance, by increasing the surface area for sunlight capture, thereby favoring photosynthesis and, consequently, plant growth. Additionally, we found that P availability slightly influenced the leaf width (LW), suggesting that it was not a primary response of the plants to cope with this nutritional limitation.

Under low P conditions, we observed drastic reductions in biomass in all the plants, accompanied by an increase in the root/shoot ratio (R/S) in both the parent lines and hybrids (Table 1). This response is commonly observed in certain crops, including corn when exposed to P deficiency (Zhang et al., 2014c; Kumar et al., 2021; Liu et al., 2021). In a study by Wen et al. (2017), critical P concentrations affected the growth of corn seedlings, triggering morphological adaptations in the

roots associated with P acquisition, such as an increase in total root length and R/S ratio. Moreover, some crops adapt to phosphorus deficiency by exploiting the soil at minimal metabolic cost (Lynch, 2007). This adaptation involves allocating more biomass to root classes that are metabolically efficient at absorbing phosphorus, such as adventitious roots and root hairs (Ramaekers et al., 2010). In the present study, despite observing an increase in the R/S ratio, no significant difference in this variable was found. Consequently, this trait did not emerge as a determining factor in the superiority of the hybrids over the lines. Other factors are supposed to contribute more significantly to the hybrids' ability to accumulate more phosphorus under the conditions evaluated.

Phosphorus use efficiency (PUE) refers to the ability of plants to acquire and use phosphorus from the soil to produce biomass and grains (Manske et al., 2000). It comprises phosphorus absorption efficiency (PUpE) and phosphorus utilization efficiency (PUtE). PUpE represents the ability of plants to absorb phosphorus from the soil, while PUtE indicates the ability to convert absorbed phosphorus into biomass or grain (Manske et al., 2000; Gu et al., 2016). Thus, improving PUE can be achieved by improving phosphorus absorption efficiency (PUpE) and, more economically, by improving phosphorus utilization efficiency (PUtE) in plants (Clemens et al., 2016).

The findings of this study reveal that under low P conditions, popcorn hybrids demonstrate a remarkable ability to optimize the efficiency with which they use this nutrient. This was evident in the significant increase in the shoot and the roots biomass and a considerable improvement in the PUE compared to the parent lines (Table 1). This efficiency was primarily attributed to an efficient internal utilization of phosphorus (PUtE) rather than absorption of this nutrient (PUpE), as no significant differences were observed between the parent lines and hybrids under conditions of low P supply (Table 1). The greater contribution from PUtE aligns with the findings of Li et al. (2021), whose study demonstrated that the corn hybrids evaluated exhibited superior performance in biomass production and PUE compared to the lines. These results align with other studies highlighting the significance of efficient translocation and reuse of stored phosphorus for achieving higher PUE (Wang et al., 2010; Abbas et al., 2018; Irfan et al., 2020). A strategy for mobilizing P within the plant involves recycling Pi from mature/senescent plant parts to actively growing tissues (Van de Wiel et al., 2016; Wang et al., 2021). This recycling process can

occur in mechanisms in which plants replace membrane phospholipids with nonphospholipids, such as P free lipids galactolipids (MGDG and GDGD) and sulfolipids (SQDG) (Moellering and Benning, 2011; Mehra et al., 2018). Furthermore, studies have demonstrated that different plant species and even cultivars of the same species can exhibit adaptive responses allowing them to increase external phosphate absorption or prioritize internal use under conditions of low P in the soil (Iqbal et al., 2019; Gerhardt et al., 2017).

Despite the investigated lines displaying differences in P efficiency, discerning marked differences in the aspects related to PUtE and PUpE under conditions of low P availability up to the V6 evaluation stage was challenging (Table 1). Therefore, within the scope of this study, the results suggest that in critical circumstances of P deficiency, the primary discrepancies observed between the lines can be attributed to their genetic origins, with physiological factors playing a crucial role in promoting higher PUE and consequently greater biomass accumulation, thus favoring superior performance in the hybrids.

3.1.5.2 Effect of P supply on chlorophyll fluorescence, leaf pigments, and gas exchange measurements in popcorn genotypes

In plants responding to stress, various traits related to photosynthesis are often measured to assess their physiological status. The chlorophyll fluorescence-related traits obtained in this study, such as Φ NPQ, NPQt, Φ NO, and Φ PSII, are associated with different aspects of photosynthetic performance.

Our results reveal that both hybrids and parent lines significantly increased Φ NPQ and NPQt under low P conditions, demonstrating a greater activation of photosynthetic protection mechanisms. These findings align with other studies that have also reported an increase in Φ NPQ in plants exposed to low P supply stress (Patel et al., 2020; Nguyen et al., 2021). However, the hybrids exhibited a higher NPQt/ Φ NO ratio, suggesting a greater allocation of resources to photoprotection and antioxidant protection, which was also confirmed by the higher concentration of flavonoids (Table 2). On the other hand, the parent lines demonstrated greater efficiency in dissipating non-regulated energy about photoprotection, suggesting a less efficient allocation of energy to CO₂ assimilation and carbohydrate production.

This differentiated resource allocation may have negatively impacted plant growth and development, resulting in a lower net CO_2 assimilation rate (*A*).

The heterosis estimates for NPQt and NPQt/ΦNO showed positive and high values under low P conditions, and these traits were statistically significant for comparisons I, II, and III (Table 2). Hence, the relevance of these traits as indicators capable of distinguishing genotypes and the importance of photosynthetic protection mechanisms activated under conditions of P deficit are highlighted. Other studies have highlighted the importance of NPQt in genetic improvement for enhancement of crop photoprotection (Wei et al., 2022; Hussain et al., 2023).

In crop plants, the measurement of chlorophyll content serves as an indicator of leaf health and, consequently, of the correct activity of the photosynthesis. The reduction in chlorophyll and the increase in flavonoids in response to P deficiency in popcorn lines and hybrids suggest that the absence of this essential nutrient induces alterations in the biosynthetic pathway of these pigments. These changes may be related to plant adaptation mechanisms in response to phosphorus scarcity, potentially affecting photosynthetic efficiency and the plant's ability to protect against oxidative damage (Kayoumu et al., 2023).

Furthermore, flavonoids are one of the traits that significantly showed differences in all comparisons I, II, and III under high and low P content conditions. Studies have previously revealed that flavonoids play an important role in protecting against abiotic stresses, such as P deficiency (Trejo-Téllez et al., 2019; Lou et al., 2019; Liu et al., 2020). Therefore, measuring chlorophyll and flavonoid content can be a useful approach to assess leaf health and provide valuable information on the ability of plants to respond to P nutrient stress.

Regarding gas exchange, the decrease in net CO_2 assimilation rate (*A*), stomatal conductance (*gs*), and transpiration (*E*), coupled with the increase in intercellular CO_2 concentration (*Ci*) in parent lines and hybrids, aligns with the hypothesis that non-stomatal factors play an substantial role in photosynthesis during P deprivation (Rao et al., 1989; Reich et al., 2009; Zhang et al., 2014b; Kayoumu et al., 2023).

Pi plays a crucial role in photosynthesis, particularly in the dark phase or Calvin cycle. In this phase, carbon dioxide is fixed and converted to triosephosphate through enzymatic reactions (McClain and Sharkey, 2019), which is an essential step in the production of carbohydrates such as sucrose, an essential molecule for the plant growth and development (Wingler and Henriques, 2022). Sucrose is a sugar that is transported from leaves to other parts of the plant, where it is used to provide energy and carbon for the growth and activity of tissues and reserve organs (Aluko et al., 2021). Previous studies have demonstrated that P deficiency can impact the production of triose-phosphate transporters (Thuynsma et al., 2016; Chu et al., 2018). Therefore, P deficiency may have influenced sucrose synthesis in popcorn leaves, limiting the availability of energy and carbon needed for healthy development.

In both P availability conditions, no significant differences in gs and E between the parent lines and hybrids (III; Table 2) were observed. This suggests that the intercellular CO₂ concentration (*Ci*) was one major factor responsible for the variations in net CO₂ assimilation rate (*A*) in this comparison (Table 2). Furthermore, a higher *A*/*Ci* ratio in the hybrids compared to the lines indicates that the hybrids are more efficient in adaptive responses to P deficiency, with a greater capacity to convert carbon into biomass (Sherin et al., 2022).

3.1.5.3 How can genetic gains be maximized in popcorn under P deficiency?

The low availability of P allowed for a clearer distinction among the studied genotypes. The hybrids exhibited distinct responses from the parent lines, with higher heterosis values observed under low P condition, as indicated in Tables 1 and 2. Furthermore, a predominance of quadratic components associated with dominance effects (ϕ_s) in controlling plant growth traits, P accumulation, and P efficiency in both conditions was observed (Supplementary Table 2 and Figure 2). This implies that the predominant mode of genetic action remains consistent for both P conditions, suggesting that similar breeding strategies can be applied.

In support of this finding, a previous study (Silva et al., 2019) evaluated 29 popcorn lines, including four lines assessed in the present study. They found strong genetic correlations between P availability and shoot and root growth. They suggested that selecting for individuals with high growth in one environment results in a similar increase in the other environment. Therefore, this correlation can be attributed to the quadratic component, with the largest contribution to the genetic variance in the growth and P use efficiency traits being the same in both P availability conditions (Figure 2). Furthermore, the selection of the most suitable

genitors, given the contribution of the quadratic component associated with the reciprocal effect (ϕ_{rc}) evidenced in both P conditions, and the formation of promising hybrids can be carried out at the juvenile stage of the plants. This is because, in the corn crop, the early stages of growth have been identified as critical in terms of the demand for this nutrient (Li et al., 2021).

Regarding the physiological traits, we found that under high P conditions, these traits were significantly influenced by the environment (Figure 3). This indicates that when P is readily available in sufficient amounts, environmental conditions play a major role in determining the physiological traits of popcorn plants. On the other hand, when the plants were subjected to conditions of low P availability, a notable change in dynamics was observed (Figure 3). Genetic factors emerged as the critical elements that most significantly influenced these traits. The quadratic components that contributed most to the variability observed in the traits were the effects of dominance (ϕ_s) and reciprocity (ϕ_{rc}) (Figure 3). While the quadratic component associated with ϕ_s is related to allelic complementation, the quadratic component associated with ϕ_{rc} is related to the action of mitochondrial and chloroplast genes, and nuclear genes from the maternal parent (Cruz et al., 2014). Therefore, exploring heterosis and using female genitors with significant averages for these traits can maximize genetic gains. The main traits to be studied would be: NPQt, Φ NO, and NPQt/ Φ NO related to chlorophyll fluorescence; Flav related to leaf pigments; and A and Ci related to gas exchange.

Finally, the results provide valuable insights for the improvement of popcorn through the strategic choice of genitors, the exploitation of heterosis, and the selection of specific photosynthetic traits, taking into account the different conditions of P availability.

3.1.6 CONCLUSION

In this study, higher phosphorus use efficiency (PUE) was associated with greater accumulation of this nutrient in the aerial part and roots of the plants, along with a better A/Ci and NPQt/ Φ NO ratios. In addition, the concentration of flavonoids proved to be promising for differentiating genotypes under both phosphorus

availability conditions, useful for identifying genotypes with potential and for detecting levels of P deficiency at juvenile stages. Genetic gains for PUE can be achieved by exploiting heterosis in the different traits evaluated in this study, highlighting the importance of this strategy in the genetic improvement of popcorn in the face of P deficiency.

3.2 UNRAVELING THE MECHANISMS OF EFFICIENT PHOSPHORUS UTILIZATION IN POPCORN (*Zea mays* L. VAR. EVERTA): INSIGHTS FROM PROTEOMICS AND METABOLITES ANALYSIS

3.2.1 INTRODUCTION

Phosphorus (P) is a critical nutrient among the essential elements for plant health and growth. Insufficient availability of this mineral acts as a limiting factor for normal plant development (Heuer et al., 2017; Sun et al., 2018). This is due to the indispensable role of inorganic phosphate (Pi) in numerous vital plant functions. Pi acts as a phosphate group donor during phosphorylation, pivotal for activating key molecules and enzymes essential in processes like adenosine triphosphate (ATP) synthesis. ATP, the primary energy carrier molecule in cells, is crucial for fueling various cellular activities in plants (Song, 2021; Fontecilla-Camps, 2022). Furthermore, Pi plays a pivotal role as a fundamental component of nucleic acids, such as DNA and RNA, which are crucial for genetic expression and regulation (Malhotra et al., 2018).

P exists in several forms in soil, with the phosphate anion $H_2PO_{4^-}$ being the primary form assimilated by plants (Kumar et al., 2021). However, due to its chemical properties, the concentration of P soil solution available for root uptake is low, typically around 10-5 μ M (Roberts and Johnston, 2015). When P is applied as fertilizer, it rapidly undergoes fixation processes in the soil, rendering it inaccessible for uptake (Riskin et al., 2013; Delgado et al., 2016). Unlike nitrogen (N), which can

be replenished by fertilizers and nitrogen-fixing plants (Curatti and Rubio, 2014; Sahoo et al., 2014), P is a non-renewable resource. It cannot be replaced or artificially synthesized and must be extracted from limited reserves, mainly phosphate rock deposits (Cordell and White, 2011; Wellmer and Scholz, 2017). Therefore, there is considerable interest in developing crop varieties that can achieve higher yields while using less soil phosphorus.

To address the need to reduce P use while avoiding future Pi depletion, plant breeding is emerging as a viable avenue to increase phosphorus use efficiency (PUE) through genetic improvement (Heuer et al., 2017). However, breeders face a formidable challenge due to the complexity of PUE, which involves multiple traits (van de Wiel et al., 2016). As a result, several methods have been used to identify genotypes with enhanced responsiveness to phosphorus deficiency. These approaches include molecular techniques such as QTL identification (Chen et al., 2008; Yuan et al., 2017; Mahender et al., 2018), transcriptomic analysis (Zeng et al., 2016; Silva et al., 2019a; Liu et al., 2020a), and proteomic profiling (Zhang et al., 2014; Vengavasi et al., 2017), as well as phenotyping methods that assess physiological traits (Patel et al., 2020; Bhatta et al., 2021).

Proteomic and metabolic studies offer valuable insights into how different genotypes respond to stress conditions, revealing essential molecular switches and pathways involved in stress responses and adaptation. For example, under P starvation, maize roots of tolerant inbred lines activated a higher number of genes related to plant hormone signaling, acid phosphatase, and metabolite (Jiang et al., 2017). In addition, proteins associated with carbon metabolism, cell proliferation, and sugar metabolism play a crucial role in enhancing tolerance to low P conditions (Li et al., 2008). In maize leaves, the response to P deficiency alters the regulation of proteins involved in photosynthesis, carbohydrate metabolism, energy metabolism, secondary metabolism, signal transduction, and protein synthesis (Zhang et al. 2014). Despite these insightful studies in common maize, there is a lack of exploration of the molecular regulation of popcorn (*Zea mays* L. var. *everta*) to P deficiency.

Research regarding the effects of P deficiency on popcorn has mainly focused on efforts to identify the most effective breeding strategies that can lead to the development of more P-efficient and productive popcorn varieties (Almeida et al., 2018; Schegoscheski Gerhardt et al., 2019; Santos et al., 2022). This focus is driven by the economic importance of popcorn as a snack food (Jele et al., 2014), and the significant impact that P deficiency can exert on crop yield. Furthermore, most studies of PUE in popcorn are based only on agronomic traits, and an integrative strategy using molecular tools is needed for a comprehensive understanding of the plant response to P deficiency. The integration of high throughput approaches, such as mass spectrometry-based proteomics, with physiological measurements, can unravel novel players related to tolerance to P starvation and provide a platform with potential candidates to use in popcorn molecular breeding programs.

Thus, the objective of this study was to investigate the responses of two contrasting popcorn inbred lines to PUE under low and high P availability to elucidate the molecular mechanisms of P deficiency tolerance.

3.2.2 LITERATURE REVIEW

3.2.2.1 Phosphorus within Plants: Uptake, Utilization and Remobilization

Phosphorus (P) is an essential element for plant growth and development, with structural (nucleic acids, phospholipids), metabolic (energy transfer), and regulatory functions (Liu et al., 2015; Kleinert et al., 2017; Vengavasi et al., 2017). Despite being a macronutrient, it is one of the least accessible elements due to its low solubility and limited mobility in the soil solution (Ouyang et al., 2016; Liu et al., 2020).

Despite its very low concentration in soil (ranging from 1 to 10 μ M) (Yhang et al., 2017; Lambers and Plaxton, 2018), phosphate concentration in plant tissues is relatively high, around 5 to 20 mM (Raghothama, 1999). This is because phosphorus is a fundamental element in essential biomolecules such as DNA, RNA, ATP, NADPH, and membrane phospholipids (Maharajan et al., 2018; Pang et al., 2018). In addition, it plays a critical role in life-sustaining processes in plants, including photosynthesis, respiration, and protein activation through phosphorylation (Li et al., 2014; Muneer and Jeong, 2015).

The molecular mechanisms regulating the expression of genes encoding phosphate transporters and signaling pathways in plants include the coexistence of high- and low-affinity phosphate transport systems in plant roots (Nussaume et al., 2011; Gu et al., 2016). High-affinity transporters are plasma membrane proteins responsible for the uptake of phosphate from soil at low concentrations (Lopez-Arredondo et al., 2014; Mlodzińska and Zboińska 2016; He et al., 2019). These proteins are encoded by members of the *PHT1* (phosphate transporter) gene family and have significant potential to improve soil phosphate acquisition (Schroder et al., 2013).

The first report of Pi transporters in plants was made for *Arabidopsis thaliana* (Muchhal et al., 1996). Subsequently, various other Pi transporters have been identified not only in *Arabidopsis* but also in other crops such as rice (*Oryza sativa* L.) (Srivastava et al., 2018; Victor et al, 2019), maize (*Zea mays* L.) (Walder et al., 2015; Liu et al., 2016; Wang et al., 2020), and wheat (*Triticum aestivum* L.) (Guo et al., 2014; Teng et al., 2017; De Souza Campos et al., 2019).

A total of thirteen *PTH1* transporters have been identified in maize (Walder et al., 2015; Liu et al., 2016; Liu et al., 2018; Wang et al., 2020). Transporters *ZmPHT1*; *1*, *ZmPHT1*; *3*, *ZmPHT1*; *4*, *ZmPHT1*; *8*, and *ZmPHT1*; *9* are mainly expressed in roots and leaves and play an important role in phosphate uptake and redistribution. On the other hand, transporters *ZmPHT1*; *2*, *ZmPHT1*; *4*, *ZmPHT1*; *6*, *ZmPHT1*; *7*, *ZmPHT1*; *9*, and *ZmPHT1*; *11* are positively regulated by arbuscular mycorrhizal fungi (AMF), and these genes may be involved in mediating phosphate absorption and/or transport in maize.

After absorption in root cells, Pi is subsequently used to synthesize Pcontaining compounds such as ATP or phospholipids or can enter the vacuole where it is stored (Mlodzińska and Zboińska, 2016). Thus, in vegetative cells, when there is an excess of available Pi, it is absorbed and stored in vacuoles in the form of orthophosphate (Liu et al., 2015), whereas in seeds, Pi is stored in specialized protein storage vacuoles in the form of phytate (Yang et al., 2017).

Since Pi may not be available at optimal concentrations throughout the plant life cycle, the Pi supply is operated by the vacuolar Pi pool whenever the cytosolic Pi concentration decreases (Liu et al., 2015). Therefore, optimizing Pi influx and efflux from vacuoles is essential for maintaining Pi homeostasis in other organelles, tissues, and at the whole-plant level (Srivastava et al., 2018). Zhang et al. (2016) showed that remodeling the lipid composition of membranes by increasing V-ATPase activity - an enzyme responsible for generating a proton gradient and pumping stored Pi out of the vacuole (Forgac, 2009) - increased intracellular Pi recycling in a maize mutant under low P deprivation. This may have improved chlorophyll biosynthesis and the levels and activities of several enzymes involved in the Calvin cycle and CO₂ pumps. This mechanism of response to P deficiency is crucial because Pi is used in numerous metabolic processes, including photosynthesis. Therefore, efficient utilization of internal Pi for photosynthesis is essential to ensure an adequate supply of photoassimilates for growth and shoot translocation (Chea et al., 2021).

One strategy for remobilizing phosphate (P) within the plant is to recycle P from mature/senescent plant parts to actively growing tissues (Wiel et al., 2016). This recycling can occur through mechanisms by which plants replace membrane phospholipids with non-phospholipids, specifically phosphorus-free lipids such as galactolipids (MGDG and GDGD) and sulfolipids (SQDG) (Moellering and Benning, 2011; Mehra et al., 2018). Lipids in cell membranes carry approximately one-third of the total cellular organic P (Pant et al., 2015). Thus, membrane lipid remodeling allows phospholipid hydrolysis to release Pi for essential cellular processes with minimal or no damage to membrane function (Verma et al., 2021). Mehra et al. 2018, highlight the importance of galactolipid-mediated lipid remodeling (GDGD) in improving low Pi tolerance in rice, simultaneously targeting Pi utilization and Pi acquisition efficiency. Wang et al. (2020), through lipid analysis in maize leaves and roots under low phosphate conditions, observed an increase in non-phospholipids (MGDG, DGDG, and SQDG) and a decrease in phospholipids, mainly in leaf tissues.

3.2.2.2 Proteomic approaches to P use efficiency

In the last few years, several transcription factors have been discovered and characterized that are involved in the regulation of low-P stress. The MYB family transcription factor *PHR1* has been characterized in Arabidopsis (Bari et al., 2006) as a key regulator of low-P-responsive gene transcription in the root. In addition to PHR1, several transcription factors involved in the low-P response have been identified, such as *OsPHR1*, *OsPHR2*, *OsPHR3*, and *OsPHR4* in rice (Wu et al., 2013; Ruan et al, 2017), WRKY75, MYB62, and AtPHR1 in Arabidopsis (Devaiah

et al., 2007; Devaiah et al., 2009; Wu et al., 2013), and *OsPTF1* and *ZmAPRG* in maize (Li et al., 2011; Yu et al., 2019).

However, transcriptional studies do not provide direct estimates of protein abundance (Li et al., 2008). Furthermore, many biological questions can only be addressed at the protein level, as the presence of a gene or its mRNA does not guarantee a role in cellular activity (Quirino et al., 2010; Li et al., 2014). Therefore, protein determination and quantification are essential for understanding the mechanisms involved in cellular metabolic control (Lan et al., 2018). Quantitative proteomics has been a good tool for investigating the molecular mechanisms of plant responses to stress. In the field of breeding, its application ranges from the identification of proteins present in tissues, such as leaves/roots (Xiao et al., 2020; Cheng et al., 2021), to specialized organs, such as grains/seeds (Li et al., 2021).

Comparative proteomic studies of maize roots have provided valuable insights into genotypes with different levels of low-P tolerance (Li et al., 2007; Li et al., 2014). Responses included both changes in phosphorylation and changes in the abundance of proteins involved in numerous metabolic and cellular pathways. Changes in protein abundance led to several changes in carbon flux in metabolic processes, including sucrose and other downstream sugar metabolism pathways. In addition, changes in some key enzymes, such as sucrose synthase and malate dehydrogenase, were observed.

The study conducted by Zhang et al. (2014) provided a new perspective on how maize responds to low-P stress through changes in leaf metabolism. The proteins identified by the authors are involved in various metabolic pathways, including photosynthesis, carbohydrate metabolism, energy metabolism, secondary metabolism, signal transduction, protein synthesis, and defense. Under low-P conditions, there was a negative regulation of proteins involved in CO₂ enrichment, the Calvin cycle, and the electron transport system, resulting in reduced photosynthesis. Consequently, with restricted electron transport for photosynthesis, there was a positive regulation of antioxidant contents to eliminate reactive oxygen species (ROS) in response to peroxide accumulation.

In maize, through physiological and comparative proteomic analyses of leaves from Qi319-96 mutant and wild-type Qi319 plants treated with high and low P, Zhang et al. (2016) showed that although shoot phosphorus levels did not differ between genotypes, the Qi319-96 mutant had a higher rate of CO₂ photosynthetic

fixation and plant biomass compared to wild-type Qi319. Proteomic changes included 29 (high-P) and 71 (low-P) differentially expressed proteins involved in a variety of metabolic processes. Under low-P conditions, the levels of Rubisco, NADP-malic enzyme, pyruvate orthophosphate dicinase, delta-aminolevulinic acid dehydratase, sucrose-phosphate phosphatase, cytoplasmic phosphoglucomutase, fructose bisphosphate, aldolase, NADP-glyceraldehyde-3-phosphate dehydrogenase, NADPH-dihydroethidium, plastoquinone dehydrogenase, and chlorophyll a/b binding protein were significantly increased compared to Qi319. Based on these results, the authors suggest that increased internal Pi use efficiency was the primary reason for the higher low-P tolerance in the mutant compared to the wild type.

Although physiological studies related to proteomics in response to low-P stress have been conducted in maize (Li et al., 2007; Li et al., 2014; Zhang et al., 2016; Jiang et al., 2017; Sun et al., 2018), there is a lack of research using these approaches in popcorn.

3.2.3 MATERIALS AND METHODS

3.2.3.1 Plant materials and treatment

Two popcorn inbred lines (S₇) were evaluated: P7 (derived from hybrid IAC112, adapted to temperate and tropical climates) and L80 (derived from openpollinated variety Viçosa, adapted to temperate and tropical climates). These lines were selected based on previous studies under soil P limiting conditions and were agronomically classified as efficient (P7) and inefficient (L80) in phosphorus use under field conditions (Gerhardt et al., 2017), as well as in P use efficiency in the greenhouse, based on plant phosphorus content and dry matter (Silva et al., 2019b). The experiment was carried out in a lysimeter system, i.e., polyvinyl chloride (PVC) pipes (150 cm deep and 10 cm in diameter) under protected growing conditions in a greenhouse. Temperature, humidity, and photosynthetically active radiation data followed the seasonal pattern and were obtained using the WatchDog 2000 Series Experimental Station (Spectrum Technologies Inc., Aurora, IL, USA) (Figure 4). Plants were grown under two phosphorus availability conditions based on the nutrient solution according to the methodology of Hoagland and Arnon (1950) with a modified P supply in the form of NH₄H₂PO₄. To supplement the ammonium source (NH4), 1 mol L⁻¹ of NH₄Cl was added to the nutrient solution, in order to prevent additional stress from low nitrogen in the plants. The pH of the solution was maintained between 5.5 and 5.8 by adding HCl or NaOH. The high P (HP) and control condition corresponded to 100% P supply (31.00 mg L⁻¹), while the low P (LP) and stress condition corresponded to 0.5% P (0.15 mg L⁻¹). The plants were irrigated daily with deionized water and the nutrient solution (100 mL) was applied from the V2 stage until reaching the V4 stage, with the pH maintained between 5.5 and 5.9. For acclimation of seedlings, from V2 onward, 100 mL of nutrient solution was applied at 25% strength (25% of total concentration) for three days, 50% strength (50% of total concentration) for two days, and 100% strength (100% of total concentration) until the end of the experiment.

Figure 4 - Average, maximum, and minimum temperature (°C), relative humidity (RH, %) and photosynthetically active radiation (PAR, μ mol m⁻² s⁻¹) along the dates and phenological stages (V) of growth of popcorn plants under two conditions of P availability.

3.2.3.2 Physiological measurements

3.2.3.2.1 Leaf gas exchange measurements

Gas exchange was assessed 24 days after sowing (V4) between 9:00 and 11:00 a.m. Measurements were taken in the middle third of the last developed leaf on 6 plants in each treatment over an area of 600 mm². An infrared gas analyzer - IRGA (model LI-6400, LI-COR, Lincoln, NE) was used. During the analyses, the photosynthetically active radiation (PAR) was fixed at 600 μ mol m⁻² s⁻¹, the CO₂ concentration in the LI-6400 chamber was 400 μ mol mol⁻¹, and the relative humidity and temperature were 60% and 25°C, respectively. Gas exchange parameters analyzed included net CO₂ assimilation rate (*A*), transpiration (*E*), stomatal conductance (*gs*), and intercellular CO₂ concentration (*Ci*).

3.2.3.2.2 Leaf chlorophyll content

Leaf chlorophyll content was measured in the middle third of the last developed leaf, one day before the end of the experiment (23 days after sowing) using a portable leaf pigment meter model Dualex® (FORCE-A, Orsay, France). Leaf pigment was assessed in the same leaf area (600 mm²) where gas exchange was assessed.

3.2.3.2.3 Dry matter

At the end of the experiment (24 days after sowing), the leaves and stalks of the same plants on which the physiological measurements were performed were separated from the roots and placed in paper bags for drying in an oven at 65 °C for 72 h for the determination of leaf dry matter (LDM - g) and stalk dry matter (SDM - g).

3.2.3.2.4 Phosphorus concentration

After drying, the leaf and stem samples were ground for quantification of phosphorus concentration in 1 g of dry matter. For this, extraction was performed by sulfuric digestion (HNO₃ and H₂O₂), and in the extract, P was determined by spectrophotometry (Specord 2010, Analytik Jena, Jena, Germany) using the molybdate method (da Silva Santos et al., 2014). Phosphorus content was

determined by multiplying the concentration of phosphorus in 1 g of dry matter of each sample by the corresponding dry weight (mg P/ plant).

3.2.3.2.5 P utilization and efficiency indexes

Based on the P concentration obtained in 1g of dry mass and on the dry mass weight, we estimated: i) the P use efficiency (PUE: ADM/total P applied), where ADM is the aerial dry matter in g; ii) P uptake efficiency (PUpE: APC/total P applied) where APC is the concentration of P in the aerial part; and iii) P utilization efficiency (PUtE: ADM/aerial P content) (Moll et al., 1982).

3.2.3.2.6 Statistical analysis

For each trait studied, an individual analysis of variance was performed for each phosphorus availability condition according to the following statistical model: $Y_{ij} = \mu + G_i + B_j + \varepsilon_{ij}$, where Y_{ij} is the observed value of the i-th genotype in the j-th block; μ is the general constant; G_i is the effect attributed to the i-th genotype; B_j is the effect of block j; and ε_{ij} is the experimental error associated with observation Y_{ij} .

Subsequently, combined analysis of variance was performed based on the following statistical model: $Y_{ijk} = \mu + B_k + G_i + P_j + GP_{ij} + \varepsilon_{ijk}$, where Y_{ijk} is the observation of the i-th genotype in the j-th availability of P in the k-th block; μ is the general constant; B_k is the random effect of the k-th block; G_i is the fixed effect of the i-th genotype; P_j is the fixed effect of the j-th P condition; GP_{ij} is the fixed effect of the interaction between the i-th genotype and the j-th P condition; and ε_{ijk} is the average experimental random error associated with observation Y_{ijk} with NID (0, σ^2). The results were subjected to analysis of variance and the means were compared using Tukey's test with a significance level of 5% probability. Statistical analyses were performed using GENES software (Cruz, 2013).

3.2.3.3 Proteomics

3.2.3.3.1 Material handling

At V4 stage, three biological replicates of the last fully expanded leaf were collected for proteomic analysis and stored immediately in liquid nitrogen. Each replicate consisted of a pool of leaves from three individual plants. Leaves were macerated with a mortar and pestle in liquid nitrogen and transferred to 2 mL microtubes. The microtubes were sealed with parafilm, punctured with a needle, and placed in a lyophilizer (model L101) at -55°C under vacuum for 48 hours and then stored in a freezer at -80°C until further use.

3.2.3.3.2 Protein extraction and digestion

The overall protocol was adapted from Alvarez et al. (2011) with minor modifications. Briefly, total protein was extracted from lyophilized popcorn leaf samples (~0.12 mg) using 600 μ L Tris-buffered phenol (pH 8.8) and 600 μ L 0.1 M Tris-HCI containing 10 mM EDTA, 0.4% 2-mercaptoethanol, and 0.9 M sucrose. Samples were vortexed, placed on a shaker at 4°C and 800 rpm for 1 hour (vortexing every 10 minutes), centrifuged at 16,000g for 20 minutes, and the phenolic phase was then collected. The phenolic phase (~350 μ L) was precipitated overnight in five volumes of 0.1 M ammonium acetate in 100% methanol at -20°C. The protein was collected by centrifugation at 16,000g and washed once with 0.1 M ammonium acetate in 100% methanol. The protein pellet was briefly air dried and then resuspended in 100 μ L 7M urea/2M thiourea, 5mM dithiothreitol (DTT), 0.1M Tris pH 7.7 and reduced for 1h30min at 37°C. Protein concentration was determined using the CB-X protein assay (Genotech, St. Louis, MO, USA) according to the manufacturer's protocol.

Then, 50 µg of proteins were alkylated with 10 µL of 100mM iodoacetamide (IAM) in 0.1M Tris, pH 7.8 and incubated in the dark for 30 minutes. Subsequently, 10 µL of 0.1M DTT in Tris, pH 7.8 was added to quench the IAM. Lysine and trypsin were used for digestion. Samples were first diluted in 80 µL of 25 mM Tris buffer containing Lys-C enzyme at a 1:10 protein ratio (0.5 µg/µL⁻¹) and incubated for 6 hours. Following this, 300 µL of 25 mM Tris buffer containing trypsin enzyme at a protein ratio of 1:25 (100 ng/µL) was added and the mixture was incubated at 37°C for 18 hours overnight.

3.2.3.3.3 Proteomic analysis

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was performed using an Ultimate 3000 RSLCnano system coupled to an Orbitrap Eclipse mass spectrometer (Thermo Fisher Scientific, Rockford, IL, USA). The peptides were acidified with trifluoroacetic acid (TFA) to 0.5%. 5 µL of the samples were first injected onto a trap column (Acclaim PepMap[™] 100, 75µm x 2 cm,

ThermoFisher Scientific) and desalted for 6.0 min at a flow rate of 5 μ L min⁻¹, before switching in line with the main column. Separation was performed on a C18 nano column (Acquity UPLC® M-class, Peptide CSHTM 130A, 1.7 μ m 75 μ m x 250mm, Waters Corp, Milford, MA, USA) at 300 nL/min with a linear gradient from 5-22% over 69 min. The LC aqueous mobile phase contained 0.1% (v/v) formic acid in water and the organic mobile phase contained 0.1% (v/v) formic acid in 100% (v/v) acetonitrile. Mass spectra for the eluted peptides were acquired in the Orbitrap using the data-dependent mode with a mass range of m/z 375–1500, resolution 120,000, AGC (automatic gain control) target 4 x 10⁶, maximum injection time 50 ms for the MS1. Data-dependent MS2 spectra were acquired by HCD in the ion trap with a normalized collision energy (NCE) set at 30%, AGC target set to 5 x 10⁴ and a maximum injection time of 100 ms.

The raw data files were processed using the Proteome Discoverer software package (Version 2.4; Thermo Fisher Scientific) and analyzed using the MASCOT search engine (Version 2.7.0; Matrix Science, London, UK). The search was performed against an in-house modified version of the cRAP database (124 entries) and the Zea mays database obtained from UniProt (ID: UP000007305, www.uniprot.org), assuming the digestion enzyme trypsin and a maximum of 2 missed cleavages. MASCOT search was performed with a fragment ion mass tolerance of 0.06 Da and a parent ion tolerance of 10.0 ppm. Deamidated of asparagine and glutamine, oxidation of methionine was specified in Mascot as variable modifications, while carbamidomethyl of cysteine was fixed. Peptides were validated by Percolator with a 0.01 posterior error probability (PEP) threshold. The data were searched using a decoy database to set the false discovery rate (FDR) to 1% (high confidence). Only proteins identified with a minimum of 2 unique peptides and 5 peptide-spectrum matches (PSM) were further analyzed for quantitative changes. The peptides were quantified using the precursor abundance based on intensity. The peak abundance was normalized using total peptide amount. The peptide group abundances are summed for each sample and the maximum sum for all files is determined. The normalization factor used is the factor of the sum of the sample and the maximum sum in all files. The protein ratios are calculated using the summed abundance for each replicate separately, and the geometric median of the resulting ratios is used as the protein ratios. The significance of differential expression is tested using a t-test which provides a pvalue and an adjusted *p*-value using the Benjamini-Hochberg method for all the calculated ratios. To identify differentially expressed proteins (DEPs) involved in the phosphorus stress response for each genotype (L80_LP/L80_HP and P7_LP/P7_HP), a *p*-value less than 0.05 and a log2 fold change greater than 1 and less than -1 were considered. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2022) partner repository with the dataset identifier PXD044106 (Username: reviewer pxd044106@ebi.ac.uk; Password: cWLYnh52).

3.2.3.3.4 Gene ontology and enrichment pathway analysis

The Gene Ontology (GO) analysis was performed using a web-based tool PlantRegMap (http://plantregmap.gao-lab.org/go_result.php) and the pathway enrichment analysis was performed using KOBAS 3.0 (<u>http://kobas.cbi.pku.edu.cn/genelist/</u>). For both analyses *p*-values were adjusted with Benjamini-Hochberg correction for multiple testing. Only pathways with pvalues or *q*-values under a threshold of 0.05 were considered significant. A webbased tool Venny 2.1 was used to generate Venn diagrams (https://bioinfogp.cnb.csic.es/tools/venny/index.html). Aesthetic modifications to the graphs were made using Inkscape (https://inkscape.org/).

3.2.3.4 Metabolomic Analysis

3.2.3.4.1 Sample Preparation for LC-MS/MS

The same leaf samples used for proteomics analysis were used for polyphenol and phytohormone analysis. Briefly, a mixture of stable isotope labeled hormones was used as an internal standard for the assay of phytohormones in the samples, and the synthetic strigolactone GR24 was used for the flavonoid assay. Samples were extracted using a previously described method (Vu and Alvarez, 2021). Briefly, compounds were extracted using 100% methanol and homogenized using a TissueLyzer II (Qiagen, Hilden, Germany) for 15 minutes at 10 Hz and then centrifuged at 4°C for 10 minutes at 16,000 rpm. Samples were dried in a SpeedVac.

To resuspend the samples, $100 \ \mu$ L of 30% methanol was added to each tube. The tubes were then placed on a shaker for 30 minutes and centrifuged at 16,000 rpm for 25 minutes. Blank tubes were extracted alongside the samples to use as negative control.

3.2.3.4.2 LC-MS/MS, polyphenols and phytohormones analysis

For the polyphenols analysis, samples were separated as detailed in Vu and Alvarez (2021) with an Eclipse XDB C18 (100 × 3.0 mm; 3.5 µm; Agilent Technologies, Santa Clara, CA, USA) column at a flow rate of 0.4 mL/min at room temperature using a gradient of mobile phases A (2% acetic acid) and B (100% acetonitrile). The phytohormones analysis followed the same specifications used by Lopez-Guerrero et al. (2022). Briefly, the samples were separated using an Agilent ZORBAX Eclipse Plus C18 column (2.1 × 100 mm) with a flow rate of 0.45 mL/min at 40 °C and a gradient of two mobile phases: phase A, consisting of 0.1% formic acid in water, and phase B, consisting of 0.1% formic acid in 90% acetonitrile. Polyphenols and phytohormones were detected using multiple reaction monitoring (MRM) scan on a QTRAP 6500+ mass spectrometer (Sciex, Framingham, MA, USA) operating with the IonDrive Turbo V electrospray ionization (ESI) source in positive and negative ion modes. For quantification, an external standard curve was prepared using a series of standard samples containing different concentrations of unlabeled compounds and fixed concentrations of the internal standards. Data analysis was processed using the Analyst 1.6.3 software (Sciex).

3.2.3.4.3 Statistical analysis

Data processing and statistical analysis were performed using MetaboAnalyst 5.0 software, an online statistical package available at <u>https://www.metaboanalyst.ca/</u> (Pang et al., 2021). For statistical analysis of polyphenols and phytohormones, concentration levels were considered. The data were normalized by Auto scaling to prevent variables with larger magnitudes from dominating the analysis, and heat maps were constructed to evaluate the relative levels between control and phosphorus treatments in both genotypes. One-way analysis of variance (ANOVA) with *p*-value cutoff (FDR α = 0.05) was used to test the significance of each compound between treatment and genotypes. The data was then submitted to Tukey's HSD Post-hoc analysis (*P* < 0.05, n = 3). The

heatmaps were constructed based on the Euclidean distance measure and the Ward clustering algorithm.

3.2.4 RESULTS

3.2.4.1 Physiological responses of popcorn to phosphorus deficiency

Under low P (LP), both inbred lines showed a significant reduction in shoot dry matter (68.96% and 82.24% for L80 and P7, respectively) (Figure 5A), and in P content (86.36% and 93.84% for L80 and P7, respectively) (Figure 5B), but an increase in PUE (98.41% and 97.24% for L80 and P7, respectively) (Figure 5C). The P-efficient inbred line (P7) showed higher shoot dry matter and P content compared to the P-inefficient inbred line (L80) at high P (HP) levels, and a significantly higher PUE compared at LP levels. At the V4 stage, even though the shoot dry matter content is not different between L80 and P7 at LP supply, L80 plants had yellowish leaves and wilted leaf tips, which are known signs of stress impact, whereas the P7 plants had purple and healthier leaves (Figure 6).

Figure 5. Dry matter accumulation (**A**) P content (**B**) and PUE (**C**) in shoot in the two popcorn inbred lines L80 and P7 under high (HP) and low (LP) phosphorus levels. Values with asterisks are statistically different by *F*-test at 1% (**), at 5% (*), or not significant (ns), and means followed by the same letter were not significantly different by *F*-test (P < 0.05). Asterisks indicate comparisons within the same genotype at different P levels, whereas letters indicate comparisons between two genotypes at the same P level. Values are expressed as mean ± SD (n = 3).

Figure 6. A- Line L80 under low P supply. B- Line P7 under low P supply.

In Figures 7 and 8, the measurements of physiological traits in both strains indicated reduction in gas exchange and leaf pigments as a result of reduced P supply. Overall, they seem to follow the same response pattern regardless of tolerance level, except for the net CO_2 assimilation rate (*A*) and transpiration (*E*), which was higher in L80 at low P (Figure 7). Some of the major differences between P7 and L80 were in the chlorophyll and flavonoids content under low P (Figure 8). Concentration of flavonoids was twice as high in P7 at low P while chlorophyll content reduction is more apparent in P7 at low P.

Figure 7. Photosynthetic traits in two popcorn inbred lines L80 and P7 under high (HP) and low (LP) phosphorus levels. *A*- net CO₂ assimilation rate (**A**); *gs*- stomatal conductance (**B**); *E*- transpiration (**C**); *Ci*- internal CO₂ concentration (**D**). Values with asterisks are statistically different by *F*-test at 1% (**), at 5% (*), or not significant (ns), and means followed by the same letter were not significantly different by Tukey's test (*P* < 0.05). Asterisks indicate comparisons within the same genotype at different P levels, whereas letters indicate comparisons between two genotypes at the same P level. Values are expressed as mean ± SD (n = 6).

Figure 8. Chlorophyll (**A**) flavonoid (**B**) and anthocyanin content (**C**) in the leaves of the two popcorn inbred lines L80 and P7 under high (HP) and low (LP) phosphorus levels. Values with asterisks are statistically different by *F*-test at 1% (**), at 5% (*), or not significant (ns), and means followed by the same letter were not significantly different by Tukey's test (P < 0.05). Asterisks indicate comparisons within the same genotype at different P levels, whereas letters indicate comparisons between two genotypes at the same P level. Values are expressed as mean ± SD (n = 6).

These results led to the hypothesis that mechanisms involved in photosynthesis and secondary metabolism might be involved in the difference in PUE between P7 and L80 and responsible for better P use efficiency. To address this hypothesis, comparative analyses of proteomics and metabolites were carried out to uncover the major intrinsic molecular mechanisms of each inbred line in response to P deficiency.

3.2.4.2 Proteome profile of popcorn leaves

A total of 2549 proteins were identified and quantified in popcorn leaves across the two inbred lines and the two P supplies: HP and LP (Figure 9). The heatmap showed that the protein profile grouped more similarly based on the treatment rather than the inbred line. In the comparison L80_LP/L80_HP, we detected 421 DEPs, with 166 down-regulated, and 255 up-regulated (Figure 10; Supplementary Table 3). For the P7_LP/P7_HP, 435 DEPs were identified, with 141 down-regulated, and 294 up-regulated (Figure 10; Supplementary Table 4).

Figure 9. Heatmap of the 2549 proteins identified and quantified in L80 and P7 under high P and low P conditions. Yellow color represents higher protein abundance and blue color represents lower protein abundance. Green represents no protein change.

Figure 10. Venn diagram analysis of differentially expressed proteins (DEPs) in L80_LP/L80_HP and P7_LP/P7_HP, broken down as up- and down-regulated.

To detect potential candidate proteins that are responsive to PUE, the overlap of the DEPs (up- and down-regulated) identified under LP between L80 and P7 was displayed in a Venn Diagram (Figure 10). Only 51 down-regulated and 151 upregulated proteins are unique in P7. While L80 presented only 121 and 67 exclusively up-regulated and down-regulated proteins, respectively (Figure 10).

3.2.4.3 Functional analysis of DEPs involved in the response to P deficiency

Based on the exclusive proteins identified in each line (Figure 10), a functional Gene Ontology (GO) enrichment analysis for these DEPs was performed (Figure 11; Supplemental Tables 5 to 8).

The main significant GO groups obtained with the down-regulated DEPs unique to L80 or P7 under LP are shown in Figure 11. The major functional classes down-regulated in L80 were photosynthesis (GO:0015979) and protein-chromophore linkage (GO:0018298) for biological processes; plastid (GO:0009536) and chloroplast (GO:0009507) for cellular component; and chlorophyll binding (GO:0016168) and rRNA binding (GO:0019843) for molecular function (Figure 11;

Supplementary Table 5). In P7 they were, response to cytokinin (GO:0009735) and photosynthesis (GO:0015979) for biological process, thylakoid membrane (GO:0042651) and photosynthetic membrane (GO:0034357) for cellular component; and electron carrier activity (GO:0009055) for molecular function (Figure 11; Supplementary Table 6).

Figure 11. GO enrichment analysis of DEPs uniquely down-regulated in L80_LP or P7_LP. Rich factor measures the ratio of differentially expressed proteins annotated in a specific pathway term to the total number of annotated proteins. A higher enrichment factor indicates a higher level of intensity. The -Log10 P value, ranging from 0 to 12, also reflects the intensity level, with higher values indicating greater intensity. Representation of the most significant DEPs in each group of enriched pathway terms with a P < 0.05.

The results of GO analysis obtained with up-regulation unique to L80 or P7 under LP are shown in Figure 12. The major functional classes in L80 were small molecule metabolic process (GO:0044281) and organonitrogen compound metabolic process (GO:1901564) for biological process; cytoplasm (GO:0005737) and cytoplasmic part (GO:0044444) for cellular component; and cofactor binding (GO:0048037) and pyridoxal phosphate binding (GO:0030170) for molecular function (Figure 12; Supplementary Table 7). For P7 they were small molecule metabolic process (GO:0044281) and cellular response to extracellular stimulus (GO:0031668) for biological process; cytoplasm (GO:0005737) and cytoplasmic part (GO:0044281) for cellular component and catalytic activity (GO:0003824); and glutathione binding (GO: 0043295) for molecular function (Figure 12; Supplementary Table 8).

Figure 12. GO enrichment analysis of DEPs uniquely up-regulated in L80 or P7. Rich factor measures the ratio of differentially expressed proteins annotated in a specific pathway term to the total number of annotated proteins. A higher enrichment factor indicates a higher level of intensity. The -Log10 P value, ranging from 0 to 12, also reflects the intensity level, with higher values indicating greater intensity. Representation of the most significant DEPs in each group of enriched pathway terms with a P < 0.05.

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis was performed to investigate the major metabolic pathways in which the DEPs were involved. Only pathways with significant corrected P values (p < 0.05) were considered. A total of five pathways were identified with the down-regulated DEPs in L80 (Supplementary Table 9), including "photosynthesis", "ribosome", and "photosynthesis - antenna proteins" (Figure 13), while in P7 "ribosome" was the unique significant pathway found (Figure 13; Supplementary Table 9).

Figure 13. KEGG pathway enrichment analysis of the DEPs uniquely down- and up-regulated in L80 and P7. Rich factor measures the ratio of differentially expressed proteins annotated in a specific pathway term to the total number of annotated proteins. A higher enrichment factor indicates a higher level of intensity. The -Log10 P value, ranging from 1 to 6, also reflects the intensity level, with higher values indicating greater intensity. Enriched pathway terms with *P* < 0.05 are shown.

A total of 28 significant pathways with up-regulated proteins were identified in the L80 (Supplementary Table 10). The most enriched pathways were "biosynthesis of secondary metabolites", "carbon metabolism", and "amino acid biosynthesis" (Figure 13). Most of the proteins enriched in the "secondary metabolite biosynthesis" pathway were also enriched in the "carbon metabolism" and "amino acid biosynthesis" pathways, suggesting that changes in these pathways are the main mechanisms of response to P deficiency in the L80 inbred line. In the P7, 16 enriched pathways were significant, consisting of "biosynthesis" being the most important pathways (Figure 13; Supplementary Table 10).

After performing KEGG enrichment analysis, these DEPs were categorized into four major different metabolic processes (Table 3).

Process ^a	Protei n ID# ^b	Protein name ^c	Folds changed (log2)	<i>P</i> -value	L80_LP / L80_HP	P7_LP / P7_HP
Photosynthesis						
	P1734 4	ATP synthase subunit a, chloroplastic	-6.64	5.77E-17	DOWN	-
	B4FRJ 4	Photosystem II 11 kD protein	-6.64	5.77E-17	DOWN	-
	B6SSN 3	Chlorophyll a-b binding protein, chloroplastic	-1.89	7.35E-03	DOWN	-
	P4818 7	Photosystem II CP43 reaction center protein	-1.63	2.90E-02	DOWN	-
	B4FXB 0	Chlorophyll a-b binding protein, chloroplastic	-1.61	3.13E-02	DOWN	-
	B4F9R 9	Oxygen-evolving enhancer protein	-1.53	4.30E-02	DOWN	-
	P6938 8	Cytochrome b559 subunit alpha	-1.46	4.38E-02	DOWN	-
	P2570 6	NAD(P)H-quinone oxidoreductase subunit 1, chloroplastic	-2.01	4.73E-02	DOWN	-
Protein biosynthesis						
	P1233 9	30S ribosomal protein S7, chloroplastic	-6.64	5.77E-17	DOWN	-
	P1778 8	50S ribosomal protein L2, chloroplastic	-6.64	5.77E-17	DOWN	-
	P1770 3	30S ribosomal protein S15, chloroplastic	-2.06	1.49E-02	DOWN	-

Table 3. Selected differentially expressed proteins (DEPs) in leaves of popcorn lines treated with high and low P availability from the major enriched pathways identified by KEGG enrichment analysis.

Table 3. Cont.

Process ^a	Protein ID# ^b	Protein name ^c	Folds changed (log2)	P-value	L80_LP / L80_HP	P7_LP / P7_HP
	B6TH42	60S ribosomal protein L9	-2.06	1.49E-02	DOWN	-
	P08530	30S ribosomal protein S8, chloroplastic	-1.86	4.29E-02	DOWN	-
	B4FWR7	60S ribosomal protein L13	-6.64	5.29E-17	-	DOWN
	B6UE26	60S ribosomal protein L34	-6.64	5.29E-17	-	DOWN
	P25461	50S ribosomal protein L33	-3.15	2.58E-04	-	DOWN
	P08527	30S ribosomal protein S14, chloroplastic	-2.42	5.53E-03	-	DOWN
	B4FUZ5	30S ribosomal protein S1	-1.22	3.97E-02	-	DOWN
Energy metabolism						
	B4FTF9	Isocitrate lyase	6.64	5.77E-17	UP	-
	B4F9G1	Aspartate aminotransferase	4.34	2.96E-05	UP	-
	B4FUH2	Aspartate aminotransferase	3.2	6.90E-04	UP	-
	B6SRL2	Aconitate hydratase	2.94	2.12E-02	UP	-
	B4F8X3	Acyl-coenzyme A oxidase	2.81	2.42E-02	UP	-
	A0A1D6 PUK8	Aconitate hydratase	2.17	2.69E-02	UP	-
	C0P429	UTP-glucose-1- phosphate uridylyltransferase	6.64	5.29E-17	-	UP
	A0A1D6 M1Y6	UDP-glucuronate decarboxylase NAD(P)H-guinone	6.64	5.29E-17	-	UP
	P46620	oxidoreductase subunit 5, chloroplastic	6.64	5.29E-17	-	UP
	B4FCR7	Inorganic diphosphatases	6.64	5.29E-17	-	UP
	B4FWT5	Inorganic diphosphatases	2.62	9.12E-03	-	UP
	C0PAU7	Glucose-6-phosphate isomerase	1.69	1.69E-02	-	UP
	C4JAC1	Mannose-1- phosphate guanylyltransferase	3.24	2.54E-02	-	UP
Defense response						
	K7U2E4	Amine oxidase	3.62	2.61E-03	UP	-
	C0PIW1	Glucose-6-phosphate 1-dehydrogenase	3.17	1.86E-02	UP	-
	K7VCN5	Peroxidase	3.13	2.31E-02	UP	-
	Q9FQB5	Glutathione transferase	6.64	5.29E-17	-	UP
	C4J9Q3	Glutathione transferase	6.64	5.29E-17	-	UP
	Q9ZP60	Glutathione transferase	6.64	5.29E-17	-	UP
	B8A3K0	Glutathione transferase	6.64	5.29E-17	-	UP
	P46420	Glutathione transferase	1.8	9.06E-03	-	UP
Process ^a	Protein ID# ^b	Protein name ^c	Folds changed (log2)	<i>P</i> -value	L80_LP / L80_HP	P7_LP / P7_HP
----------------------	-----------------------------	---	----------------------------	-----------------	--------------------	------------------
	B6SYB7	Arogenate dehydratase	3.41	1.87E-02	-	UP
	B4G1R6	Chalcone-flavonone isomerase family protein	2.03	3.56E-02	-	UP
	A0A1D6 N1Z8	6-phosphogluconate dehydrogenase, decarboxylating	1.54	3.79E-02	-	UP
	B4F9P0	Glycosyltransferase	2.61	2.20E-02	-	UP
	B4FRQ8	Spermidine hydroxycinnamoyl transferase	4.07	8.98E-05	-	UP
	Q49HD7	12-oxo-phytodienoic acid reductase	2.29	8.85E-03	-	UP

^a Main metabolic process enriched via KEGG; ^b Accession ID in the UniProt database and ^c Protein name identified by LC-MS-MS

3.2.4.4 Metabolite analysis

Table 3. Cont.

Targeted metabolomic analysis of phytohormone and polyphenols was performed in both inbred lines to investigate which flavonoids accumulate in P7 and to identify potential hormones involved in P stress and signaling. This analysis included a panel of 29 different phytohormones with well-known stress response hormones, such as abscisic acid (ABA) and salicylic acid (SA); and a panel of 28 polyphenols including flavonoids and phenolic acids.

P deficiency increased the concentration of flavonoids and phenolic acids in both inbred lines as shown by the heatmap (Figure 14A). However, differences in the pattern of accumulation of these polyphenols was observed between the two inbred lines. The flavone apigenin and flavonone naringenin had a higher accumulation in P7 under LP, while concentrations of flavone luteolin, and flavonoid glycosides quercetin-3-glycoside and rutin, are much higher in P7 compared to L80. Chlorogenic acid is the phenolic acid with the highest accumulation in P7 under LP.

Figure 14. Polyphenol (**A**) and phytohormones (**B**) accumulation pattern in leaves of L80 and P7 lines in high and low P supply. Concentration in ng g^{-1} .

P deficiency also led to changes in the concentration of phytohormones in both inbred lines (Figure 14B). It is worth noting from the heatmap that several hormones, SA, 12-oxo-phytodienoic acid (OPDA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) are found in low concentrations in P7 under control conditions compared to L80. Their levels show the highest increase under low P in P7 to a similar level found in L80. The phytohormone IAA was higher accumulated in L80 under low P, while the accumulation pattern of GA19 and JA was reduced by P deficiency in both inbred lines (Figure 14B).

3.2.5 DISCUSSION

3.2.5.1 Effects of P deficiency and adaptation mechanisms

The lower PUE in L80, at low P, indicates that it is less capable of utilizing P from the substrate for biomass production than P7. The results indicate that P deficiency significantly affected the overall growth and health of the plants, reduced chlorophyll content, and consequently, reduced photosynthetic efficiency. The proteomics results complemented by the phytohormones and phenolic compounds analysis allowed for the mechanisms underlying the PUE difference in L80 and P7 to be characterized.

3.2.5.2 P deficiency impacts the photosynthesis, electron transfer chain and energy metabolism in L80

The P deficiency treatment negatively impacted carbon fixation and plant growth in both lines. The proteomics results revealed that several proteins involved in photochemical apparatus of photosynthesis were significantly altered by P deficiency. Photosystem II CP43 reaction center protein (P48187), cytochrome b559 subunit alpha (P69388), photosystem II 11 kD protein (B4FRJ4), oxygenevolving enhancer protein (B4F9R9), and two chlorophyll a-b binding proteins chloroplastic (B4FXB0; B6SSN3), all associated with the photosystem II (PSII) reaction center, were down-regulated under low P in L80, but not in P7 (Table 3; Supplementary Table 3).

The antenna proteins CP43 and CP47 are a key part of the energy conversion process and are responsible for transferring the excitation energy to the reaction center proteins D1 and D2 in PSII (Caffarri et al., 2014; Müh and Zouni 2020). The alpha subunit of cytochrome b559, in conjunction with the beta subunit, forms a crucial heme-binding heterodimer in the core of PSII. These subunits play a fundamental role in the assembly of PSII and probably participate in secondary electron transport mechanisms that protect PSII from light-induced damage (Burda et al., 2003; Chiu and Chu 2022). The oxygen-evolving complex (OEC) oxidizes water to provide protons for use by PSI (Chen et al., 2022). In addition, chlorophyll *a* plays a crucial role in the light-dependent reactions of photosynthesis (Govindjee, 2004), and chlorophyll *b* complements the action of chlorophyll *a* (Simkin et al., 2022). Therefore, negative regulation of the proteins that integrate these complexes can affect the function of both photosystems and compromise photosynthesis and plant growth.

Similarly, it was also found that NAD(P)H-quinone oxidoreductase subunit 1, chloroplastic (P25706) and ATP synthase subunit a, chloroplastic (P17344) (Table 3) were down-regulated only in the L80 under P starvation. Both enzymes are important for the electron transport chain and energy generation across membranes (Neupane et al., 2019; Yang et al., 2020). These enzymes are essential for plant growth and development, as it has been previously reported that P-deficiency decreases ATP synthase activity in maize (Zhang et al., 2014) and barley (Carstensen et al., 2018), with significant effects on photosynthesis.

These results indicate that P deficiency has significant effects on the regulation of key proteins involved in the processes of light capture, electron transfer, and energy conversion in photosynthesis in the P-inefficient inbred line. These perturbations, combined with reduced chlorophyll levels detected under low P, would explain the detrimental effect on photosynthesis and the growth of L80.

The carbon metabolism pathway was also one of the major enriched pathways in L80. Some of the proteins up-regulated comprise fatty acid β -oxidation, glyoxylate cycle and tricarboxylic acid (TCA) cycle, such as acyl-coenzyme A oxidase (B4F8X3), isocitrate lyase (ICL, B4FTF9), two aconitate hydratases (A0A1D6PUK8; B6SRL2) and two aspartate aminotransferases (ATT, B4F9G1; B4FUH2) (Table 3; Supplementary Table 10). Acyl-CoA (ACX) is the first enzyme involved in the β -oxidation of fatty acids in peroxisomes in plants (Graham and Eastmond, 2002). Its purpose is to degrade fatty acids to acetyl-CoA, the substrate

of the glyoxylate cycle, an alternative pathway of the TCA cycle (Eastmond and Graham, 2001; Kwon et al., 2021). ICL is involved in the decarboxylation steps of the TCA cycle to produce succinate. The increase of ICL has been previously observed in other plants in response to alkaline stress in tolerant grape hybrids (Guo et al., 2018) and in Chinese fir roots under P deficiency (Chen et al., 2021). The up-regulation of Acyl CoA and ICL in popcorn leaves suggests a conversion of stored lipids into carbohydrates to produce energy-rich molecules in L80 to cope with P deficiency. Additionally, ATT protein increase may be the result of plant adaptation to P deficiency as observed previously in other different environmental conditions (Han et al., 2021) to improve the energy generation by TCA cycle and amino acid metabolism. However, photosynthesis and plant growth is also impacted in P7 under low P, as also highlighted by the GO annotation (Figure 11). Interestingly, the abundance of the proteins involved in photosynthesis and energy metabolism affected in L80 by P deficiency are not in P7 This may mean that these proteins are more than just a consequence of stress and are indicators of P inefficiency of L80.

3.2.5.3 P starvation affects ribosomal protein biosynthesis

In the L80, P deficiency affected the abundance of chloroplast ribosomes and their structural integrity. The proteins 30S ribosomal protein S7, chloroplastic (P12339), 30S ribosomal protein S8, chloroplastic (P08530), 50S ribosomal protein L2, chloroplastic (P17788), 30S ribosomal protein S15, chloroplastic (P17703) and 60S ribosomal protein L9 (B6TH42), were down-regulated (Table 3; Supplementary Table 3). While in P7, the negatively regulated ribosomal proteins were mostly non-chloroplastic, namely 60S ribosomal protein L13 (B4FWR7), 30S ribosomal protein S1 (B4FUZ5), 50S ribosomal protein L33 (P25461), 60S ribosomal protein L34 (B6UE26) (Table 3; Supplementary Table 4).

The down-regulation of proteins involved in chloroplast ribosome assembly in the L80 suggests a decrease in the production of ribosomes, which are essential for protein synthesis, which may affect the ability of chloroplasts to synthesize proteins involved in various cellular processes, including those for photosynthesis (Daniell et al., 2016; Zoschke and Bock, 2018). This result corroborates the decrease in proteins involved in photosynthesis in L80 (Figure 13, Table 3). By reducing ribosome production and photosynthetic proteins, plants can minimize energy expenditure for protein synthesis and reallocate resources to other essential functions to cope with P limitation (Raven, 2013). On the other hand, the decrease in ribosomal proteins in P7 suggests a reduction in ribosome abundance or efficiency, which may affect protein synthesis and cellular processes. However, this response may be beneficial for adaptation to environmental cues as long as the overall efficiency of translation is not compromised (Fakih et al., 2023). In contrast to L80, the reduction in ribosomal proteins in P7 suggests that the P-efficient inbred line has prioritized the synthesis of photosynthetic proteins that are more critical under low phosphorus conditions.

3.2.5.4 Protective mechanisms involved in the oxidative stress response

Distinct mechanisms of redox regulation and oxidative stress have been identified in the two inbred lines. In L80 only a few redox related proteins were up-regulated (Table 3; Supplementary Table 3). A peroxidase (K7VCN5), already well-known to participate to antioxidant defense in response to abiotic stresses (Kidwai et al., 2020; Su et al., 2020; Li et al., 2021), a glucose-6-phosphate 1-dehydrogenase (C0PIW1), first key enzyme in the oxidative pentose phosphate pathway (OPPP) producing NADPH (Corpas and Barroso 2014; Jiang et al., 2022) to maintain the oxidative-reductive balance (Yang et al., 2014; Zhao et al., 2020), and amine oxidase (AO, K7U2E4). AO is associated with oxidation of polyamine (PA) into reactive oxygen species (ROS) responsible for oxidative stress. Indeed, PA plays an essential role in growth and developmental processes (Gholizadeh and Mirzaghaderi, 2020), and acts as antioxidants to avoid oxidative stress (Napieraj et al., 2023).

In P7, five glutathione transferase (GSTs, Q9FQB5, C4J9Q3, Q9ZP60, P46420, B8A3K0), involved in the detoxification of ROS were identified (Table 3; Supplementary Table 4). GSTs have a crucial role in glutathione metabolism by catalyzing the conjugation of reduced glutathione (GSH) protecting cells from ROS accumulation and oxidative burst (Kumar and Trivedi, 2018). The up-regulation of GSTs in P7 indicates an adaptive response of this inbred line to the oxidative stress induced by P deficiency (Table 3). The increase of GSTs was observed in various species under low P conditions, such as maize (Zhang et al., 2014), wheat (Zheng et al., 2023), and barley (Nadira et al., 2016), supporting the induction of oxidative stress and response.

In addition to the GSTs direct ROS detoxification, the increase in flavonoids content observed in P7 (Figure 8) supported by the up-regulation of proteins involved in flavonoid biosynthesis (arogenate dehydratase (ADT, B6SYB7), chalcone-flavonone isomerase family protein (CHI, B4G1R6), and

glycosyltransferase (UGT, B4F9P0); Table 3) may also act as protecting mechanism against abiotic stress, including P deficiency as previously highlighted (Trejo-Téllez et al., 2019; Liu et al., 2020b). Amongst the phenolic compounds found with the highest concentrations in P7 under low P were chlorogenic acid, and the flavonoid glycosides quercetin-3-glucoside and rutin (Figure 14A). Chlorogenic acid and rutin are well characterized phenolic compounds for their antioxidant properties, and their role in defense response to abiotic stresses (Singh et al., 2017; Merewitz and Liu, 2019; Soviguidi et al, 2022). Therefore, the results suggest that the accumulation of specific flavonoids is a significant aspect of P7's response to this deficiency, enhancing its adaptive capacity and potentially mitigating the negative effects on plant growth and overall fitness. The deficiency of L80 to regulate the GSTs and enzymes involved in flavonoids biosynthesis is involved in the deficiency to cope with low P compared to P7.

3.2.6 CONCLUSIONS

Our results indicate that P7 has a more efficient response to P deficiency, with overall better performance in terms of physiological traits, which can be explained by specific proteome regulation, and metabolic adaptations compared to L80. The P-efficient inbred line with a high adjustment of photosynthetic apparatus and protein biosynthesis may influence biomass accumulation and P content in leaves, providing a higher performance of this inbred line under P starvation conditions. In addition, both enzymatic and non-enzymatic mechanisms of ROS scavenging are involved during P7 growth under this nutrient adverse condition. Flavonoids accumulation seems to play an important role in the adaptation mechanisms of P7 to P deficiency. Our results open new avenues into the understanding of molecular mechanisms of the tolerance of P deficiency that may be useful to breeding programs to develop resilient cultivars ensuring sustainable agricultural expansion and food supply.

REFERENCES

- Abbas, M., Shah, J. A., Irfan, M., Memon, M. Y. (2018) Remobilization and utilization of phosphorus in wheat cultivars under induced phosphorus deficiency. *Journal of Plant Nutrition*, v. 41, n. 12, p. 1522-1533.
- Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., Borrelli, P. (2020) Global phosphorus shortage will be aggravated by soil erosion. *Nature communications*, v. 11, n. 1, p. 4546.
- Almeida, V. C., Viana, J. M. S., Risso, L. A., Ribeiro, C., DeLima, R. O. (2018) Generation mean analysis for nitrogen and phosphorus uptake, utilization, and translocation indexes at vegetative stage in tropical popcorn. *Euphytica*, v. 214, p. 1-12.
- Aluko, O. O., Li, C., Wang, Q., Liu, H. (2021) Sucrose utilization for improved crop yields: A review article. *International Journal of Molecular Sciences*, v. 22, n. 9, p. 4704.
- Alvarez, S., Hicks, L. M., Pandey, S. (2011) ABA-dependent and-independent G-protein signaling in Arabidopsis roots revealed through an iTRAQ proteomics approach. *Journal of proteome research*, v. 10, n. 7, p. 3107-3122.
- Bechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., Jemo, M. (2021)
 Phosphate-dependent regulation of growth and stresses management in plants. *Frontiers in Plant Science*, v. 12, p. 679916.
- Bhatta, B. B., Panda, R. K., Anandan, A., Pradhan, N. S. N., Mahender, A., Rout, K. K., Patra, B. C., Ali, J. (2021) Improvement of phosphorus use efficiency in rice by adopting image-based phenotyping and tolerant indices. *Frontiers in plant science*, v. 12, p. 717107.

- Burda, K., Kruk, J., Borgstädt, R., Stanek, J., Strzałka, K., Schmid, G. H., Kruse, O. (2003) Mössbauer studies of the non-heme iron and cytochrome b559 in a Chlamydomonas reinhardtii PSI– mutant and their interactions with α-tocopherol quinone. *FEBS letters*, v. 535, n. 1-3, p. 159-165.
- Caffarri, S., Tibiletti, T., C Jennings, R., Santabarbara, S. (2014) A comparison between plant photosystem I and photosystem II architecture and functioning. *Current Protein and Peptide Science*, v. 15, n. 4, p. 296-331.
- Carstensen, A., Herdean, A., Schmidt, S. B., Sharma, A., Spetea, C., Pribil, M., Husted, S. (2018) The impacts of phosphorus deficiency on the photosynthetic electron transport chain. *Plant physiology*, v. 177, n. 1, p. 271-284.
- Carstensen, A., Szameitat, A. E., Frydenvang, J., Husted, S. (2019) Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (*Hordeum vulgare* L.). *Plant and Soil*, v. 434, p. 79-91.
- Chea, L., Meijide, A., Meinen, C., Pawelzik, E., Naumann, M. (2021) Cultivar-dependent responses in plant growth, leaf physiology, phosphorus use efficiency, and tuber quality of potatoes under limited phosphorus availability conditions. *Frontiers in Plant Science*, v. 12, p. 723862.
- Chen, G., Han, H., Yang, X., Du, R., Wang, X. (2022) Salt Tolerance of Rice Is Enhanced by the SS3 Gene, Which Regulates Ascorbic Acid Synthesis and ROS Scavenging. *International Journal of Molecular Sciences*, v. 23, n. 18, p. 10338.
- Chen, J., Xu, L., Cai, Y., Xu, J. (2008) QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (*Zea mays* L.) at two sites. *Plant and Soil*, v. 313, n. 1-2, p. 251-266.
- Chen, W., Zhou, M., Zhao, M., Chen, R., Tigabu, M., Wu, P., Ma, X. (2021) Transcriptome analysis provides insights into the root response of Chinese fir to phosphorus deficiency. *BMC Plant Biology*, v. 21, p. 1-17.
- Chiu, Y. F., Chu, H. A. (2022) New Structural and Mechanistic Insights Into Functional Roles of Cytochrome b559 in Photosystem II. *Frontiers in Plant Science*, v. 13, p. 914922.
- Chu, S., Li, H., Zhang, X., Yu, K., Chao, M., Han, S., Zhang, D. (2018) Physiological and proteomics analyses reveal low-phosphorus stress affected the regulation of photosynthesis in soybean. *International Journal of Molecular Sciences*, v. 19, n. 6, p. 1688.

- Cordell, D., White, S. (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. *Sustainability*, v. 3, n. 10, p. 2027-2049.
- Cordell, D., White, S. (2014) Life's bottleneck: sustaining the world's phosphorus for a food secure future. *Annual Review of Environment and Resources*, v. 39, p. 161-188.
- Corpas, F. J., Barroso, J. B. (2014) NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions. *Frontiers in Environmental Science*, v. 2, p. 55.
- Cruz, C. D. (2013) Genes: a software package for analysis in experimental statistics and quantitative genetics. *Acta Scientiarum. Agronomy*, v. 35, p. 271-276.
- Cruz, C. D., Carneiro, P. C. S., Regazzi, A. J. (2014) Modelos biométricos aplicados ao melhoramento genético. *Viçosa: Ed. da UFV*, 2.
- Curatti, L., and Rubio, L. M. (2014) Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. *Plant Science*, v. 225, p. 130-137.
- Da Silva Santos, L.; da Silva, L. S.; Griebeler, G. (2014) Ascorbic acid as a reducing agent for phosphorus analysis by colorimetry/Acido ascorbico como agente redutor para determinação de fósforo por colorimetria. *Ciencia Rural*, v. 44, n. 6, p. 1015-1019
- Daniell, H., Lin, C. S., Yu, M., Chang, W. J. (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. *Genome biology*, v. 17, p. 1-29.
- Delgado, A., Quemada, M., Villalobos, F. J., Mateos, L. (2016) Fertilization with phosphorus, potassium and other nutrients. *Principles of agronomy for sustainable agriculture*, p. 381-405.
- Dusenge, M. E., Duarte, A. G., Way, D. A. (2019) Plant carbon metabolism and climate change: elevated CO₂ and temperature impacts on photosynthesis, photorespiration and respiration. *New Phytologist*, v. 221, n. 1, p. 32-49.
- Eastmond, P. J., Graham, I. A. (2001) Re-examining the role of the glyoxylate cycle in oilseeds. *Trends in plant science*, v. 6, n. 2, p. 72-78.
- Eastmond, P. J., Graham, I. A. (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. *Progress in lipid research*, v. 41, n. 2, p. 156-181.
- Fakih, Z., Plourde, M. B., Germain, H. (2023) Differential Participation of Plant Ribosomal Proteins from the Small Ribosomal Subunit in Protein Translation under Stress. *Biomolecules*, v. 13, n. 7, p. 1160.

- Fontecilla-Camps, J. C. (2021) Primordial bioenergy sources: The two facets of adenosine triphosphate. *Journal of Inorganic Biochemistry*, v. 216, p. 111347.
- Fritsche-Neto, R., Miranda, G. V., DeLima, R. O., Souza, L. V. D., Silva, J. D. (2010) Inheritance of traits associated with phosphorus utilization efficiency in maize. *Pesquisa Agropecuária Brasileira*, v. 45, p. 465-471, 2010.
- Galindo-Castañeda, T., Brown, K. M., Lynch, J. P. (2018) Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. *Plant, Cell* & *Environment*, v. 41, n. 7, p. 1579-1592.
- Gerhardt, I. F. S., Amaral Júnior, A. T., Guimarães, L. J. M., Schwantes, I. A., Santos, A., Kamphorst, S. H., Myers, G. O. (2017) Intraspecific variability of popcorn S7 lines for phosphorus efficiency in the soil. *Genetics and Molecular Research*, v. 16, n. 3.
- Gerhardt, I. F., Teixeira Do Amaral Junior, A., Ferreira Pena, G., Moreira Guimarães, L. J., De Lima, V. J., Vivas, M., Kamphorst, S. H. (2019) Genetic effects on the efficiency and responsiveness to phosphorus use in popcorn as estimated by diallel analysis. *PloS one*, v. 14, n. 5, p. e0216980.
- Gholizadeh, F., Mirzaghaderi, G. (2020) Genome-wide analysis of the polyamine oxidase gene family in wheat (*Triticum aestivum* L.) reveals involvement in temperature stress response. *PLoS One*, v. 15, n. 8, p. e0236226.
- Govindjee, G. C. (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht: *Springer Netherlands*, 2004. p. 1-41.
- Grieger, K., Merck, A., Deviney, A., Marshall, A. (2023) What are stakeholder views and needs for achieving phosphorus sustainability?. *Environment Systems and Decisions*, p.1-12.
- Griffing, B. (1956) Concept of general and specific combining ability in relation to diallel crossing systems. *Australian journal of biological sciences*, v. 9, n. 4, p. 463-493.
- Gu, R., Chen, F., Long, L., Cai, H., Liu, Z., Yang, J., Yuan, L. (2016) Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. *Journal of Genetics and Genomics*, v. 43, n. 11, p. 663-672.
- Guo, S. H., Niu, Y. J., Zhai, H., Han, N., Du, Y. P. (2018) Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks. *Scientia Horticulturae*, v. 227, p. 255-260.

- Hallauer, A. R., Carena, M. J., Miranda Filho, J. D. (2010) Quantitative genetics in maize breeding. Springer Science & Business Media, v. 6, 577-653.
- Han, M., Xu, X., Li, X., Xu, M., Hu, M., Xiong, Y., Su, T. (2022) spartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani. *International Journal of Molecular Sciences*, v. 23, n. 12, p. 6368.
- Heuer, S., Gaxiola, R., Schilling, R., Herrera-Estrella, L., López-Arredondo, D., Wissuwa,
 M., Rouached, H. (2017) Improving phosphorus use efficiency: a complex trait with emerging opportunities. *The Plant Journal*, v. 90, n. 5, p. 868-885.
- Hoagland, D. R., Arnon, D. I. (1950) The water-culture method for growing plants without soil. *Circular. California agricultural experiment station*, v. 347, n. 2nd edit.
- Hussain, M. A., Li, S., Gao, H., Feng, C., Sun, P., Sui, X., Li, H. (2023) Comparative analysis of physiological variations and genetic architecture for cold stress response in soybean germplasm. *Frontiers in Plant Science*, v. 13, p. 1095335.
- Iqbal, A., Gui, H., Zhang, H., Wang, X., Pang, N., Dong, Q., Song, M. (2019) Genotypic variation in cotton genotypes for phosphorus-use efficiency. *Agronomy*, v. 9, n. 11, p. 689.
- Irfan, M., Aziz, T., Maqsood, M. A., Bilal, H. M., Siddique, K. H., Xu, M. (2020) Phosphorus(P) use efficiency in rice is linked to tissue-specific biomass and P allocation patterns. *Scientific reports*, v. 10, n. 1, p. 4278.
- Jackson M. L. 1965. Soil chemical analysis New Jersey: Prentice Hall, 498p.
- Jele, P., Derera, J., Siwela, M. (2014) Assessment of popping ability of new tropical popcorn hybrids. *Australian Journal of Crop Science*, v. 8, n. 6, p. 831-839.
- Jiang, H., Zhang, J., Han, Z., Yang, J., Ge, C., Wu, Q. (2017) Revealing new insights into different phosphorus-starving responses between two maize (*Zea mays*) inbred lines by transcriptomic and proteomic studies. *Scientific Reports*, v. 7, n. 1, p. 44294.
- Jiang, Z., Wang, M., Nicolas, M., Ogé, L., Pérez-Garcia, M. D., Crespel, L., Sakr, S. (2022) Glucose-6-Phosphate dehydrogenases: the hidden players of plant physiology. *International Journal of Molecular Sciences*, v. 23, n. 24, p. 16128.
- Kamphorst, S. H., do Amaral Júnior, A. T., Vergara-Diaz, O., Gracia-Romero, A., Fernandez-Gallego, J. A., Chang-Espino, M. C., Ortega, J. L. A. (2022) Heterosis and reciprocal effects for physiological and morphological traits of popcorn plants under different water conditions. *Agricultural Water Management*, v. 261, p. 107371.

- Kayoumu, M., Iqbal, A., Muhammad, N., Li, X., Li, L., Wang, X., Dong, Q. (2023)
 Phosphorus Availability Affects the Photosynthesis and Antioxidant System of Contrasting Low-P-Tolerant Cotton Genotypes. *Antioxidants*, v. 12, n. 2, p. 466.
- Kidwai, M., Ahmad, I. Z., Chakrabarty, D. (2020) Class III peroxidase: An indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. *Plant cell reports*, v. 39, p. 1381-1393.
- Kist, B. B. Anuário Brasileiro do Milho. Santa Cruz: Editora Gazeta Santa Cruz, p, 72. 2019.
- Kramer, D. M., Johnson, G., Kiirats, O., Edwards, G. E. (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. *Photosynthesis research*, v. 79, p. 209-218.
- Kumar, S., Chugh, C., Seem, K., Kumar, S., Vinod, K. K., Mohapatra, T. (2021) Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Piefficient schema for phosphate starvation tolerance. *BMC plant biology*, v. 21, p. 1-26.
- Kumar, S., Trivedi, P. K. (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. *Frontiers in Plant Science*, v. 9, p. 751.
- Kwon, S., Chun, H. L., Ha, H. J., Lee, S. Y., Park, H. H. (2021) Heterogeneous multimeric structure of isocitrate lyase in complex with succinate and itaconate provides novel insights into its inhibitory mechanism. *Plos one*, v. 16, n. 5, p. e0251067.
- Langhans, C., Beusen, A. H. W., Mogollón, J. M., Bouwman, A. F. (2022) Phosphorus for Sustainable Development Goal target of doubling smallholder productivity. *Nature Sustainability*, v. 5, n. 1, p. 57-63.
- Li, K., Xu, C., Li, Z., Zhang, K., Yang, A., Zhang, J. (2008) Comparative proteome analyses of phosphorus responses in maize (*Zea mays* L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. *The Plant Journal*, v. 55, n. 6, p. 927-939.
- Li, W., Huai, X., Li, P., Raza, A., Mubarik, M. S., Habib, M., Khan, R. S. A. (2021) Genomewide characterization of glutathione peroxidase (GPX) gene family in rapeseed (*Brassica napus* L.) revealed their role in multiple abiotic stress response and hormone signaling. *Antioxidants*, v. 10, n. 9, p. 1481.
- Li, X., Mang, M., Piepho, H. P., Melchinger, A., Ludewig, U. (2021) Decline of seedling phosphorus use efficiency in the heterotic pool of flint maize breeding lines since the

onset of hybrid breeding. *Journal of Agronomy and Crop Science*, v. 207, n. 5, p. 857-872.

- Liu, D. (2021) Root developmental responses to phosphorus nutrition. *Journal of Integrative Plant Biology*, v. 63, n. 6, p. 1065-1090.
- Liu, X. L., Wang, L., Wang, X. W., Yan, Y., Yang, X. L., Xie, M. Y., Sun, S. B. (2020) Mutation of the chloroplast-localized phosphate transporter OsPHT2; 1 reduces flavonoid accumulation and UV tolerance in rice. *The Plant Journal*, v. 102, n. 1, p. 53-67.
- Liu, X., Chu, S., Sun, C., Xu, H., Zhang, J., Jiao, Y., Zhang, D. (2020) Genome-wide identification of low phosphorus responsive microRNAs in two soybean genotypes by high-throughput sequencing. *Functional & integrative genomics*, v. 20, p. 825-838.
- Lopez-Guerrero, M. G., Wang, P., Phares, F., Schachtman, D. P., Alvarez, S., van Dijk, K. (2022) A glass bead semi-hydroponic system for intact maize root exudate analysis and phenotyping. *Plant Methods*, v. 18, n. 1, p. 25.
- Lynch, J. P. (2007) Roots of the second green revolution. *Australian Journal of Botany*, v. 55, n. 5, p. 493-512.
- Mabagala, F. S. (2022) On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability. *Saudi Journal of Biological Sciences*, v. 29, n. 5, p. 3635-3641.
- MacDonald, G. K., Bennett, E. M., Potter, P. A., Ramankutty, N. (2011) Agronomic phosphorus imbalances across the world's croplands. *Proceedings of the National Academy of Sciences*, v. 108, n. 7, p. 3086-3091.
- Maharajan, T., Ceasar, S. A., Krishna, T. P. A., Ignacimuthu, S. (2019) Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. *Planta*, v. 250, p. 1433-1448.
- Mahender, A., Anandan, A., Pradhan, S. K., Singh, O. N. (2018) Traits-related QTLs and genes and their potential applications in rice improvement under low phosphorus condition. *Archives of Agronomy and Soil Science*, v. 64, n. 4, p. 449-464.
- Malhotra, H., Vandana, Sharma, S., Pandey, R. (2018) Phosphorus nutrition: plant growth in response to deficiency and excess. *Plant nutrients and abiotic stress tolerance*, p. 171-190.
- Malhotra, H., Vandana, Sharma, S., Pandey, R. (2018) Phosphorus nutrition: plant growth in response to deficiency and excess. *Plant nutrients and abiotic stress tolerance*, p. 171-190.

- Manske, G. G. B., Ortiz-Monasterio, J. I., Van Ginkel, M., Gonzalez, R. M., Rajaram, S., Molina, E., Vlek, P. L. G. (2000) Traits associated with improved P-uptake efficiency in CIMMYT's semidwarf spring bread wheat grown on an acid Andisol in Mexico. *Plant and Soil*, v. 221, n. 2, p. 189-204.
- McClain, A. M., Sharkey, T. D. (2019) Triose phosphate utilization and beyond: from photosynthesis to end product synthesis. *Journal of experimental botany*, v. 70, n. 6, p. 1755-1766.
- Meena, R. K., Reddy, K. S., Gautam, R., Maddela, S., Reddy, A. R., Gudipalli, P. (2021) Improved photosynthetic characteristics correlated with enhanced biomass in a heterotic F 1 hybrid of maize (*Zea mays* L.). *Photosynthesis Research*, v. 147, p. 253-267.
- Mellacheruvu, D., Wright, Z., Couzens, A. L., Lambert, J. P., St-Denis, N. A., Li, T., ... & Nesvizhskii, A. I. (2013) The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. *Nature methods*, v. 10, n. 8, p. 730-736.
- Merewitz, E. B., Liu, S. (2019) Improvement in heat tolerance of creeping Bentgrass with melatonin, Rutin, and silicon. *Journal of the American Society for Horticultural Science*, v. 144, n. 2, p. 141-148.
- Mpanga, I. K., Nkebiwe, P. M., Kuhlmann, M., Cozzolino, V., Piccolo, A., Geistlinger, J., Neumann, G. (2019) The form of N supply determines plant growth promotion by Psolubilizing microorganisms in maize. *Microorganisms*, v. 7, n. 2, p. 38.
- Müh, F., Zouni, A. (2020) Structural basis of light-harvesting in the photosystem II core complex. *Protein Science*, v. 29, n. 5, p. 1090-1119.
- Nadeem, M., Mollier, A., Morel, C., Vives, A., Prud'homme, L., Pellerin, S. (2011) Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (*Zea mays* L.) nutrition during early growth stages. *Plant and Soil*, v. 346, n. 1-2, p. 231-244.
- Nadira, U. A., Ahmed, I. M., Zeng, J., Wu, F., Zhang, G. (2016) Identification of the differentially accumulated proteins associated with low phosphorus tolerance in a Tibetan wild barley accession. *Journal of plant physiology*, v. 198, p. 10-22.
- Napieraj, N., Janicka, M., Reda, M. (2023) Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress. *Plants*, v. 12, n. 5, p. 1159.
- Neupane, P., Bhuju, S., Thapa, N., Bhattarai, H. K. (2019) ATP synthase: structure, function and inhibition. *Biomolecular concepts*, v. 10, n. 1, p. 1-10.

- Nguyen, V. L., Palmer, L., Stangoulis, J. (2021) Higher photochemical quenching and better maintenance of carbon dioxide fixation are key traits for phosphorus use efficiency in the wheat breeding line, RAC875. *Frontiers in Plant Science*, v. 12, p. 816211, 2022.
- Parentoni, S. N., Mendes, F. F., Guimarães, L. J. M. (2012) Breeding for phosphorus use efficiency. *Plant breeding for abiotic stress tolerance*, p. 67-85.
- Patel, M., Rangani, J., Kumari, A., Parida, A. K. (2020) Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of *Arachis hypogaea* L.(peanut) for mitigation of nitrogen and/or phosphorus starvation. *Journal of Biotechnology*, v. 323, p. 136-158.
- Pearce, R. B., Mock, J. J., Bailey, T. B. (1975) Rapid Method for Estimating Leaf Area Per Plant in Maize 1. *Crop Science*, v. 15, n. 5, p. 691-694.
- Perez-Riverol, Y., Bai, J., Bandla, C., Hewapathirana, S., García-Seisdedos, D., Kamatchinathan, S., Kundu, D., Prakash, A., et al. (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. *Nucleic acids research*, v. 50, n. D1, p. D543-D552.
- Pinit, S., Chadchawan, S., Chaiwanon, J. (2020) A simple high-throughput protocol for the extraction and quantification of inorganic phosphate in rice leaves. *Applications in Plant Sciences*, v. 8, n. 10, p. e11395.
- Rao, I. M., Terry, N. (1989) Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet: I. Changes in growth, gas exchange, and Calvin cycle enzymes. *Plant Physiology*, v. 90, n. 3, p. 814-819.
- Raven, J. A. (2013) RNA function and phosphorus use by photosynthetic organisms. *Frontiers in Plant Science*, v. 4, p. 536.
- Reich, P. B., Oleksyn, J., Wright, I. J. (2009) Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. *Oecologia*, v. 160, p. 207-212.
- Riskin, S. H., Porder, S., Neill, C., Figueira, A. M. E. S., Tubbesing, C., Mahowald, N. (2013)
 The fate of phosphorus fertilizer in Amazon soya bean fields. *Philosophical Transactions of the Royal Society B: Biological Sciences*, v. 368, n. 1619, p. 20120154.
- Roberts, T. L., Johnston, A. E. (2015) Phosphorus use efficiency and management in agriculture. *Resources, conservation and recycling*, v. 105, p. 275-281.

- Sahoo, R. K., Ansari, M. W., Dangar, T. K., Mohanty, S., Tuteja, N. (2014) Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. *Protoplasma*, v. 251, p. 511-523.
- Santos, T. D. O., Amaral Junior, A. T. D., Bispo, R. B., Bernado, W. D. P., Simão, B. R., de Lima, V. J., Cruz, C. D. (2023) Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants. *Plants*, v. 12, n. 11, p. 2135.
- Santos, T. D. O., F. T., Amaral Junior, A. T. D., de Almeida Filho, J. E., Bispo, R. B., de Freitas, M. S. M., Trindade, R. D. S. (2022) Additive and Non-Additive Effects on the Control of Key Agronomic Traits in Popcorn Lines under Contrasting Phosphorus Conditions. *Plants*, v. 11, n. 17, p. 2216.
- Schegoscheski Gerhardt, I. F., Teixeira do Amaral Junior, A., Ferreira Pena, G., Moreira Guimarães, L. J., de Lima, V. J., Vivas, M., Kamphorst, S. H. (2019) Genetic effects on the efficiency and responsiveness to phosphorus use in popcorn as estimated by diallel analysis. *PloS one*, v. 14, n. 5, p. e0216980.
- Scholz, R. W., Ulrich, A. E., Eilittä, M., Roy, A. (2013) Sustainable use of phosphorus: a finite resource. *Science of the Total Environment*, v. 461, p. 799-803.
- Sherin, G., Aswathi, K. R., & Puthur, J. T. (2022) Photosynthetic functions in plants subjected to stresses are positively influenced by priming. *Plant Stress*, v. 4, p. 100079.
- Silva, D. A. D., Tsai, S. M., Chiorato, A. F., da Silva Andrade, S. C., Esteves, J. A. D. F., Recchia, G. H., Morais Carbonell, S. A. (2019) Analysis of the common bean (Phaseolus vulgaris L.) transcriptome regarding efficiency of phosphorus use. *PloS one*, v. 14, n. 1, p. e0210428.
- Silva, T. R. C., do Amaral Júnior, A. T., de Almeida Filho, J. E., Freitas, M. S. M., Guimarães,
 A. G., Kamphorst, S. H. (2019) Contrasting phosphorus environments as indicators for popcorn breeding lines. *Functional Plant Breeding Journal*, v. 1, n. 1.
- Simkin, A. J., Kapoor, L., Doss, C. G. P., Hofmann, T. A., Lawson, T., Ramamoorthy, S. (2022) The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. *Photosynthesis Research*, v. 152, n. 1, p. 23-42.
- Sims, J. R., Jackson, G. D. (1971) Rapid analysis of soil nitrate with chromotropic acid. *Soil Science Society of America Journal*, v. 35, n. 4, p. 603-606.

- Singh, A., Gupta, R., Pandey, R. (2017) Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L. Physiology and Molecular Biology of Plants, v. 23, p. 301-309.
- Song, J. (2021) Adenosine triphosphate energy-independently controls protein homeostasis with unique structure and diverse mechanisms. *Protein Science*, v. 30, n. 7, p. 1277-1293.
- Soviguidi, D. R. J., Pan, R., Liu, Y., Rao, L., Zhang, W., Yang, X. (2022) Chlorogenic acid metabolism: The evolution and roles in plant response to abiotic stress. *Phyton*, v. 91, n. 2, p. 239.
- Su, P., Yan, J., Li, W., Wang, L., Zhao, J., Ma, X., Kong, L. (2020) A member of wheat class
 III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. *BMC plant biology*, v. 20, p. 1-15.
- Sun, Y., Mu, C., Liu, X. (2018) Key factors identified by proteomic analysis in maize (*Zea mays* L.) seedlings' response to long-term exposure to different phosphate levels. *Proteome Science*, v. 16, n. 1, p. 1-17.
- Suzuki, Y., Ishiyama, K., Yoon, D. K., Takegahara-Tamakawa, Y., Kondo, E., Suganami, M., Makino, A. (2022) Suppression of chloroplast triose phosphate isomerase evokes inorganic phosphate-limited photosynthesis in rice. *Plant physiology*, v. 188, n. 3, p. 1550-1562.
- Taghinasab, M., Imani, J., Steffens, D., Glaeser, S. P., Kogel, K. H. (2018) The root endophytes Trametes versicolor and Piriformospora indica increase grain yield and P content in wheat. *Plant and soil*, v. 426, p. 339-348.
- Thuynsma, R., Kleinert, A., Kossmann, J., Valentine, A. J., Hills, P. N. (2016) The effects of limiting phosphate on photosynthesis and growth of Lotus japonicus. *South African Journal of Botany*, v. 104, p. 244-248.
- Tietz, S., Hall, C. C., Cruz, J. A., Kramer, D. M. (2017) NPQ (T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. *Plant, cell & environment*, v. 40, n. 8, p. 1243-1255.
- Trejo-Téllez, L. I., Estrada-Ortiz, E., Gómez-Merino, F. C., Becker, C., Krumbein, A., Schwarz, D. (2019) Flavonoid, nitrate and glucosinolate concentrations in Brassica species are differentially affected by photosynthetically active radiation, phosphate and phosphite. *Frontiers in Plant Science*, v. 10, p. 371.

- van de Wiel, C. C., van der Linden, C. G., Scholten, O. E. (2016) Improving phosphorus use efficiency in agriculture: opportunities for breeding. *Euphytica*, v. 207, p. 1-22.
- Vengavasi, K., Pandey, R., Abraham, G., Yadav, R. K. (2017) Comparative analysis of soybean root proteome reveals molecular basis of differential carboxylate efflux under low phosphorus stress. *Genes*, v. 8, n. 12, p. 341.
- Vu, D. C., Alvarez, S. (2021) Phenolic, carotenoid and saccharide compositions of vietnamese camellia sinensis teas and herbal teas. *Molecules*, v. 26, n. 21, p. 6496.
- Wacker-Fester, K., Uptmoor, R., Pfahler, V., Dehmer, K. J., Bachmann-Pfabe, S., Kavka, M. (2019) Genotype-specific differences in phosphorus efficiency of potato (*Solanum tuberosum* L.). *Frontiers in Plant Science*, v. 10, p. 1029.
- Wang, X., Shen, J., Liao, H. (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?. *Plant science*, v. 179, n. 4, p. 302-306.
- Wei, Y., Liu, S., Xiong, D., Xiong, Z., Zhang, Z., Wang, F., Huang, J. (2022) Genome-Wide Association Study for Non-Photochemical Quenching Traits in Oryza sativa L. *Agronomy*, v. 12, n. 12, p. 3216.
- Wellmer, F. W., Scholz, R. W. (2017) Putting phosphorus first: the need to know and right to know call for a revised hierarchy of natural resources. *Resources*, v. 6, n. 2, p. 20.
- Wen, Z., Li, H., Shen, J. (2017) Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. *Plant and Soil*, v. 416, p. 377-389.
- Wingler, A., Henriques, R. (2022) Sugars and the speed of life—Metabolic signals that determine plant growth, development and death. *Physiologia Plantarum*, v. 174, n. 2, p. e13656.
- Yadav, H., Fatima, R., Sharma, A., Mathur, S. (2017) Enhancement of applicability of rock phosphate in alkaline soils by organic compost. *Applied Soil Ecology*, v. 113, p. 80-85.
- Yang, J. H., Williams, D., Kandiah, E., Fromme, P., Chiu, P. L. (2020) Structural basis of redox modulation on chloroplast ATP synthase. *Communications biology*, v. 3, n. 1, p. 482.
- Yang, S. Y., Huang, T. K., Kuo, H. F., Chiou, T. J. (2017) Role of vacuoles in phosphorus storage and remobilization. *Journal of experimental botany*, v. 68, n. 12, p. 3045-3055.

- Yang, Y., Fu, Z., Su, Y., Zhang, X., Li, G., Guo, J., Xu, L. (2014) A cytosolic glucose-6phosphate dehydrogenase gene, ScG6PDH, plays a positive role in response to various abiotic stresses in sugarcane. *Scientific Reports*, v. 4, n. 1, p. 1-10.
- Yuan, Y., Gao, M., Zhang, M., Zheng, H., Zhou, X., Guo, Y., Li, S. (2017) QTL mapping for phosphorus efficiency and morphological traits at seedling and maturity stages in wheat. *Frontiers in plant science*, v. 8, p. 614.
- Zeng, H., Wang, G., Zhang, Y., Hu, X., Pi, E., Zhu, Y., Du, L. (2016) Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. *Plant and soil*, v. 398, p. 207-227.
- Zhang, K., Liu, H., Tao, P., Chen, H. (2014) Comparative proteomic analyses provide new insights into low phosphorus stress responses in maize leaves. *PLoS One*, v. 9, n. 5, p. e98215.
- Zhang, K., Liu, H., Tao, P., Chen, H. (2014b) Comparative proteomic analyses provide new insights into low phosphorus stress responses in maize leaves. *PLoS One*, v. 9, n. 5, p. e98215.
- Zhang, L. T., Li, J., Rong, T. Z., Gao, S. B., Wu, F. K., Xu, J., Li, M. L., Cao, M. J., Wang, J., Hu, E. L., Liu, Y. X. (2014a) Large-scale screening maize germplasm for lowphosphorus tolerance using multiple selection criteria. *Euphytica*, v. 197, p. 435-446.
- Zhao, Y., Cui, Y., Huang, S., Yu, J., Wang, X., Xin, D., Chen, Q. (2020) Genome-wide analysis of the glucose-6-phosphate dehydrogenase family in soybean and functional identification of GmG6PDH2 involvement in salt stress. *Frontiers in plant science*, v. 11, p. 214.
- Zheng, L., Wang, R., Zhou, P., Pan, Y., Shen, R., Lan, P. (2023) Comparative physiological and proteomic response to phosphate deficiency between two wheat genotypes differing in phosphorus utilization efficiency. *Journal of Proteomics*, v. 280, p. 104894.
- Zoschke, R., Bock, R. (2018) Chloroplast translation: structural and functional organization, operational control, and regulation. *The Plant Cell*, v. 30, n. 4, p. 745-770.

APPENDIX

Responses of popcorn plants to phosphorus deficiency

Supplementary Figure. Molecular adaptations of popcorn plants in response to phosphorus deficiency. Representation of the main pathways involved

•

Supplementary Table 1. Results of chemical and particle-size analysis of the substrate (sand) used to evaluate four lines and 12 hyl	brids
of popcorn in a diallel under contrasting phosphorus conditions.	

Amootro	рΗ	S-SO4	Р	K	Са	M g	A I	Na	H+A I	С	МО	стс	SB	V	m	ISN a	Fe	Cu	Zn	Mn	В	Ν
Amostra	H₂ O		mg/dm³			mmo	l _c /dr	n³		g/	dm³	mmol	_c /dm³	%	%	%		m	ıg/dm	3		%
1	7.0	6	9	0. 3	2. 7	1.2	0	0. 5	0	0. 3	0.5 2	4.7	4.7	10 0	0	11	162.1	0.2 0	2. 2	31. 5	0.1 1	0.0 7
2	7.2	5	10	0. 3	2. 9	1.3	0	0. 5	0	0. 3	0.5 2	5	5	10 0	0	10	201.1	0.2 2	2. 6	36, 6	0.1 0	0.0 7

Extractants: P, Na, K, Fe, Zn, Mn, Cu - Mehlich 1 extractant; Ca, Mg, Al - KCl extractant (1 mol/L); H + Al - Calcium acetate extractant (0.5 mol/L and pH 7.0); B - Hot water extractant; S - Monocalcium phosphate extractant. **Abbreviations:** SB - Sum of Exchangeable Bases; CEC - Cation Exchange Capacity at pH 7.0; V - Base Saturation Index; m - Aluminum Saturation Index; ISNa - Sodium Saturation Index; OM - Organic Matter (C Org × 1.724, Walkley-Black).

Supplementary Table 2. Analysis of variance and quadratic components for 31 traits evaluated in 16 popcorn genotypes under contrasting phosphorus conditions, according to the model proposed by Griffing (1956) for a diallel involving four lines, their F1s, and reciprocal hybrids.

High P condition											Low P condition											
	GCA			SCA		_	REC		RE	S		GCA			SCA			REC		RE	ES	
MS	φg	%	MS	φs	%	MS	φrc	%	Valu e	%	MS	φg	%	MS	φs	%	MS	φrc	%	Valu e	%	
**	6.57	16.3	**	15.97	39.8	**	5.04	12.5	12.50	31.1	**	0.50	7.8	**	3.11	48.1	**	1.17	18.1	1.67	25.8	
**	0.57	14.9	**	1.42	37.0	**	0.48	12.6	1.35	35.2	ns	0.01	2.3	**	0.36	55.5	ns	0.04	7.1	0.22	35.0	
**	15.50	14.8	*	27.88	26.6	**	15.65	14.9	45.56	43.5	**	1.20	4.0	**	20.51	69.2	ns	1.11	3.7	6.79	22.9	
ns	0.00	1.8	ns	0.01	7.2	ns	0.02	11.5	0.16	79.4	**	0.01	8.1	**	0.08	55.7	ns	-0.00	0.0	0.05	36.1	
ns	3549	12.6	**	11224	40.0	ns	2495	8.89	2162	38.4	ns	56.84	3.4	**	1034	63.5	ns	100	6.1	434	26.7	
**	0.30	15.5	**	0.85	43.1	**	0.47	24.1	0.34	17.1	**	0.00	3.0	**	0.01	65.5	**	0.00	25.8	0.00	5.4	
**	0.12	12.6	**	0.40	42.0	**	0.22	23.4	0.21	21.8	**	0.00	2.6	**	0.03	66.2	**	0.01	27.3	0.00	3.7	
**	0.01	9.2	**	0.10	49.7	**	0.04	22.6	0.03	18.2	**	0.00	1.9	**	0.00	70.5	**	0.00	18.0	0.00	9.4	
ns	0.00	0.6	**	-0.00	0.0	*	0.00	22.8	0.00	76.5	ns	0.00	2.7	**	0.01	50.7	**	0.00	33.4	0.00	13.0	
ns	2.82	13.4	**	11.94	56.8	**	3.56	16.9	2.66	12.6	ns	0.00	2.9	**	0.05	52.9	**	0.02	31.1	0.01	12.9	
ns	0.99	10.0	**	4.28	43.3	**	3.11	31.5	1.48	15.0	ns	0.00	3.9	**	0.06	68.6	**	0.02	23.1	0.00	4.2	
ns	6.53	12.2	**	27.33	51.1	**	12.35	23.1	7.24	13.5	ns	0.00	0.0	**	0.12	63.7	**	0.05	25.5	0.02	10.6	
ns	0.04	13.9	**	0.19	65.5	**	0.03	12.3	0.02	8.1	ns	0.00	0.5	**	0.00	73.4	**	0.00	22.8	0.00	3.1	
ns	0.00	11.5	**	0.00	46.9	**	0.00	19.4	0.00	22.1	ns	0.00	0.8	**	0.12	70.2	**	0.04	23.5	0.00	5.2	
ns	0.00	8.4	**	0.00	42.6	**	0.00	16.0	0.00	32.8	ns	0.00	0.2	ns	0.28	58.6	**	0.10	22.1	0.09	18.9	
ns	0.00	9.6	**	0.00	50.5	**	0.00	23.7	0.00	16.1	ns	-0.00	0.0	**	0.20	77.4	**	0.04	16.6	0.01	5.8	
ns	0.00	1.4	*	0.00	30.8	ns	0.00	8.4	0.00	59.2	ns	3.29	8.0	ns	10.95	26.8	ns	24.94	61.1	1.56	3.8	
*	0.00	2.4	ns	-0.00	0.0	ns	-0.00	0.0	0.00	97.5	ns	0.00	4.6	**	0.00	47.7	**	0.00	28.7	0.00	18.9	
ns	0.00	2.8	ns	0.00	16.4	ns	0.00	8.4	0.00	72.2	ns	0.00	6.5	**	0.00	42.4	**	0.00	43.2	0.00	7.7	
**	0.00	2.7	ns	-0.00	0.0	ns	-0.00	0.0	0.00	97.2	ns	0.00	4.4	ns	0.00	11.1	ns	0.00	1.6	0.02	82.8	
ns	0.00	1.1	**	0.06	43.0	ns	0.01	8.9	0.07	46.8	ns	1654	7.2	**	7224	31.6	**	13598	59.5	342	1.5	
*	0.44	7.9	ns	-0.45	0.0	*	1.28	22.7	3.91	69.3	ns	0.01	0.0	**	5.25	32.4	**	3.96	24.4	6.96	43.0	
**	0.00	14.2	**	0.00	38.4	**	0.00	31.4	0.00	15.8	**	0.00	15.7	**	0.03	62.5	**	0.00	13.2	0.00	8.4	
**	3755.	6.5	**	<u>3022</u> 6	52.8	**	<u>1881</u> 9	32.9	4386	7.6	**	1986	13.8	**	603 <u>5</u>	42.0	**	5434	37.8	899	6.2	
	MS *** ** ns ns ns ns ns ns ns ns ns ** ** ** ** ** ** ** ** ** ** ** ** **	GCA MS φg ** 6.57 ** 0.57 ** 15.50 ns 0.00 ns 3549 ** 0.12 ** 0.12 ** 0.01 ns 0.00 ns 0.99 ns 0.99 ns 0.00 ** 0.00 ** 0.00 ** 0.00 ** 0.00	GCA MS φg % 6.57 16.3 ** 0.57 14.9 ** 15.50 14.8 ns 0.00 1.8 ns 3549 12.6 ** 0.12 12.6 ** 0.12 12.6 ** 0.12 12.6 ** 0.12 12.6 ** 0.12 12.6 ** 0.12 12.6 ** 0.12 12.6 ** 0.12 12.6 ** 0.01 9.2 ns 0.00 1.6 ns 0.00 1.0 ns 0.00 1.1 ns 0.00 1.4 * 0.00 2.4 ns 0.00 2.4 ns 0.00 2.7 ns 0.00 2.7 ns 0.00 2.7 ns 0.00 </th <th>GCA MS φg MS ** 6.57 16.3 ** ** 0.57 14.9 ** ** 15.50 14.8 * ms 0.00 1.8 ms ms 0.30 15.5 ** ** 0.12 12.6 ** ** 0.12 12.6 ** ** 0.12 12.6 ** ms 0.01 9.2 ** ms 0.00 0.6 ** ms 0.00 0.6 ** ms 0.00 1.1 ** ms 0.99 10.0 ** ms 0.04 13.9 ** ms 0.00 11.5 ** ms 0.00 1.4 * ms 0.00 2.4 ms ms 0.00 2.4 ms ms 0.00 2.7</th> <th>Hig GCA SCA MS φg % MS φs ** 6.57 16.3 ** 15.97 ** 0.57 14.9 ** 1.42 ** 15.50 14.8 * 27.88 ns 0.00 1.8 ns 0.01 ns 3549 12.6 ** 11224 ** 0.30 15.5 ** 0.85 ** 0.12 12.6 ** 0.40 ** 0.01 9.2 ** 0.10 ns 0.00 0.6 ** -0.00 ns 0.00 0.6 ** 11.94 ns 0.99 10.0 ** 4.28 ns 0.53 12.2 ** 0.19 ns 0.00 11.5 ** 0.00 ns 0.00 11.5 ** 0.00 ns 0.00 14</th> <th>High P col GCA SCA MS φg % MS φs % ** 6.57 16.3 ** 15.97 39.8 ** 0.57 14.9 ** 1.42 37.0 ** 15.50 14.8 * 27.88 26.6 ns 0.00 1.8 ns 0.01 7.2 ns 3549 12.6 ** 11224 40.0 ** 0.30 15.5 ** 0.85 43.1 ** 0.12 12.6 ** 0.40 42.0 ** 0.01 9.2 ** 0.10 49.7 ns 0.00 0.6 ** -0.00 0.0 ns 0.99 10.0 ** 4.28 43.3 ns 0.99 10.0 ** 27.33 51.1 ns 0.00 11.5 ** 0.00 46.9 n</th> <th>High P condition GCA SCA MS φg % MS ** 6.57 16.3 ** 15.97 39.8 ** ** 0.57 14.9 ** 1.42 37.0 ** ** 15.50 14.8 * 27.88 26.6 ** ns 0.00 1.8 ns 0.01 7.2 ns ns 3549 12.6 ** 11224 40.0 ns ** 0.30 15.5 ** 0.85 43.1 ** ** 0.12 12.6 ** 0.40 42.0 ** ns 0.00 0.6 ** -0.00 0.0 * ns 0.00 0.6 ** 0.10 49.7 ** ns 0.99 10.0 ** 4.28 43.3 ** ns 0.99 10.0 ** 4.28 43.3 **</th> <th>High P condition GCA SCA REC MS φg % MS φs % MS φrc ** 6.57 16.3 ** 15.97 39.8 ** 5.04 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 ** 15.50 14.8 * 27.88 26.6 ** 15.65 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 ns 3549 12.6 ** 11224 40.0 ns 2495 ** 0.30 15.5 ** 0.85 43.1 ** 0.47 ** 0.12 12.6 ** 0.40 42.0 ** 0.22 ** 0.01 9.2 ** 0.10 49.7 ** 0.44 ns 0.99 10.0 ** 4.28 43.3 ** 3.11</th> <th>High P condition GCA SCA REC MS φg % MS φrc % *** 6.57 16.3 *** 15.97 39.8 *** 5.04 12.5 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 ** 15.50 14.8 * 27.88 26.6 ** 15.65 14.9 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 ns 3549 12.6 ** 11224 40.0 ns 2495 8.89 ** 0.30 15.5 ** 0.85 43.1 ** 0.47 24.1 ** 0.11 9.2 ** 0.40 42.0 ** 0.22 23.4 ** 0.10 49.7 ** 0.04 22.6 ns 0.00 0.6 ** -0.00</th> <th>High P condition GCA SCA REC Value ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 1.35 ** 15.50 14.8 * 27.88 26.6 ** 15.65 14.9 45.56 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 ns 3549 12.6 ** 11224 40.0 ns 2495 8.89 2162 ** 0.30 15.5 ** 0.85 43.1 ** 0.47 24.1 0.34 ** 0.12 12.6 ** 0.40 42.0 ** 0.22 23.4 0.21 ** 0.10 9.2 ** 0.10 44.3 3.51 1.48 0.22 6.69 2.6</th> <th>High P condition GCA SCA REC Value e % MS φg % MS φrc % ZI Value e % ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 13.5 35.2 ** 15.50 14.8 * 27.88 26.6 ** 15.65 14.9 45.56 43.5 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ns 3549 12.6 ** 0.40 42.0 ** 0.22 23.4 0.21 21.8 ** 0.10 49.7 ** 0.44 22.6 0.03 18.2 ns 0.00 0.6 ** 0.00 * 0.00 22.8</th> <th>High P condition GCA SCA REC RES MS ϕg MS ϕs % MS ϕrc % $\frac{Valu}{e}$ % MS ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 13.5 35.2 ns ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ** ns 3549 12.6 ** 11224 40.0 ns 2495 8.89 2162 38.4 ns ** 0.30 15.5 ** 0.85 43.1 ** 0.47 24.1 0.34 17.1 ** ** 0.10 49.7 ** 0.04 22.6 0.03 18.2 **</th> <th>High P condition GCA SCA REC Value e Value e MS ogg ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** 0.50 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.5 12.50 31.1 ** 0.50 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 1.35 35.2 ns 0.01 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ** 0.01 ns 3549 12.6 ** 0.40 42.0 ** 0.47 24.1 0.34 17.1 ** 0.00 ** 0.10 9.7 ** 0.04 22.6 0.03 18.2 ** 0.00 ns 0.00 14.97 **</th> <th>High P condition GCA SCA REC RES GCA GCA MS og % MS orc % RES RES GCA MS og % MS orc % RES RES GCA ** 0.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** 0.50 7.8 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 1.35 35.2 ns 0.01 2.3 ** 15.50 14.8 * 27.88 26.6 ** 15.55 1.49 45.56 43.5 ** 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ** 0.01 8.1 ns 0.01 9.2 ** 0.85 43.1 ** 0.42 21.6 12.8 31.8<</th> <th>High P condition GCA SCA REC CCA MS ϕg % MS ϕc % RES CCA MS ϕg % MS ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** 0.50 7.8 ** ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 1.35 35.2 ns 0.01 2.3 ** ** 0.50 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ** 0.01 8.1 ** ns 3549 12.6 ** 0.40 42.0 ns 0.22 23.4 0.21 21.8 ** 0.00 2.6 ** ns 0.00 .6 ** 0.00 ** 0.22 23.4 0.21 <</th> <th>High P condition REC RES GCA SCA REC RES GCA SCA MS op % MS op % SCA SCA MS op % MS ms</th> <th>High P condition Low P condition GCA SCA REC RES GCA SCA MS ϕg $\%$ MS ϕrc $\%$ $\frac{RES}{4}$ $\frac{GCA}{MS}$ \frac{GCA}</th> <th>High P condition Cordition GCA SCA REC GCA SCA SCA GCA SCA MS op % Value % GCA SCA MS op % MS op % MS op % GCA SCA % % % % % % % % GCA SCA 20.51 % % % % % % % % % % % % % % % % % % % % % % <th colsp<="" th=""><th>High P condition REC REC GCA SCA REC GCA SCA REC GCA SCA REC MS og % MS op % MS op<</th> % MS op<</th> % MS op<</th> % MS op<	GCA MS φg MS ** 6.57 16.3 ** ** 0.57 14.9 ** ** 15.50 14.8 * ms 0.00 1.8 ms ms 0.30 15.5 ** ** 0.12 12.6 ** ** 0.12 12.6 ** ** 0.12 12.6 ** ms 0.01 9.2 ** ms 0.00 0.6 ** ms 0.00 0.6 ** ms 0.00 1.1 ** ms 0.99 10.0 ** ms 0.04 13.9 ** ms 0.00 11.5 ** ms 0.00 1.4 * ms 0.00 2.4 ms ms 0.00 2.4 ms ms 0.00 2.7	Hig GCA SCA MS φg % MS φs ** 6.57 16.3 ** 15.97 ** 0.57 14.9 ** 1.42 ** 15.50 14.8 * 27.88 ns 0.00 1.8 ns 0.01 ns 3549 12.6 ** 11224 ** 0.30 15.5 ** 0.85 ** 0.12 12.6 ** 0.40 ** 0.01 9.2 ** 0.10 ns 0.00 0.6 ** -0.00 ns 0.00 0.6 ** 11.94 ns 0.99 10.0 ** 4.28 ns 0.53 12.2 ** 0.19 ns 0.00 11.5 ** 0.00 ns 0.00 11.5 ** 0.00 ns 0.00 14	High P col GCA SCA MS φg % MS φs % ** 6.57 16.3 ** 15.97 39.8 ** 0.57 14.9 ** 1.42 37.0 ** 15.50 14.8 * 27.88 26.6 ns 0.00 1.8 ns 0.01 7.2 ns 3549 12.6 ** 11224 40.0 ** 0.30 15.5 ** 0.85 43.1 ** 0.12 12.6 ** 0.40 42.0 ** 0.01 9.2 ** 0.10 49.7 ns 0.00 0.6 ** -0.00 0.0 ns 0.99 10.0 ** 4.28 43.3 ns 0.99 10.0 ** 27.33 51.1 ns 0.00 11.5 ** 0.00 46.9 n	High P condition GCA SCA MS φg % MS ** 6.57 16.3 ** 15.97 39.8 ** ** 0.57 14.9 ** 1.42 37.0 ** ** 15.50 14.8 * 27.88 26.6 ** ns 0.00 1.8 ns 0.01 7.2 ns ns 3549 12.6 ** 11224 40.0 ns ** 0.30 15.5 ** 0.85 43.1 ** ** 0.12 12.6 ** 0.40 42.0 ** ns 0.00 0.6 ** -0.00 0.0 * ns 0.00 0.6 ** 0.10 49.7 ** ns 0.99 10.0 ** 4.28 43.3 ** ns 0.99 10.0 ** 4.28 43.3 **	High P condition GCA SCA REC MS φg % MS φs % MS φrc ** 6.57 16.3 ** 15.97 39.8 ** 5.04 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 ** 15.50 14.8 * 27.88 26.6 ** 15.65 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 ns 3549 12.6 ** 11224 40.0 ns 2495 ** 0.30 15.5 ** 0.85 43.1 ** 0.47 ** 0.12 12.6 ** 0.40 42.0 ** 0.22 ** 0.01 9.2 ** 0.10 49.7 ** 0.44 ns 0.99 10.0 ** 4.28 43.3 ** 3.11	High P condition GCA SCA REC MS φg % MS φrc % *** 6.57 16.3 *** 15.97 39.8 *** 5.04 12.5 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 ** 15.50 14.8 * 27.88 26.6 ** 15.65 14.9 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 ns 3549 12.6 ** 11224 40.0 ns 2495 8.89 ** 0.30 15.5 ** 0.85 43.1 ** 0.47 24.1 ** 0.11 9.2 ** 0.40 42.0 ** 0.22 23.4 ** 0.10 49.7 ** 0.04 22.6 ns 0.00 0.6 ** -0.00	High P condition GCA SCA REC Value ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 1.35 ** 15.50 14.8 * 27.88 26.6 ** 15.65 14.9 45.56 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 ns 3549 12.6 ** 11224 40.0 ns 2495 8.89 2162 ** 0.30 15.5 ** 0.85 43.1 ** 0.47 24.1 0.34 ** 0.12 12.6 ** 0.40 42.0 ** 0.22 23.4 0.21 ** 0.10 9.2 ** 0.10 44.3 3.51 1.48 0.22 6.69 2.6	High P condition GCA SCA REC Value e % MS φg % MS φrc % ZI Value e % ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 13.5 35.2 ** 15.50 14.8 * 27.88 26.6 ** 15.65 14.9 45.56 43.5 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ns 3549 12.6 ** 0.40 42.0 ** 0.22 23.4 0.21 21.8 ** 0.10 49.7 ** 0.44 22.6 0.03 18.2 ns 0.00 0.6 ** 0.00 * 0.00 22.8	High P condition GCA SCA REC RES MS ϕg MS ϕs % MS ϕrc % $\frac{Valu}{e}$ % MS ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 13.5 35.2 ns ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ** ns 3549 12.6 ** 11224 40.0 ns 2495 8.89 2162 38.4 ns ** 0.30 15.5 ** 0.85 43.1 ** 0.47 24.1 0.34 17.1 ** ** 0.10 49.7 ** 0.04 22.6 0.03 18.2 **	High P condition GCA SCA REC Value e Value e MS ogg ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** 0.50 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.5 12.50 31.1 ** 0.50 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 1.35 35.2 ns 0.01 ns 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ** 0.01 ns 3549 12.6 ** 0.40 42.0 ** 0.47 24.1 0.34 17.1 ** 0.00 ** 0.10 9.7 ** 0.04 22.6 0.03 18.2 ** 0.00 ns 0.00 14.97 **	High P condition GCA SCA REC RES GCA GCA MS og % MS orc % RES RES GCA MS og % MS orc % RES RES GCA ** 0.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** 0.50 7.8 ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 1.35 35.2 ns 0.01 2.3 ** 15.50 14.8 * 27.88 26.6 ** 15.55 1.49 45.56 43.5 ** 0.00 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ** 0.01 8.1 ns 0.01 9.2 ** 0.85 43.1 ** 0.42 21.6 12.8 31.8<	High P condition GCA SCA REC CCA MS ϕg % MS ϕc % RES CCA MS ϕg % MS ** 6.57 16.3 ** 15.97 39.8 ** 5.04 12.5 12.50 31.1 ** 0.50 7.8 ** ** 0.57 14.9 ** 1.42 37.0 ** 0.48 12.6 1.35 35.2 ns 0.01 2.3 ** ** 0.50 1.8 ns 0.01 7.2 ns 0.02 11.5 0.16 79.4 ** 0.01 8.1 ** ns 3549 12.6 ** 0.40 42.0 ns 0.22 23.4 0.21 21.8 ** 0.00 2.6 ** ns 0.00 .6 ** 0.00 ** 0.22 23.4 0.21 <	High P condition REC RES GCA SCA REC RES GCA SCA MS op % MS op % SCA SCA MS op % MS ms	High P condition Low P condition GCA SCA REC RES GCA SCA MS ϕg $\%$ MS ϕrc $\%$ $\frac{RES}{4}$ $\frac{GCA}{MS}$ \frac{GCA}	High P condition Cordition GCA SCA REC GCA SCA SCA GCA SCA MS op % Value % GCA SCA MS op % MS op % MS op % GCA SCA % % % % % % % % GCA SCA 20.51 % % % % % % % % % % % % % % % % % % % % % % <th colsp<="" th=""><th>High P condition REC REC GCA SCA REC GCA SCA REC GCA SCA REC MS og % MS op % MS op<</th> % MS op<</th> % MS op<	<th>High P condition REC REC GCA SCA REC GCA SCA REC GCA SCA REC MS og % MS op % MS op<</th> % MS op<	High P condition REC REC GCA SCA REC GCA SCA REC GCA SCA REC MS og % MS op % MS op<	Image: Scate the periodition Rec Rec GCA SCA Rec Rec GCA SCA Rec MS ogg % MS ogs % MS MS	High P condition Low P condition Low P condition MS SCA REC REC GCA SCA REC GCA SCA REC REC Colspan="12" REC REC Colspan="12" <th< th=""></th<>

					Hig	h P con	dition									Low	P cond	lition				
Traits		GCA			SCA			REC		RE	S		GCA			SCA			REC		RE	S
	MS	φg	%	MS	φs	%	MS	φrc	%	Value	%	MS	φg	%	MS	φs	%	MS	φrc	%	Value	%
Α	ns	-0.02	0.0	ns	-0.13	0.0	**	6.71	67.0	3.30	32.9	ns	1.66	11.2	**	8.03	54.4	**	4.07	27.6	0.97	6.6
gs	ns	0.00	3.3	ns	-0.00	0.0	*	0.00	34.5	0.00	62.1	ns	0.00	6.5	**	0.00	36.5	**	0.00	34.4	0.00	22.4
Ε	ns	-0.00	0.0	ns	0.00	6.0	**	0.00	32.4	0.01	61.5	ns	0.00	5.0	**	0.01	53.2	**	0.00	17.3	0.00	24.4
Ci	ns	4.86	0.5	ns	175.12	19.1	**	231	25.3	501	54.9	ns	3553	11.2	**	17382	55.1	**	7676	24.3	2884	9.1
A/ Ci	ns	0.00	0.2	*	0.00	14.8	**	0.00	48.7	0.00	36.1	ns	0.00	6.1	**	0.00	57.9	**	0.00	23.9	0.00	11.9
A/CPF	ns	0.07	8.2	**	0.37	43.2	**	0.31	36.5	0.10	12.0	ns	10.13	21.6	**	28.60	60.9	**	0.00	5.3	5.67	12.0

GCA- general combining ability; SCA- specific combining ability; REC- reciprocal effect; RES- residual effect; MS- mean square; φg , φs , and φc - quadratic component associated with general and specific combining ability and reciprocal effects, respectively; PH – plant height (cm); SD – stem diameter (mm); LL – leaf length (cm); LW – leaf width (cm); LA – leaf area (cm2); LDM – leaf dry mass (g); SDM – stem dry mass (g); RDM – root dry mass (g); R/S- root to shoot ratio; LPC – leaf phosphorus content; SPC – stalk phosphorus content; APC – aboveground phosphorus content; RPC – root phosphorus content; PUE – phosphorus use efficiency; PUpE – phosphorus uptake efficiency; and PUtE – phosphorus utilization efficiency; NPQt – non-photochemical quenching parameter; $\Phi PSII$ – quantum yield of PSII electron transport; ΦNO – non-regulated energy dissipation; ΦNPQ – regulated energy dissipation; NPQt/ ΦNO - non-photochemical quenching to non-regulated energy dissipation efficiency ratio; ChI – relative chlorophyll content; Flav – relative flavonoid content; and NBI – nitrogen balance index; A – net CO₂ assimilation rate (µmol CO₂ m⁻² s⁻¹); gs – stomatal conductance (mol H₂O m⁻² s⁻¹); E – transpiration (mmol H₂O m⁻² s⁻¹); Ci – internal CO₂ concentration (µmol CO₂ m⁻² s⁻¹); A/Ci – instantaneous carboxylation efficiency; A/LPC – carboxylation efficiency ratio to leaf phosphorus content; Significance levels: * p < 0.05; ** p < 0.01; n^s = not significant.

Accession	Description	Fold change (log2)	<i>P</i> value	DEPs:
A0A096RSU8	Peptidase family M48 family	-6.64	5.7723E-17	Unique HP
A0A1D6EFP8	Fe-S cluster assembly factor HCF101 chloroplastic	-6.64	5.7723E-17	Unique HP
A0A1D6F1Z5	Serine/arginine-rich splicing factor SC35	-6.64	5.7723E-17	Unique HP
A0A1D6GIP9	Adenylyl cyclase-associated protein	-6.64	5.7723E-17	Unique HP
A0A1D6GVM7	Delta-aminolevulinic acid dehydratase	-6.64	5.7723E-17	Unique HP
A0A1D6HSW7	Protein PXR1-like	-6.64	5.7723E-17	Unique HP
A0A1D6I3E1	Strictosidine synthase 3	-6.64	5.7723E-17	Unique HP
A0A1D6INZ7	FSH1 domain-containing protein	-6.64	5.7723E-17	Unique HP
A0A1D6JX93	Peroxisomal nicotinamide adenine dinucleotide carrier	-6.64	5.7723E-17	Unique HP
A0A1D6L4Z0	Cytochrome b5 isoform A	-6.64	5.7723E-17	Unique HP
A0A804LKZ4	Uncharacterized protein	-6.64	5.7723E-17	Unique HP
A0A804M3G2	Alba domain-containing protein	-6.64	5.7723E-17	Unique HP
A0A804PCB9	xyloglucan:xyloglucosyl transferase	-6.64	5.7723E-17	Unique HP
A0A804PES5	Aha1_N domain-containing protein	-6.64	5.7723E-17	Unique HP
A0A804PNN3	TPR_REGION domain-containing protein	-6.64	5.7723E-17	Unique HP
A0A804PTY4	adenylate kinase	-6.64	5.7723E-17	Unique HP
A0A804Q1R0	Nucleosome assembly protein 1- like 1	-6.64	5.7723E-17	Unique HP
A0A804Q925	phosphoglucomutase (alpha-D- glucose-1,6-bisphosphate- dependent)	-6.64	5.7723E-17	Unique HP
A0A804R694	Cytochrome c oxidase subunit 6b- 1	-6.64	5.7723E-17	Unique HP
A0A804RFN4	tyrosinetRNA ligase	-6.64	5.7723E-17	Unique HP
A0A804UCH1	Glucose-1-phosphate adenylyltransferase	-6.64	5.7723E-17	Unique HP
A0A804UH90	Thiamine thiazole synthase, chloroplastic	-6.64	5.7723E-17	Unique HP
A1JUJ0	inositol-3-phosphate synthase	-6.64	5.7723E-17	Unique HP
B4F8L1	COP9 signalosome complex subunit 7	-6.64	5.7723E-17	Unique HP
B4F9B2	Acetyl-CoA acetyltransferase, cytosolic 1	-6.64	5.7723E-17	Unique HP
B4FBE0	Glycosyltransferase	-6.64	5.7723E-17	Unique HP
B4FIL5	Leucine-rich repeat (LRR) family protein	-6.64	5.7723E-17	Unique HP
B4FRD6	Peroxidase	-6.64	5.7723E-17	Unique HP
B4FRJ4	Photosystem II 11 kD protein	-6.64	5.7723E-17	Unique HP

Supplementary Table 3. List of differentially abundant proteins (DEPs) in the L80_LP / L80_HP comparison

Supplement	ary rable 5 - Cont.			
Accession	Description	Fold change (log2)	P value	DEPs:
B4FSA8	GDSL esterase/lipase	-6.64	5.7723E-17	Unique HP
B4FSJ1	V-type proton ATPase subunit C	-6.64	5.7723E-17	Unique HP
B4FSM7	Hemoglobin1	-6.64	5.7723E-17	Unique HP
B4FT63	Genomes uncoupled4-like protein	-6.64	5.7723E-17	Unique HP
B4FWM3	KH domain-containing protein	-6.64	5.7723E-17	Unique HP
B4FZB8	Signal recognition particle 54 kDa protein chloroplastic	-6.64	5.7723E-17	Unique HP
B4FZL4	Chlorophyll a-b binding protein, chloroplastic	-6.64	5.7723E-17	Unique HP
B4G033	peptidylprolyl isomerase	-6.64	5.7723E-17	Unique HP
B4G0Z5	60S ribosomal protein L27a-3	-6.64	5.7723E-17	Unique HP
B4G1N1	RmID_sub_bind domain-containing protein	-6.64	5.7723E-17	Unique HP
B4G1R9	Glutamyl-tRNA(Gln) amidotransferase subunit C, chloroplastic/mitochondrial	-6.64	5.7723E-17	Unique HP
B6SHZ1	40S ribosomal protein S5	-6.64	5.7723E-17	Unique HP
B6SJR3	Mitochondrial import receptor subunit TOM7-1	-6.64	5.7723E-17	Unique HP
B6SM60	50S ribosomal protein L40	-6.64	5.7723E-17	Unique HP
B6SR25	Maternal effect embryo arrest 59	-6.64	5.7723E-17	Unique HP
B6SUW7	Protein LURP-one-related 5-like	-6.64	5.7723E-17	Unique HP
B6SY86	GATA-N domain-containing protein	-6.64	5.7723E-17	Unique HP
B6SZF2	DUF1995 domain-containing protein	-6.64	5.7723E-17	Unique HP
B6T5I9	Immature colon carcinoma transcript 1 protein	-6.64	5.7723E-17	Unique HP
B6T6D2	Dirigent protein	-6.64	5.7723E-17	Unique HP
B6TDH3	Protein MODIFIER OF SNC1 11	-6.64	5.7723E-17	Unique HP
B6TH42	60S ribosomal protein L9	-6.64	5.7723E-17	Unique HP
B6TSX9	4a-hydroxytetrahydrobiopterin dehydratase	-6.64	5.7723E-17	Unique HP
B6TUB8	Phospho-2-dehydro-3- deoxyheptonate aldolase	-6.64	5.7723E-17	Unique HP
B6UB58	Ubiquitin-like protein	-6.64	5.7723E-17	Unique HP
B7ZZP2	GTP-binding protein SAR1A	-6.64	5.7723E-17	Unique HP
C0P4F3	Multiple organellar RNA editing factor 9 chloroplastic	-6.64	5.7723E-17	Unique HP
C0PEH3	ThiC-associated domain- containing protein	-6.64	5.7723E-17	Unique HP
C0PHM0	Carboxypeptidase	-6.64	5.7723E-17	Unique HP
C0PHM2	Pollen receptor-like kinase 4	-6.64	5.7723E-17	Unique HP

Accession	Description	Fold change (log2)	P value	DEPs:
C0PN00	Protein YLS3	-6.64	5.7723E-17	Unique HP
C0PKD9	Chaperonin10	-6.64	5.7723E-17	Unique HP
K7TP80	Zinc finger (C3HC4-type RING finger) family protein	-6.64	5.7723E-17	Unique HP
K7TWH1	peptidylprolyl isomerase	-6.64	5.7723E-17	Unique HP
K7TZ17	Glycosyltransferase	-6.64	5.7723E-17	Unique HP
K7U9C9	RNA helicase	-6.64	5.7723E-17	Unique HP
K7UBG1	peptidylprolyl isomerase	-6.64	5.7723E-17	Unique HP
K7UR46	Glutamyl-tRNA reductase-binding protein chloroplastic	-6.64	5.7723E-17	Unique HP
K7USR3	magnesium-protoporphyrin IX monomethyl ester (oxidative) cyclase	-6.64	5.7723E-17	Unique HP
K7V5H2	Copper ion binding protein	-6.64	5.7723E-17	Unique HP
K7VDC0	Peroxidase	-6.64	5.7723E-17	Unique HP
K7W4T3	Elongin-C	-6.64	5.7723E-17	Unique HP
P10979	Glycine-rich RNA-binding, abscisic acid-inducible protein	-6.64	5.7723E-17	Unique HP
P12339	30S ribosomal protein S7, chloroplastic	-6.64	5.7723E-17	Unique HP
P17344	ATP synthase subunit a, chloroplastic	-6.64	5.7723E-17	Unique HP
P17788	50S ribosomal protein L2, chloroplastic	-6.64	5.7723E-17	Unique HP
P28523	Casein kinase II subunit alpha	-6.64	5.7723E-17	Unique HP
P42390	Indole-3-glycerol phosphate lyase, chloroplastic	-6.64	5.7723E-17	Unique HP
Q49HD9	12-oxo-phytodienoic acid reductase	-6.64	5.7723E-17	Unique HP
Q4FZ48	Cysteine proteinase inhibitor 5	-6.64	5.7723E-17	Unique HP
Q6JAD2	Ferredoxin	-6.64	5.7723E-17	Unique HP
Q84VG9	Lycopene beta cyclase chloroplastic	-6.64	5.7723E-17	Unique HP
B4FUZ9	50S ribosomal protein L15 chloroplastic	-5.91	1.73828E-12	DOWN
B6T4J1	50S ribosomal protein L6	-4.62	1.39549E-07	DOWN
Q947B9	Glucose-1-phosphate adenylyltransferase	-4	2.77536E-09	DOWN
B4FGE5	Uncharacterized protein	-3.55	0.000115671	DOWN
B6U581	Ribosome-like protein	-3.47	2.72187E-05	DOWN
B6SWX3	Anthocyanidin 3-O- glucosyltransferase	-3.42	0.000168642	DOWN
B4FKB3	50S ribosomal protein L31	-3.23	0.000114678	DOWN
A0A1D6IKI2	RNA binding protein 1	-3.21	5.96291E-05	DOWN
A0A804RV03	Ribosomal_S3_C domain- containing protein	-3.12	0.000904049	DOWN
B4F9J1	Beta-galactosidase	-3.11	0.002677087	DOWN

Accession	Description	Fold change (log2)	P value	DEPs:
B4FJG1	Chlorophyll a-b binding protein,	-3.09	7.3467E-06	DOWN
B6SUJ0	50S ribosomal protein L10	-2.94	0.002790466	DOWN
B4FU53	50S ribosomal protein L9,	-2.83	4.28461E-05	DOWN
B4G1Q5	chioropiastic 50S ribosomal protein L10 chloroplastic	-2.82	6.28178E-05	DOWN
A5GZ73	Glucose-1-phosphate	-2.79	0.000582698	DOWN
P06588	30S ribosomal protein S19, chloroplastic	-2.76	5.23172E-05	DOWN
B4FH16	30S ribosomal protein 3 chloroplastic	-2.72	0.002424688	DOWN
B6TT66	Ribosome-like protein	-2.67	0.000894703	DOWN
A0A1D6FKD0	Putative 3-hydroxyisobutyrate dehydrogenase-like 3 mitochondrial	-2.65	0.008096284	DOWN
P16037	30S ribosomal protein S2, chloroplastic	-2.56	0.009295311	DOWN
B4FMW6	Aspartyl protease AED3	-2.55	0.012526534	DOWN
B6TEJ4	Peptidase C15 pyroglutamyl peptidase I-like	-2.53	0.013760816	DOWN
B6SST7	50S ribosomal protein L5, chloroplastic	-2.48	0.000467412	DOWN
A0A804Q515	PsbP domain-containing protein	-2.45	0.000472998	DOWN
K7TXI5	Chlorophyll a-b binding protein, chloroplastic	-2.43	0.000542772	DOWN
P48183	Photosystem II protein D1	-2.42	0.00057908	DOWN
P09387	50S ribosomal protein L23, chloroplastic	-2.41	0.002136721	DOWN
B6SR22	50S ribosomal protein L12-1	-2.41	0.003205514	DOWN
P25459	30S ribosomal protein S18, chloroplastic	-2.39	0.012358193	DOWN
B4FDG7	RNA-binding (RRM/RBD/RNP motifs) family protein	-2.37	0.014044793	DOWN
B6U8X9	Glycerol-3-phosphate acyltransferase, chloroplastic	-2.33	0.025005051	DOWN
A0A1D6JSL7	inositol-3-phosphate synthase	-2.28	0.005425103	DOWN
B4FLV6	Protein translation factor SUI1	-2.28	0.021015021	DOWN
P08529	50S ribosomal protein L14, chloroplastic	-2.26	0.00146273	DOWN
B6U1J2	50S ribosomal protein L11	-2.23	0.000875418	DOWN
B4FL55	Chlorophyll a-b binding protein, chloroplastic	-2.23	0.001722264	DOWN
A0A804QDB7	Chlorophyll a-b binding protein, chloroplastic	-2.22	0.001779289	DOWN
B4FFI2	Nitrilase-associated protein	-2.22	0.018986769	DOWN
A0A804LKH5	50S ribosomal protein L6, chloroplastic	-2.2	0.001950986	DOWN
A0A804MF05	UBX domain-containing protein	-2.18	0.029963243	DOWN
K7UTW6	Plasminogen activator inhibitor 1 RNA-binding protein	-2.18	0.039304611	DOWN
C4JA36	Binding partner of ACD11 1	-2.17	0.024375362	DOWN
B4FZP0	Mg-protoporphyrin IX chelatase	-2.16	0.019706593	DOWN

Accession	Description	Fold change (log2)	P value	DEPs:
A0A3L6E5Y7	Plasma membrane ATPase	-2.15	0.027651766	DOWN
A0A804M2J7	30S ribosomal protein S13, chloroplastic	-2.14	0.008766983	DOWN
A0A804LV96	30S ribosomal protein S4, chloroplastic	-2.12	0.045514717	DOWN
P08528	50S ribosomal protein L16, chloroplastic	-2.11	0.014863849	DOWN
B4FXB9	FLU	-2.08	0.034384128	DOWN
P17703	30S ribosomal protein S15, chloroplastic	-2.06	0.014863849	DOWN
B6U2H1	Uncharacterized protein	-2.06	0.030757719	DOWN
A0A1D6FDV3	50S ribosomal protein L29 chloroplastic	-2.06	0.041077423	DOWN
P25706	NAD(P)H-quinone oxidoreductase subunit 1, chloroplastic	-2.01	0.047270742	DOWN
B4FA79	Calcium-binding EF hand family protein	-1.99	0.017367986	DOWN
A0A1X7YHF7	Photosystem II D2 protein	-1.98	0.006088793	DOWN
K7W010	Phosphoglycerate mutase family protein	-1.97	0.034008825	DOWN
A0A804R6R9	Ribosomal_S10 domain-containing protein	-1.95	0.018855199	DOWN
A0A1D6M323	Ribosomal protein	-1.91	0.008665252	DOWN
B6SSN3	Chlorophyll a-b binding protein, chloroplastic	-1.89	0.007347957	DOWN
P27723	30S ribosomal protein S16, chloroplastic	-1.89	0.018986769	DOWN
B4FED9	Ycf54-like protein	-1.86	0.00949216	DOWN
P08530	30S ribosomal protein S8, chloroplastic	-1.86	0.042868793	DOWN
A0A804P2H5	50S ribosomal protein L21	-1.8	0.014103471	DOWN
Q9TJN6	30S ribosomal protein S17, chloroplastic	-1.78	0.013658979	DOWN
A0A1D6KJ07	N-acyl-aliphatic-L-amino acid amidohydrolase	-1.77	0.04250011	DOWN
B6T0F9	Thylakoid soluble phosphoprotein TSP9	-1.75	0.039149597	DOWN
A0A804MRM8	Oxygen-evolving enhancer protein 3-2, chloroplastic	-1.73	0.019468919	DOWN
A0A804PCP6	KOW domain-containing protein	-1.73	0.033336377	DOWN
B4FYN6	lso_dh domain-containing protein	-1.73	0.041686196	DOWN
B6SUJ3	Plastid-specific 30S ribosomal protein 2	-1.72	0.038972218	DOWN
B4G1A1	Photosystem II 5 kDa protein, chloroplastic	-1.71	0.021081212	DOWN
B6UIC1	50S ribosomal protein L12-1	-1.69	0.022382396	DOWN
B4FSZ8	Beta alanine synthase1	-1.66	0.023893038	DOWN
P48187	Photosystem II CP43 reaction center protein	-1.63	0.029019142	DOWN
B4FXB0	Chlorophyll a-b binding protein, chloroplastic	-1.61	0.031273918	DOWN
A0A804M4P0	30S ribosomal protein S9, chloroplastic	-1.6	0.026798941	DOWN
B6T9H3	Asparate aminotransferase	-1.6	0.03266098	DOWN
Q41739	Thiamine thiazole synthase 2, chloroplastic	-1.56	0.038100442	DOWN

Accession	Description	Fold change (log2)	P value	DEPs:
B4G1J8	50S ribosomal protein L3-1	-1.55	0.030398281	DOWN
P24993	Photosystem II reaction center protein H	-1.55	0.03922432	DOWN
C0PEC4	30S ribosomal protein S5 chloroplastic	-1.54	0.041686196	DOWN
B4F9R9	Oxygen-evolving enhancer protein 1	-1.53	0.043016018	DOWN
Q41746	Chlorophyll a-b binding protein, chloroplastic	-1.5	0.047265125	DOWN
P05641	Photosystem II CP47 reaction center protein	-1.5	0.048730517	DOWN
A0A804RTY6	FAD dependent oxidoreductase	-1.48	0.039281592	DOWN
P69388	Cytochrome b559 subunit alpha	-1.46	0.043796325	DOWN
B4FVJ9	glutathione transferase	2.1	0.039570279	UP
K7TJV6	oxoglutarate dehydrogenase (succinyl-transferring)	2.1	0.044307458	UP
A0A1D6JMZ9	Aconitate hydratase	2.12	0.032784576	UP
A0A1D6PUK8	Aconitate hydratase	2.17	0.026876277	UP
A0A096RZN2	carbonic anhydrase	2.2	0.023783251	UP
B4G1C2	GH18 domain-containing protein	2.31	0.021963287	UP
C0P4M0	Monodehydroascorbate reductase 1 peroxisomal	2.39	0.018085913	UP
B4FVL1	26S proteasome non-ATPase regulatory subunit 6	2.43	0.020614132	UP
B4FL28	Isovaleryl-CoA dehydrogenase mitochondrial	2.44	0.027319943	UP
A0A804P3Q9	Glycosyltransferase	2.45	0.020113738	UP
A0A1D6I1V3	phosphoenolpyruvate carboxylase	2.48	0.006911522	UP
B4G1B0	Remorin	2.49	0.027697554	UP
B7ZWY9	Citrate synthase	2.54	0.017599973	UP
A0A1D6PJL0	Aconitate hydratase	2.63	0.010840816	UP
A6YSM3	PL3K2	2.64	0.003049232	UP
C0PMP2	riboflavin kinase	2.65	0.036327712	UP
C0PFV4	Chaperone protein ClpC1 chloroplastic	2.69	0.002333133	UP
B6TNF1	Calnexin	2.69	0.00404192	UP
A0A1D6HR96	Purple acid phosphatase	2.71	0.037911504	UP
B4F8X3	Acyl-coenzyme A oxidase	2.81	0.024153793	UP
C0PHD8	aldehyde dehydrogenase (NAD(+))	2.87	0.001431461	UP
B4F7Z4	glycerophosphodiester phosphodiesterase	2.89	0.000806226	UP
A0A804Q7K1	Vesicle-associated membrane protein 726	2.9	0.040912659	UP
A0A1D6H9K3	Chaperone protein ClpD chloroplastic	2.91	0.015003216	UP
C4J473	oligopeptidase A	2.91	0.03766035	UP
B4FLP7	cysteine desulfurase	2.93	0.031350162	UP
B6SRL2	Aconitate hydratase	2.94	0.02120063	UP
A0A804RBR8	NTP_transferase domain- containing protein	2.95	0.043796325	UP
Q9FQA3	Glutathione transferase GST 23	2.98	0.010124894	UP

Accession	Description	Fold change (log2)	P value	DEPs:
B4FZU9	dihydropyrimidine dehydrogenase	2.98	0.010858172	UP
Q8LK07	Histone H1	2.98	0.023872733	UP
Q29SB6	Pathogenesis-related protein 10	3	0.005714229	UP
Q94F77	Nucleosome/chromatin assembly factor C	3	0.019049587	UP
B6UC34	glutaminetRNA ligase	3	0.037951957	UP
A0A1D6F5G3	Apyrase 1	3.04	0.031657093	UP
C0PI30	ribose-5-phosphate isomerase	3.05	0.02930062	UP
A0A1D6LPQ2	Glycosyl hydrolase family 31 protein	3.07	0.02307292	UP
B6T484	Mitogen-activated protein kinase	3.07	0.031911851	UP
B6TNK2	2-oxoglutarate (2OG) and Fe(II)- dependent oxygenase superfamily protein	3.08	0.006372622	UP
A0A804UHW9	Heme-binding-like protein At3g10130, chloroplastic	3.09	0.000288166	UP
A0A1D6JNJ8	Lethal leaf-spot 1	3.11	0.000206883	UP
A0A1D6DSU2	K(+) efflux antiporter 2 chloroplastic	3.12	0.001445614	UP
C0P8H3	Cysteine proteinase	3.13	0.008815813	UP
K7VCN5	Peroxidase	3.13	0.023070518	UP
C0P732	Hsp70-Hsp90 organizing protein 3	3.14	0.009113496	UP
C0PIW1	Glucose-6-phosphate 1- dehydrogenase	3.17	0.018569977	UP
A0A1D6KCV3	NAD(P)H-hydrate epimerase	3.17	0.020802662	UP
A0A1D6EC46	Double Clp-N motif-containing P- loop nucleoside triphosphate hydrolase superfamily protein	3.19	0.003871908	UP
B4FUH2	Aspartate aminotransferase	3.2	0.000689736	UP
B8A2L4	Starch synthase, chloroplastic/amyloplastic	3.23	0.000274182	UP
A0A1D6K5D2	Nucleoredoxin1	3.23	0.000514523	UP
B4FNK8	Chorismate mutase 1, chloroplastic	3.23	0.009728915	UP
A0A1D6FD96	leucinetRNA ligase	3.24	0.009654925	UP
K7VA33	Kininogen-1	3.29	0.008164925	UP
B4FRC6	Peptidase A1 domain-containing protein	3.31	0.000335786	UP
A0A1D6EUJ1	valinetRNA ligase	3.31	0.012559003	UP
A0A804QH05	Cysteine proteinase inhibitor	3.31	0.027173267	UP
A0A804PVC1	EMC7_beta-sandw domain- containing protein	3.33	0.014359128	UP
K7UGR2	Putative TCP-1/cpn60 chaperonin family protein isoform 1	3.35	0.002928229	UP
B6T391	Lichenase-2	3.39	0.011840187	UP
Q6R9J5	ATP synthase protein MI25	3.39	0.012635536	UP
A0A1D6I6A1	lsoamylase-type starch debranching enzyme3	3.42	0.028061515	UP
A0A804U9Z6	Glutamatecysteine ligase	3.5	1.5895E-05	UP
A0A804RH46	PG_binding_1 domain-containing protein	3.5	0.004893231	UP
A0A804NQX0	methylcrotonoyl-CoA carboxylase	3.5	0.019468919	UP

Accession	Description	Fold change (log2)	P value	DEPs:
B4FTQ1	Arginase 1 mitochondrial	3.51	0.001276901	UP
A0A096RYW9	alanine transaminase	3.52	0.004831546	UP
A0A804LI99	GST N-terminal domain-containing protein	3.52	0.016756307	UP
B4FIH9	Xylose isomerase	3.59	0.003652026	UP
B4FIA6	Histone H2A	3.59	0.015427004	UP
B6TZD1	Methylthioribose-1-phosphate isomerase	3.61	0.002932149	UP
B4FBK8	3-ketoacyl-CoA thiolase 2 peroxisomal	3.62	0.000545361	UP
K7U2E4	Amine oxidase	3.62	0.002607331	UP
A0A804QPJ4	Heat shock 70 kDa protein 14	3.62	0.003311564	UP
A0A1D6EBS5	1,4-alpha-glucan branching enzyme	3.67	0.000787236	UP
Q9SAZ6	phosphoenolpyruvate carboxylase	3.7	9.97884E-06	UP
P49105	Glucose-6-phosphate isomerase, cytosolic	3.7	6.03129E-05	UP
P93629	Alcohol dehydrogenase class-3	3.75	0.003072178	UP
A0A1D6GNG8	Nonspecific lipid-transfer protein	3.78	0.001852353	UP
B4FCX9	alpha-L-fucosidase	3.8	0.002928229	UP
A0A1D6INR0	Stress responsive protein	3.83	0.001945942	UP
A0A804RM97	Dihydroorotate dehydrogenase (quinone), mitochondrial	3.84	0.005089258	UP
K7TY03	AlaninetRNA ligase	4.02	0.000295049	UP
A0A804MY67	phosphoribosylaminoimidazole carboxylase	4.04	9.69815E-05	UP
A0A804N0J5	Aspergillus nuclease S1	4.23	0.000189743	UP
B4F9G1	Aspartate aminotransferase	4.34	2.95669E-05	UP
K7VEU4	Ubiquinone biosynthesis protein ubiB	4.39	0.000234954	UP
Q08275	17.0 kDa class II heat shock protein	4.51	4.99622E-06	UP
K7VYS6	PLC-like phosphodiesterases superfamily protein	4.56	9.44093E-07	UP
A0A1D6HUN3	D-2-hydroxyglutarate dehydrogenase mitochondrial	4.56	3.25893E-05	UP
B7ZWU3	M20_dimer domain-containing protein	4.73	1.23848E-05	UP
B4FBD6	Ribonuclease 1	4.75	1.75193E-08	UP
C0HI30	UDP-glucose 4-epimerase	4.98	1.00564E-06	UP
C0P472	Protein TIC 55 chloroplastic	5.02	3.72242E-06	UP
A0A804QJX5	3-hydroxybutyryl-CoA epimerase	5.07	2.05676E-06	UP
A0A804QL16	Salt stress root protein RS1	6.2	3.14582E-11	UP
A0A1D6E7V9	Malate synthase	6.61	2.31446E-13	UP
A0A096SRM5	UDP-glycosyltransferase 708A6	6.64	5.7723E-17	Unique LP
A0A1D6DQH1	Acetyl-coenzyme A synthetase	6.64	5.7723E-17	Unique LP
A0A1D6DZR9	AICARFT/IMPCHase bienzyme family protein	6.64	5.7723E-17	Unique LP

Accession	Description	Fold change (log2)	P value	DEPs:
A0A1D6EC40	Trihelix transcription factor ASR3	6.64	5.7723E-17	Unique I P
A0A1D6ES79	MLO-like protein	6.64	5.7723E-17	Unique LP
A0A1D6F8M1	Coatomer subunit gamma	6.64	5.7723E-17	Unique LP
A0A1D6F9V3	valinetRNA ligase	6.64	5.7723E-17	Unique LP
A0A1D6FKF7	Aspartic proteinase A1	6.64	5.7723E-17	Unique LP
A0A1D6GBA2	phosphoenolpyruvate carboxylase	6.64	5.7723E-17	Unique LP
A0A1D6GEY0	Mitochondrial Rho GTPase	6.64	5.7723E-17	Unique LP
A0A1D6H4X4	3-hydroxybutyryl-CoA epimerase	6.64	5.7723E-17	Unique LP
A0A1D6H8S6	UPF0548 protein	6.64	5.7723E-17	Unique LP
A0A1D6HKA8	Arsenical pump-driving ATPase	6.64	5.7723E-17	Unique LP
A0A1D6I3N3	Alpha-amylase	6.64	5.7723E-17	Unique LP
A0A1D6JA02	Triglyceride lipases	6.64	5.7723E-17	Unique LP
A0A1D6K864	Proline dehydrogenase	6.64	5.7723E-17	Unique LP
A0A1D6KV33	acylaminoacyl-peptidase	6.64	5.7723E-17	Unique LP
A0A1D6L077	Uncharacterized protein	6.64	5.7723E-17	Unique LP
A0A1D6L4K3	Inosine-5'-monophosphate dehydrogenase	6.64	5.7723E-17	Unique LP
A0A1D6LVZ7	Putative LIM-type zinc finger domain family protein	6.64	5.7723E-17	Unique LP
A0A1D6LY56	galactinolsucrose galactosyltransferase	6.64	5.7723E-17	Unique LP
A0A1D6LYR3	argininetRNA ligase	6.64	5.7723E-17	Unique LP
A0A1D6M275	Malic enzyme	6.64	5.7723E-17	Unique LP
A0A1D6MPN8	Importin subunit alpha	6.64	5.7723E-17	Unique LP
A0A1D6MY33	Glutathione transferase18	6.64	5.7723E-17	Unique LP
A0A1D6N309	Dynamin-related protein 3A	6.64	5.7723E-17	Unique LP
A0A1D6N7A4	Acyl-coenzyme A oxidase	6.64	5.7723E-17	Unique LP
A0A1D6NE76	cytidine deaminase	6.64	5.7723E-17	Unique LP
A0A1D6NMU7	Ubiquitin carboxyl-terminal hydrolase	6.64	5.7723E-17	Unique LP
A0A1D6NVZ6	3-phosphoshikimate 1- carboxyvinyltransferase	6.64	5.7723E-17	Unique LP
A0A1D6QK75	Heat shock protein 90-5 chloroplastic	6.64	5.7723E-17	Unique LP
A0A1D6QNT3	3-hydroxybutyryl-CoA epimerase	6.64	5.7723E-17	Unique LP
A0A3L6EYR2	Putrescine hydroxycinnamoyltransferase 1	6.64	5.7723E-17	Unique

Accession	Description	Fold change <u>(l</u> og2)	P value	DEPs:
A0A804LLZ6	SCP domain-containing protein	6.64	5.7723E-17	Unique I P
A0A804LMS8	Ubiquitin domain-containing protein DSK2b	6.64	5.7723E-17	Unique LP
A0A804M6K4	zf-Tim10_DDP domain-containing protein	6.64	5.7723E-17	Unique LP
A0A804M8T6	Fe2OG dioxygenase domain- containing protein	6.64	5.7723E-17	Unique LP
A0A804M914	Plasma membrane ATPase	6.64	5.7723E-17	Unique LP
A0A804MIN3	Pullulanase 1, chloroplastic	6.64	5.7723E-17	Unique LP
A0A804MQX0	Purple acid phosphatase	6.64	5.7723E-17	Unique LP
A0A804MS81	5-formyltetrahydrofolate cyclo- ligase	6.64	5.7723E-17	Unique LP
A0A804MST0	Genome assembly, chromosome: II	6.64	5.7723E-17	Unique LP
A0A804MZU9	AA_TRNA_LIGASE_II domain- containing protein	6.64	5.7723E-17	Unique LP
A0A804N3I3	shikimate dehydrogenase (NADP(+))	6.64	5.7723E-17	Unique LP
A0A804N9X8	Pectinesterase	6.64	5.7723E-17	Unique LP
A0A804NJC9	ATP citrate synthase	6.64	5.7723E-17	Unique LP
A0A804NKF2	Acyl-coenzyme A oxidase	6.64	5.7723E-17	Unique LP
A0A804P9G2	Chlorophyll(Ide) b reductase NOL, chloroplastic	6.64	5.7723E-17	Unique LP
A0A804PH92	AAA domain-containing protein	6.64	5.7723E-17	Unique LP
A0A804PNJ8	Fe2OG dioxygenase domain- containing protein	6.64	5.7723E-17	Unique LP
A0A804Q6T0	Short-chain dehydrogenase TIC 32, chloroplastic-like	6.64	5.7723E-17	Unique LP
A0A804QWE5	Sucrose-phosphate synthase	6.64	5.7723E-17	Unique LP
A0A804R009	Phostensin domain-containing protein	6.64	5.7723E-17	Unique LP
A0A804R5V2	Asparagine synthetase [glutamine- hydrolyzing]	6.64	5.7723E-17	Unique LP
A0A804RDS0	Laccase	6.64	5.7723E-17	Unique LP
A0A804RDU6	Long-chain-fatty-acidCoA ligase	6.64	5.7723E-17	Unique LP
A0A804RJC2	Uncharacterized protein	6.64	5.7723E-17	Unique LP
A0A804RNZ5	Trypsin family protein	6.64	5.7723E-17	Unique LP
A0A804U874	Ubiquitin-like modifier-activating enzyme 5	6.64	5.7723E-17	Unique LP
A0A804UB26	dynamin GTPase	6.64	5.7723E-17	Unique LP
A0A804UBU8	phosphatidate phosphatase	6.64	5.7723E-17	Unique LP
B4F7W4	Putative inactive shikimate kinase like 2 chloroplastic	6.64	5.7723E-17	Unique LP
B4F7Y5	Acid phosphatase 1	6.64	5.7723E-17	Unique

Accession	Description	Fold change (log2)	P value	DEPs:
B4F8E3	Electron transfer flavoprotein subunit alpha	6.64	5.7723E-17	Unique LP
B4F8U6	Ornithine aminotransferase	6.64	5.7723E-17	Unique LP
B4F8V5	NADH dehydrogenase [ubiquinone] iron-sulfur protein 1 mitochondrial	6.64	5.7723E-17	Unique LP
B4F8V5	NADH dehydrogenase [ubiquinone] iron-sulfur protein 1 mitochondrial	6.64	5.7723E-17	Unique LP
B4F912	Serine carboxypeptidase-like 19	6.64	5.7723E-17	Unique LP
B4F976	17.4 kDa class I heat shock protein	6.64	5.7723E-17	Unique LP
B4FAB2	Molecular chaperone Hsp40/DnaJ family protein	6.64	5.7723E-17	Unique LP
B4FAT6	Glycosyltransferase	6.64	5.7723E-17	Unique LP
B4FBF9	Pollen-specific leucine-rich repeat extensin-like protein 1	6.64	5.7723E-17	Unique LP
B4FBW5	Mannitol dehydrogenase	6.64	5.7723E-17	Unique LP
B4FDW3	Rhodanese-like/PpiC domain- containing protein 12 chloroplastic	6.64	5.7723E-17	Unique LP
B4FG53	Malate dehydrogenase	6.64	5.7723E-17	Unique LP
B4FIE4	2,4-dienoyl-CoA reductase [(3E)- enoyl-CoA-producing]	6.64	5.7723E-17	Unique LP
B4FL83	Putative uridine nucleosidase 2	6.64	5.7723E-17	Unique LP
B4FPG2	Actin-1	6.64	5.7723E-17	Unique LP
B4FRQ0	MLP3.9 protein	6.64	5.7723E-17	Unique LP
B4FSH6	Genome assembly, chromosome: II	6.64	5.7723E-17	Unique LP
B4FT62	Putative aldo-keto reductase 4	6.64	5.7723E-17	Unique LP
B4FTF9	Isocitrate lyase	6.64	5.7723E-17	Unique LP
B4FTR1	Alkyl transferase	6.64	5.7723E-17	Unique LP
B4FUC1	2-oxoisovalerate dehydrogenase subunit beta 1 mitochondrial	6.64	5.7723E-17	Unique LP
B4FUW7	Uncharacterized conserved protein UCP022280	6.64	5.7723E-17	Unique LP
B4FVB1	Actin-7	6.64	5.7723E-17	Unique LP
B4FVS8	protein-serine/threonine phosphatase	6.64	5.7723E-17	Unique LP
B4FVU4	Abhydrolase_3 domain-containing protein	6.64	5.7723E-17	Unique LP
B4FX20	AKIN gamma	6.64	5.7723E-17	Unique I P
B4G0F3	Probable bifunctional methylthioribulose-1-phosphate dehydratase/enolase-phosphatase E1	6.64	5.7723E-17	Unique LP
B4G124	26S protease regulatory subunit 8	6.64	5.7723E-17	Unique LP
Accession	Description	Fold change (log2)	P value	DEPs:
-----------	--	--------------------------	------------	---------------
B6ETR5	Asparagine synthetase [glutamine- hvdrolvzing]	6.64	5.7723E-17	Unique I P
B6SIX0	16.9 kDa class I heat shock protein	6.64	5.7723E-17	Unique I P
B6SLA5	2Fe-2S ferredoxin-like superfamily protein	6.64	5.7723E-17	Unique LP
B6SM26	3-oxoacyl-synthase III	6.64	5.7723E-17	Unique LP
B6SMQ8	Histone H1	6.64	5.7723E-17	Unique LP
B6SQD9	Uncharacterized protein	6.64	5.7723E-17	Unique LP
B6SRI4	14-3-3-like protein	6.64	5.7723E-17	Unique LP
B6ST57	DNA photolyase	6.64	5.7723E-17	Unique LP
B6SZ65	Glycosyltransferase	6.64	5.7723E-17	Unique LP
B6T033	glutathione transferase	6.64	5.7723E-17	Unique I P
B6T1E3	Mitochondrial outer membrane protein porin 4	6.64	5.7723E-17	Unique LP
B6T329	Aspergillus nuclease S1	6.64	5.7723E-17	Unique LP
36T3Q3	Adenine nucleotide alpha hydrolase-like superfamily protein	6.64	5.7723E-17	Unique LP
B6T563	Nucleoside N-ribohydrolase 3	6.64	5.7723E-17	Unique LP
36T7L5	THAP domain-containing protein 4	6.64	5.7723E-17	Unique LP
B6TBM1	Alpha-soluble NSF attachment protein	6.64	5.7723E-17	Unique LP
B6TDW7	Secretory protein	6.64	5.7723E-17	Unique LP
B6TIQ8	ATP/GTP binding protein	6.64	5.7723E-17	Unique LP
36TJX4	SnRK1-interacting protein 1	6.64	5.7723E-17	Unique LP
36TQ08	Actin-1	6.64	5.7723E-17	Unique LP
B6TWN7	Elongation factor 1-alpha	6.64	5.7723E-17	Unique LP
36TXN5	Gibberellin receptor GID1L2	6.64	5.7723E-17	Unique LP
36TY16	SUN domain protein2	6.64	5.7723E-17	Unique LP
B6UHU1	Catalase	6.64	5.7723E-17	Unique LP
37ZXD5	methenyltetrahydrofolate cyclohydrolase	6.64	5.7723E-17	Unique LP
37ZZ71	Cobalt ion binding	6.64	5.7723E-17	Unique LP
B8A1T1	Peroxidase	6.64	5.7723E-17	Unique LP
C0HDZ4	S-adenosyl-L-methionine- dependent methyltransferase	6.64	5.7723E-17	Unique LP
C0HIA5	Eukaryotic initiation factor 4F subunit p150 isoform 1	6.64	5.7723E-17	Unique LP

Accession	Description	Fold change (log2)	P value	DEPs:
C0P5X3	Cytokinin riboside 5'- monophosphate phosphoribohydrolase	6.64	5.7723E-17	Unique LP
C0P6C4	4HBT domain-containing protein	6.64	5.7723E-17	Unique LP
C0P6C5	threonine synthase	6.64	5.7723E-17	Unique LP
C0P7E7	Actin-interacting protein 1-2	6.64	5.7723E-17	Unique LP
C0P820	3-ketoacyl-CoA thiolase 2 peroxisomal	6.64	5.7723E-17	Unique LP
C0P8C6	CCT-theta	6.64	5.7723E-17	Unique LP
C0P8K0	Enoyl-CoA hydratase 1, peroxisomal	6.64	5.7723E-17	Unique LP
C0P8L3	Carboxypeptidase	6.64	5.7723E-17	Unique LP
C0P944	2,4-dienoyl-CoA reductase [(3E)- enoyl-CoA-producing]	6.64	5.7723E-17	Unique LP
C0PBF8	FAD-dependent oxidoreductase family protein	6.64	5.7723E-17	Unique LP
C0PCK6	adenylate kinase	6.64	5.7723E-17	Unique LP
C0PD54	Molybdopterin synthase catalytic subunit	6.64	5.7723E-17	Unique LP
C0PDY0	Purple acid phosphatase	6.64	5.7723E-17	Unique LP
C0PF34	Heme-binding-like protein chloroplastic	6.64	5.7723E-17	Unique LP
C0PFA1	Adenylosuccinate synthetase, chloroplastic	6.64	5.7723E-17	Unique LP
C0PGM6	26S protease regulatory subunit S10B homolog B	6.64	5.7723E-17	Unique LP
C0PJA6	GTP cyclohydrolase II	6.64	5.7723E-17	Unique LP
C0PJM7	Signal recognition particle 14 kDa protein	6.64	5.7723E-17	Unique LP
C0PPB8	UDP-glycosyltransferase 76C1	6.64	5.7723E-17	Unique LP
C6KEM4	Aminoaldehyde dehydrogenase 2	6.64	5.7723E-17	Unique LP
K7TFB6	ABA-responsive protein	6.64	5.7723E-17	Unique LP
K7TNW2	Leucoanthocyanidin reductase	6.64	5.7723E-17	Unique LP
K7TVE3	Sucrose-phosphate synthase	6.64	5.7723E-17	Unique LP
K7U557	dCTP pyrophosphatase 1	6.64	5.7723E-17	Unique LP
K7U5A5	14-3-3-like protein	6.64	5.7723E-17	Unique LP
K7UAQ8	Putative alcohol dehydrogenase superfamily protein	6.64	5.7723E-17	Unique LP
K7V4Q5	Proteasome subunit alpha type	6.64	5.7723E-17	Unique LP
K7VJF3	Heat shock 70 kDa protein 5	6.64	5.7723E-17	Unique LP
K7VQ25	Uncharacterized protein	6.64	5.7723E-17	Unique LP

Supplementary	Table 3 – C	ont.
---------------	-------------	------

Accession	Description	Fold change (log2)	P value	DEPs:
P04712	Sucrose synthase 1	6.64	5.7723E-17	Unique LP
P14640	Tubulin alpha-1 chain	6.64	5.7723E-17	Unique LP
P24825	Chalcone synthase C2	6.64	5.7723E-17	Unique LP
P27787	Ferredoxin-1, chloroplastic	6.64	5.7723E-17	Unique LP
P50472	Probable glutathione S-transferase BZ2	6.64	5.7723E-17	Unique LP
Q41815	Heat shock protein 26	6.64	5.7723E-17	Unique LP
Q4FZ53	Cysteine proteinase inhibitor	6.64	5.7723E-17	Unique LP
Q8LT22	Nicotianamine synthase	6.64	5.7723E-17	Unique LP
Q8W0V2	Lipoxygenase	6.64	5.7723E-17	Unique LP
Q9XF14	Protein BUNDLE SHEATH DEFECTIVE 2, chloroplastic	6.64	5.7723E-17	Unique LP

Accession	Description	Fold change (log2)	P value	DEPs:
A0A1D6FKD0	Putative 3-hydroxyisobutyrate dehydrogenase-like 3 mitochondrial	-6.64	5.28618E-17	Unique HP
A0A1D6H0T6	26S proteasome non-ATPase regulatory subunit 2 homolog	-6.64	5.28618E-17	Unique HP
A0A1D6I3E1	Strictosidine synthase 3	-6.64	5.28618E-17	Unique HP
A0A1D6IBV1	FAD/NAD(P)-binding oxidoreductase family protein	-6.64	5.28618E-17	Unique HP
A0A1D6IMZ9	Peroxidase	-6.64	5.28618E-17	Unique HP
A0A1D6JX93	Peroxisomal nicotinamide adenine dinucleotide carrier	-6.64	5.28618E-17	Unique HP
A0A1D6JZU3	Pathogenesis-related protein 10	-6.64	5.28618E-17	Unique HP
A0A1D6L4Z0	Cytochrome b5 isoform A	-6.64	5.28618E-17	Unique HP
A0A1D6L886	Germin-like protein	-6.64	5.28618E-17	Unique HP
A0A1D6NDZ0	Tryptophan aminotransferase- related protein 4	-6.64	5.28618E-17	Unique HP
A0A804LK58	HMA domain-containing protein	-6.64	5.28618E-17	Unique HP
A0A804LKZ4	Uncharacterized protein	-6.64	5.28618E-17	Unique HP
A0A804MST0	Genome assembly, chromosome: II	-6.64	5.28618E-17	Unique HP
A0A804NBT6	Cysteine synthase	-6.64	5.28618E-17	Unique HP
A0A804PDB7	chitinase	-6.64	5.28618E-17	Unique HP
A0A804PES5	Aha1_N domain-containing protein	-6.64	5.28618E-17	Unique HP
A0A804PNN3	TPR_REGION domain-containing protein	-6.64	5.28618E-17	Unique HP
A0A804PZG8	4-hydroxy-7-methoxy-3-oxo-3,4- dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase	-6.64	5.28618E-17	Unique HP
A0A804Q3Z6	SCP domain-containing protein	-6.64	5.28618E-17	Unique HP
A0A804QA42	GDSL esterase/lipase	-6.64	5.28618E-17	Unique HP
A0A804QUL8	Integral membrane protein	-6.64	5.28618E-17	Unique HP
A0A804RDS0	Laccase	-6.64	5.28618E-17	Unique HP
A0A804UH55	UBP1-associated protein 2C	-6.64	5.28618E-17	Unique HP
A1JUJ0	inositol-3-phosphate synthase	-6.64	5.28618E-17	Unique HP
B4F861	IAA-amino acid hydrolase ILR1-like 4	-6.64	5.28618E-17	Unique HP
B4F8F0	Nudix hydrolase 23 chloroplastic	-6.64	5.28618E-17	Unique HP
B4FAQ2	Pyridoxal phosphate homeostasis protein	-6.64	5.28618E-17	Unique HP
B4FE28	E2F transcription factor-like E2FE	-6.64	5.28618E-17	Unique HP
B4FIE9	S-adenosylmethionine synthase	-6.64	5.28618E-17	Unique HP

Supplementary Table 4. List of differentially abundant proteins (DEPs) in the P7_LP / P7_HP comparison

Accession	Description	Fold change (log2)	P value	DEPs:
B4FKD5	Eukaryotic translation initiation	-6.64	5.29E-17	Unique HP
B4FM15	60S ribosomal protein L28-1	-6.64	5.28618E-17	Unique HP
B4FSA8	GDSL esterase/lipase	-6.64	5.28618E-17	Unique HP
B4FV63	Nuclear transport factor 2 (NTF2) family protein	-6.64	5.28618E-17	Unique HP
B4FWC4	Splicing factor CC1-like	-6.64	5.28618E-17	Unique HP
B4FWR7	60S ribosomal protein L13	-6.64	5.28618E-17	Unique HP
B4G1N1	RmID_sub_bind domain-containing protein	-6.64	5.28618E-17	Unique HP
B6SUW7	Protein LURP-one-related 5-like	-6.64	5.28618E-17	Unique HP
B6SZF2	DUF1995 domain-containing protein	-6.64	5.28618E-17	Unique HP
B6T144	B12D protein	-6.64	5.28618E-17	Unique HP
B6T5I9	Immature colon carcinoma transcript 1 protein	-6.64	5.28618E-17	Unique HP
B6TEJ4	Peptidase C15 pyroglutamyl peptidase I-like	-6.64	5.28618E-17	Unique HP
B6TVU2	Prefoldin subunit 5	-6.64	5.28618E-17	Unique HP
B6UE26	60S ribosomal protein L34	-6.64	5.28618E-17	Unique HP
B8A324	Carboxypeptidase	-6.64	5.28618E-17	Unique HP
C0HFU7	Phospholipase D	-6.64	5.28618E-17	Unique HP
C0P6T4	Uncharacterized protein	-6.64	5.28618E-17	Unique HP
C0PD54	Molybdopterin synthase catalytic subunit	-6.64	5.28618E-17	Unique HP
K7U9C9	RNA helicase	-6.64	5.28618E-17	Unique HP
K7UBG1	peptidylprolyl isomerase	-6.64	5.28618E-17	Unique HP
K7UNY3	Glycosyltransferase	-6.64	5.28618E-17	Unique HP
K7UR46	Glutamyl-tRNA reductase-binding protein chloroplastic	-6.64	5.28618E-17	Unique HP
K7VDC0	Peroxidase	-6.64	5.28618E-17	Unique HP
P10979	Glycine-rich RNA-binding, abscisic acid-inducible protein	-6.64	5.28618E-17	Unique HP
P25459	30S ribosomal protein S18, chloroplastic	-6.64	5.28618E-17	Unique HP
P28523	Casein kinase II subunit alpha	-6.64	5.28618E-17	Unique HP
P42390	Indole-3-glycerol phosphate lyase, chloroplastic	-6.64	5.28618E-17	Unique HP
Q6JAD2	Ferredoxin	-6.64	5.28618E-17	Unique HP
Q84VG9	Lycopene beta cyclase chloroplastic	-6.64	5.28618E-17	Unique HP
C0PEH3	ThiC-associated domain- containing protein	-4.27	8.27699E-08	DOWN

Fold Accession Description P value DEPs: change (log2) Glucose-1-phosphate A0A804UCH1 -4.18 1.09551E-06 DOWN adenylyltransferase Peptidase family M48 family A0A096RSU8 -3.73 0.000217877 DOWN protein Glucose-1-phosphate Q947B9 -3.65 4.0334E-12 DOWN adenylyltransferase C0PHM2 Pollen receptor-like kinase 4 -3.2 0.001698148 DOWN 50S ribosomal protein L33, P25461 -3.15 0.000257683 DOWN chloroplastic Ribosomal S3 C domain-A0A804RV03 -3 0.000110917 DOWN containing protein B4FKB3 -2.98 4.17752E-06 DOWN 50S ribosomal protein L31 Chlorophyll a-b binding protein, B4F7I 4 -2.93 0.004538052 DOWN chloroplastic C0HGH7 Universal stress family protein -2.9 0.005974737 DOWN Serine/threonine-protein kinase A0A1D6MBR0 0.001193318 DOWN -2.8 STN7 chloroplastic B4FLV6 Protein translation factor SUI1 -2.79 0.004877888 DOWN 30S ribosomal protein S2, P16037 -2.74 0.000679908 DOWN chloroplastic A0A804QKD5 Glutathione hydrolase -2.59 0.013786182 DOWN A0A1D6JSL7 inositol-3-phosphate synthase -2.57 6.07444E-05 DOWN B4F9J1 Beta-galactosidase -2.46 0.027784646 DOWN 30S ribosomal protein S14, P08527 -2.42 0.005531953 DOWN chloroplastic -2.41 DOWN B4FXB9 FLU 0.009779924 PAP fibrillin domain-containing A0A804U9G4 -2.35 0.017633436 DOWN protein 30S ribosomal protein S19, P06588 -2.34 2.31598E-05 DOWN chloroplastic 50S ribosomal protein L15 B4FUZ9 -2.34 0.001994452 DOWN chloroplastic N-acyl-aliphatic-L-amino acid A0A1D6KJ07 -2.3 0.000840316 DOWN amidohydrolase A0A1D6IKI2 -2.29 0.000517293 DOWN RNA binding protein 1 B6U581 Ribosome-like protein -2.27 0.000555371 DOWN C0HHM6 Thioredoxin family protein -2.24 0.03133041 DOWN A0A804N941 -2.23 DOWN Secreted protein 0.019602013 A0A3L6E5Y7 Plasma membrane ATPase -2.2 0.004113137 DOWN 30S ribosomal protein S13, -2.18 DOWN A0A804M2J7 0.000403618 chloroplastic A0A1D6QU12 -2.14 DOWN glutaminase 0.040189866 50S ribosomal protein L5, B6SST7 -2.12 0.000147936 DOWN chloroplastic 50S ribosomal protein L10 -2.07 B4G1Q5 0.000179128 DOWN chloroplastic Glucose-1-phosphate A5GZ73 -2.06 0.00015571 DOWN adenylyltransferase 50S ribosomal protein L23, P09387 -2.06 0.000313635 DOWN chloroplastic Chlorophyll a-b binding protein, B4FJG1 -2.03 0.000195509 DOWN chloroplastic Calcium-binding EF hand family B4FA79 -2.03 0.000778567 DOWN

Supplementary Table 4 – Cont.

protein

Accession	Description	Fold change (log2)	P value	DEPs:
B6U1J2	50S ribosomal protein L11	-2.01	0.000228307	DOWN
P08529	50S ribosomal protein L14, chloroplastic	-2.01	0.000237957	DOWN
P08528	50S ribosomal protein L16, chloroplastic	-2	0.010665309	DOWN
C0PF34	Heme-binding-like protein chloroplastic	-1.95	0.012280495	DOWN
B6TT66	Ribosome-like protein	-1.94	0.002381582	DOWN
A0A804R6R9	Ribosomal_S10 domain-containing protein	-1.92	0.002993334	DOWN
P27723	30S ribosomal protein S16, chloroplastic	-1.91	0.001777134	DOWN
Q84TC2	DIBOA-glucoside dioxygenase BX6	-1.91	0.010613479	DOWN
A0A804LKH5	50S ribosomal protein L6, chloroplastic	-1.89	0.000597802	DOWN
B6SUJ3	Plastid-specific 30S ribosomal protein 2	-1.87	0.002885405	DOWN
B4FU53	50S ribosomal protein L9, chloroplastic	-1.81	0.001065321	DOWN
A0A1D6MMA5	Multicopper oxidase LPR2	-1.78	0.046079322	DOWN
A0A1D6M323	Ribosomal protein	-1.77	0.001478892	DOWN
B6SUJ0	50S ribosomal protein L10	-1.77	0.04931877	DOWN
A0A1D6KLE2	PWWP domain protein	-1.75	0.002993334	DOWN
A0A804Q515	PsbP domain-containing protein	-1.74	0.001745194	DOWN
B4FV96	Uncharacterized protein	-1.73	0.001880437	DOWN
A0A804P2H5	50S ribosomal protein L21	-1.72	0.002070105	DOWN
A0A804PCP6	KOW domain-containing protein	-1.72	0.002993334	DOWN
Q9TJN6	30S ribosomal protein S17, chloroplastic	-1.71	0.002692246	DOWN
B4FDG7	RNA-binding (RRM/RBD/RNP motifs) family protein	-1.71	0.040982871	DOWN
B6UIC1	50S ribosomal protein L12-1	-1.66	0.003030973	DOWN
B6T4J1	50S ribosomal protein L6	-1.64	0.027066866	DOWN
B4FL55	Chlorophyll a-b binding protein, chloroplastic	-1.58	0.005329373	DOWN
P48183	Photosystem II protein D1	-1.58	0.00533379	DOWN
B7ZZM5	Cell wall invertase	-1.57	0.013306096	DOWN
B6SR22	50S ribosomal protein L12-1	-1.54	0.023620353	DOWN
B4FZP0	Mg-protoporphyrin IX chelatase	-1.54	0.046108931	DOWN
B4FH16	30S ribosomal protein 3 chloroplastic	-1.52	0.045048692	DOWN
B4G1J8	50S ribosomal protein L3-1 chloroplastic	-1.46	0.010778841	DOWN
B4FSZ8	Beta alanine synthase1	-1.46	0.013056584	DOWN
C0PEC4	30S ribosomal protein S5 chloroplastic	-1.45	0.011444943	DOWN
A0A804M4P0	30S ribosomal protein S9, chloroplastic	-1.45	0.014056594	DOWN
A0A804UH90	Thiamine thiazole synthase, chloroplastic	-1.45	0.01953458	DOWN
A0A1X7YHF7	Photosystem II D2 protein	-1.43	0.013333506	DOWN

Accession	Description	Fold change (log2)	P value	DEPs:
A0A804UD88	30S ribosomal protein 2, chloroplastic	-1.36	0.019898142	DOWN
B6T0F9	Thylakoid soluble phosphoprotein TSP9	-1.34	0.039659943	DOWN
A0A804PJS0	HMA domain-containing protein	-1.31	0.026176507	DOWN
041746	Chlorophyll a-b binding protein,	-1.31	0.026264039	DOWN
	plastoquinolplastocyanin	-1.28	0 030882655	
500	reductase Chlorophyll a-b binding protein	-1.20	0.030002033	DOWN
K7TXI5	chloroplastic	-1.27	0.032717521	DOWN
P05641	Photosystem II CP47 reaction center protein	-1.26	0.03332418	DOWN
P24993	Photosystem II reaction center	-1.26	0.033923926	DOWN
36SQV5	Photosystem II 10 kDa polypeptide, chloroplastic	-1.23	0.040398137	DOWN
B4FUZ5	30S ribosomal protein S1	-1.22	0.039659943	DOWN
Q41739	Thiamine thiazole synthase 2, chloroplastic	-1.22	0.040985409	DOWN
A0A1D6KCZ2	alanine transaminase	-1.2	0.045166112	DOWN
B4G1A1	Photosystem II 5 kDa protein, chloroplastic	-1.19	0.04950119	DOWN
C4J9R0	PLAT domain-containing protein 3	1.51	0.044896291	UP
A0A804RKJ9	Ribulose bisphosphate	1.53	0.040189866	UP
A0A1D6N1Z8	6-phosphogluconate dehydrogenase, decarboxylating	1.54	0.037903317	UP
A0A1D6I1V3	phosphoenolpyruvate carboxylase	1.54	0.038363574	UP
B5AK47	Dhurrinase-like B-glucosidase	1.54	0.038860476	UP
40A1D6KE93	Purple acid phosphatase	1.58	0.026722194	UP
C0PAU7	Glucose-6-phosphate isomerase	1.69	0.016851853	UP
C4JAX7	UDP-sulfoquinovose synthase chloroplastic	1.77	0.010521664	UP
P46420	Glutathione S-transferase 4	1.8	0.009060986	UP
C0P4M0	Monodehydroascorbate reductase 1 peroxisomal	1.81	0.036720138	UP
A0A1D6GVM3	Delta-aminolevulinic acid dehydratase	1.84	0.006999163	UP
A0A804LY89	TIC110	1.85	0.021708954	UP
C0PAS9	Alba DNA/RNA-binding protein	1.9	0.013932701	UP
B7ZWY9	Citrate synthase	1.9	0.026010865	UP
B6TNF1	Calnexin	1.97	0.024307828	UP
C4J410	Heat shock 70 kDa protein	2.01	0.002268263	UP
A0A1R3QF47	Chloroplast stem-loop binding protein of 41 kDa a chloroplastic	2.01	0.010409623	UP
B4G1R6	Chalcone-flavonone isomerase family protein	2.03	0.035608636	UP
A0A804MG95	Abscisic stress ripening protein 2	2.04	0.008972146	UP
B4F9L9	Elongated mesocotyl2	2.24	0.032982512	UP
B6SRJ5	sulfate adenylyltransferase	2.25	0.02222414	UP
B4FLA2	Chorismate synthese	2.26	0.014823865	UP

Accession	Description	Fold change (log2)	P value	DEPs:
B6TEX0	Inositol-1-monophosphatase	2.27	0.000641509	UP
A0A804U9S7	Epimerase domain-containing protein	2.29	0.0002779	UP
Q49HD7	12-oxo-phytodienoic acid reductase	2.29	0.008848019	UP
A0A1D6K5D2	Nucleoredoxin1	2.32	0.000215795	UP
A0A1D6LCQ2	SLH domain-containing protein	2.36	0.004045389	UP
B4FZW5	Malate dehydrogenase	2.37	0.028102949	UP
B4F9L6	Purple acid phosphatase	2.38	0.000105749	UP
B4FBK8	3-ketoacyl-CoA thiolase 2 peroxisomal	2.38	0.025128191	UP
A0A1D6JNJ8	Lethal leaf-spot 1	2.46	0.000657495	UP
A0A804UF48	Peptidyl-prolyl cis-trans isomerase	2.47	0.010026107	UP
Q29SB6	Pathogenesis-related protein 10	2.53	0.000458211	UP
A0A804QL16	Salt stress root protein RS1	2.53	0.004742669	UP
C0PMP2	riboflavin kinase	2.53	0.034975061	UP
A0A1D6H6F1	Citrate synthase	2.56	0.033174353	UP
C4JBG7	3-isopropylmalate dehydratase	2.57	0.001182769	UP
B4F9P0	Glycosyltransferase	2.61	0.02204157	UP
B4FWT5	inorganic diphosphatase	2.62	0.009119899	UP
A0A804QPS7	GTP cyclohydrolase II	2.62	0.028231254	UP
B4F7Z4	glycerophosphodiester phosphodiesterase	2.68	8.16333E-05	UP
A0A1D6DSU2	K(+) efflux antiporter 2 chloroplastic	2.69	0.000569941	UP
C0PFV4	Chaperone protein ClpC1 chloroplastic	2.89	1.1847E-05	UP
B4FTQ1	Arginase 1 mitochondrial	2.89	0.022228171	UP
Q9SAZ6	phosphoenolpyruvate carboxylase	2.96	1.97878E-05	UP
A0A804PCL4	Peroxidase	2.96	0.040189866	UP
A0A1D6HL18	ER6 protein	2.98	0.035548704	UP
B4FWV7	NAD(P)-binding Rossmann-fold superfamily protein	3.02	0.039239078	UP
A0A1D6ES79	MLO-like protein	3.02	0.049005992	UP
C0P7Z0	Peptidase A1 domain-containing protein	3.05	0.004111996	UP
P93629	Alcohol dehydrogenase class-3	3.05	0.020323528	UP
P49105	Glucose-6-phosphate isomerase, cytosolic	3.06	8.18011E-06	UP
A0A804LSV9	SHSP domain-containing protein	3.07	0.001653767	UP
C0PDB6	HXXXD-type acyl-transferase family protein	3.07	0.007359685	UP
A0A804QPJ4	Heat shock 70 kDa protein 14	3.09	0.038472778	UP
A0A804R4S8	ACB domain-containing protein	3.1	0.003946784	UP
C0P732	Hsp70-Hsp90 organizing protein 3	3.1	0.032920186	UP
A0A804UHW9	Heme-binding-like protein At3g10130, chloroplastic	3.13	7.49609E-08	UP
B4FSG1	Photosystem I assembly factor PSA3, chloroplastic	3.16	0.046108931	UP

Accession	Description	Fold change (log2)	P value	DEPs
B4FWI4	D-3-phosphoglycerate	3.17	6.40804E-08	UP
A0A1D6NVZ6	3-phosphoshikimate 1- carboxyvinyltransferase	3.17	0.022600204	UP
K7UGR2	Putative TCP-1/cpn60 chaperonin family protein isoform 1	3.18	0.000618819	UP
A0A804R5V2	Asparagine synthetase [glutamine- hydrolyzing]	3.18	0.042448234	UP
B6SM26	3-oxoacyl-synthase III	3.19	0.018698081	UP
C4JAC1	mannose-1-phosphate quanvlvltransferase	3.24	0.025412207	UP
A0A1D6FD96	leucinetRNA ligase	3.26	0.020666919	UP
Q9FQA3	Glutathione transferase GST 23	3.28	0.014327511	UP
B4FI76	adenylate kinase	3.3	0.019324818	UP
B8A230	DUF1338 domain-containing	3.37	0.000269368	UP
B6SYB7	Arogenate dehydratase	3.41	0.018698081	UP
A0A804MIN3	Pullulanase 1, chloroplastic	3.44	0.014006697	UP
A0A1D6MY33	Glutathione transferase18	3.44	0.022544798	UP
A0A1D6EC46	Double Clp-N motif-containing P- loop nucleoside triphosphate hydrolase superfamily protein	3.48	0.000600646	UP
A0A804QWE5	Sucrose-phosphate synthase	3.48	0.007436337	UP
B6U0C2	Phenazine biosynthesis	3.5	0.011703194	UP
B6TZD1	PhzC/PhzF protein Methylthioribose-1-phosphate isomerase	3.52	0.009915326	UP
B6SH12	Win1	3.54	0.004810443	UP
A0A1D6EBS5	1,4-alpha-glucan branching enzyme	3.58	7.22195E-07	UP
O64960	23.6 kDa heat shock protein mitochondrial	3.59	2.64095E-05	UP
B4FBD6	Ribonuclease 1	3.75	0.000161216	UP
B6SP44	Glutamate carboxypeptidase 2	3.75	0.005505017	UP
A0A1D6N1P4	Putative inactive purple acid phosphatase 16	3.79	0.000663098	UP
K7VYS6	PLC-like phosphodiesterases	3.85	4.34758E-09	UP
K7TWH1	peptidylprolyl isomerase	4	0.001109957	UP
B4FRQ8	Spermidine hydroxycinnamoyl transferase	4.07	8.9818E-05	UP
C0HI30	UDP-glucose 4-epimerase	4.09	0.000256914	UP
Q6JN56	Acc oxidase	4.49	2.04719E-05	UP
B6T2X7	Histone H1	5.26	1.81462E-05	UP
A0A804N0J5	Aspergillus nuclease S1	5.44	1.47678E-09	UP
B8A2L4	Starch synthase, chloroplastic/amyloplastic	5.98	5.28618E-17	UP
B6T329	Aspergillus nuclease S1	5.99	5.28618E-17	UP
A0A096SFU6	LysinetRNA ligase	6.64	5.28618E-17	Uniqu LP
		6.64	5.28618E-17	Uniqu

Accession	Description	Fold change (log2)	P value	DEPs:
0A096TH11	DEK domain-containing chromatin associated protein	6.64	5.28618E-17	Unique LP
A0A1D6DQH1	Acetyl-coenzyme A synthetase	6.64	5.28618E-17	Unique LP
0A1D6DUX6	26S proteasome non-ATPase regulatory subunit 7 homolog A	6.64	5.28618E-17	Unique LP
A0A1D6DZR9	AICARFT/IMPCHase bienzyme family protein	6.64	5.28618E-17	Unique LP
A0A1D6E272	Superoxide dismutase copper chaperone	6.64	5.28618E-17	Unique LP
A0A1D6EC40	Trihelix transcription factor ASR3	6.64	5.28618E-17	Unique LP
A0A1D6F9V3	valinetRNA ligase	6.64	5.28618E-17	Unique LP
A0A1D6FKF7	Aspartic proteinase A1	6.64	5.28618E-17	Unique LP
A0A1D6GBA2	phosphoenolpyruvate carboxylase	6.64	5.28618E-17	Unique LP
A0A1D6GIP9	Adenylyl cyclase-associated protein	6.64	5.28618E-17	Unique LP
A0A1D6HR96	Purple acid phosphatase	6.64	5.28618E-17	Unique LP
A0A1D6I3N3	Alpha-amylase	6.64	5.28618E-17	Unique LP
A0A1D6I6A1	lsoamylase-type starch debranching enzyme3	6.64	5.28618E-17	Unique LP
A0A1D6IIP0	Cysteine proteinases superfamily protein	6.64	5.28618E-17	Unique LP
A0A1D6IPJ2	Ketol-acid reductoisomerase chloroplastic	6.64	5.28618E-17	Unique LP
A0A1D6JA02	Triglyceride lipases	6.64	5.28618E-17	Unique LP
A0A1D6JJ37	Farnesylcysteine lyase	6.64	5.28618E-17	Unique LP
0A1D6JSN1	T-complex protein 1 subunit gamma	6.64	5.28618E-17	Unique LP
0A1D6K7T5	chitinase	6.64	5.28618E-17	Unique LP
A0A1D6K864	Proline dehydrogenase	6.64	5.28618E-17	Unique LP
A0A1D6KV33	acylaminoacyl-peptidase	6.64	5.28618E-17	Unique LP
0A1D6LSA6	Heme oxygenase2	6.64	5.28618E-17	Unique LP
0A1D6LTL9	Alpha-glucan water dikinase 1 chloroplastic	6.64	5.28618E-17	Unique LP
A0A1D6LY56	galactinolsucrose galactosyltransferase	6.64	5.28618E-17	Unique LP
A0A1D6LYR3	argininetRNA ligase	6.64	5.28618E-17	Unique LP
A0A1D6M1Y6	UDP-glucuronate decarboxylase	6.64	5.28618E-17	Unique LP
0A1D6M275	Malic enzyme	6.64	5.28618E-17	Unique LP
0A1D6MAK9	Phosphotransferase	6.64	5.28618E-17	Unique LP
A0A1D6MPN8	Importin subunit alpha	6.64	5.28618E-17	Unique LP
A0A1D6N309	Dynamin-related protein 3A	6.64	5.28618E-17	Unique LP

		Fold		
Accession	Description	change (log2)	P value	DEPs:
A0A1D6N7A4	Acyl-coenzyme A oxidase	6.64	5.28618E-17	Unique LP
A0A1D6NE76	cytidine deaminase	6.64	5.28618E-17	Unique LP
A0A1D6NMU7	Ubiquitin carboxyl-terminal hydrolase	6.64	5.28618E-17	Unique LP
A0A1D6QK75	Heat shock protein 90-5 chloroplastic	6.64	5.28618E-17	Unique LP
A0A1D6QNT3	3-hydroxybutyryl-CoA epimerase	6.64	5.28618E-17	Unique LP
A0A3L6EGC3	Germin-like protein	6.64	5.28618E-17	Unique LP
A0A3L6EYR2	Putrescine hydroxycinnamoyltransferase 1	6.64	5.28618E-17	Unique LP
A0A804LD84	2Fe-2S ferredoxin-type domain- containing protein	6.64	5.28618E-17	Unique LP
A0A804M7G3	Elongation factor Tu	6.64	5.28618E-17	Unique LP
A0A804M8K6	Abhydrolase_2 domain-containing protein	6.64	5.28618E-17	Unique LP
A0A804M914	' Plasma membrane ATPase	6.64	5.28618E-17	Unique LP
A0A804MFI4	Serine carboxypeptidase-like 18	6.64	5.28618E-17	Unique LP
A0A804MJ55	DUF6598 domain-containing	6.64	5.28618E-17	Unique LP
A0A804MJ71	Expansin-like CBD domain-	6.64	5.28618E-17	Unique I P
A0A804MMD1	D-isomer specific 2-hydroxyacid	6.64	5.28618E-17	Unique I P
A0A804MQX0	Purple acid phosphatase	6.64	5.28618E-17	Unique I P
A0A804MS81	5-formyltetrahydrofolate cyclo-	6.64	5.28618E-17	Unique I P
A0A804M7U9	AA_TRNA_LIGASE_II domain-	6.64	5.28618E-17	Unique
A0A80/N313	shikimate dehydrogenase	6.64	5.28618E-17	Unique
A0A804NGD9	UDPGT domain-containing protein	6.64	5.28618E-17	Unique
A0A804NH15	Histone H2A	6.64	5.28618E-17	Unique
A0A804NKR4	Sucrose-phosphate synthase	6.64	5.28618E-17	Unique
A0A804NLT9	LRRNT_2 domain-containing	6.64	5.28618E-17	Unique
A0A804NR87	MIR domain-containing protein	6.64	5.28618E-17	Unique
A0A804NU88	Peroxisomal biogenesis factor 19	6.64	5.28618E-17	Unique
A0A804NWX6	Short-chain dehydrogenase/reductase SDR	6.64	5.28618E-17	Unique LP
A0A804NZC5	Glutamyl-tRNA(GIn) amidotransferase subunit B, chloroplastic/mitochondrial	6.64	5.28618E-17	Unique LP
A0A804PH92	AAA domain-containing protein	6.64	5.28618E-17	Unique LP
A0A804PQM0	Enoyl reductase (ER) domain- containing protein	6.64	5.28618E-17	Unique LP
A0A804PV51	chitinase	6.64	5.28618E-17	Unique LP

Accession	Description	Fold change (log2)	P value	DEPs:
A0A804Q1R0	Nucleosome assembly protein 1- like 1	6.64	5.28618E-17	Unique LP
A0A804Q2Q4	Clp R domain-containing protein	6.64	5.28618E-17	Unique LP
A0A804Q7P0	Creatinase_N domain-containing protein	6.64	5.28618E-17	Unique LP
A0A804QGD4	X8 domain-containing protein	6.64	5.28618E-17	Unique LP
A0A804QH05	Cysteine proteinase inhibitor	6.64	5.28618E-17	Unique LP
A0A804QJX5	3-hydroxybutyryl-CoA epimerase	6.64	5.28618E-17	Unique LP
A0A804QJZ5	Dihydrolipoyl dehydrogenase	6.64	5.28618E-17	Unique LP
A0A804QRA7	Cofac_haem_bdg domain- containing protein	6.64	5.28618E-17	Unique LP
A0A804R266	HP domain-containing protein	6.64	5.28618E-17	Unique LP
A0A804R7L0	Serine/arginine-rich-splicing factor SR34	6.64	5.28618E-17	Unique LP
A0A804R8U9	Metallophos_C domain-containing protein	6.64	5.28618E-17	Unique LP
A0A804RBM1	glutathione transferase	6.64	5.28618E-17	Unique LP
A0A804RBS0	Ferritin	6.64	5.28618E-17	Unique LP
A0A804RDU6	Long-chain-fatty-acidCoA ligase	6.64	5.28618E-17	Unique LP
A0A804RFN4	tyrosinetRNA ligase	6.64	5.28618E-17	Unique LP
A0A804RJY8	Pyruvate kinase	6.64	5.28618E-17	Unique LP
A0A804RKE9	NAD(P)-binding Rossmann-fold superfamily protein	6.64	5.28618E-17	Unique LP
A0A804RNZ5	Trypsin family protein	6.64	5.28618E-17	Unique LP
A0A804UAN7	Tubulin beta chain	6.64	5.28618E-17	Unique LP
A0A804UB26	dynamin GTPase	6.64	5.28618E-17	Unique LP
A0A804UBB7	J domain-containing protein	6.64	5.28618E-17	Unique LP
A0A804UL17	Uncharacterized protein	6.64	5.28618E-17	Unique LP
A5H454	Peroxidase 66	6.64	5.28618E-17	Unique I P
B1P123	TRIBOA-glucoside O- methyltransferase BX7	6.64	5.28618E-17	Unique LP
B4F7W4	Putative inactive shikimate kinase like 2 chloroplastic	6.64	5.28618E-17	Unique LP
B4F912	Serine carboxypeptidase-like 19	6.64	5.28618E-17	Unique LP
B4F976	17.4 kDa class I heat shock protein	6.64	5.28618E-17	Unique LP
B4F9B2	Acetyl-CoA acetyltransferase, cytosolic 1	6.64	5.28618E-17	Unique LP
B4F9C4	HXXXD-type acyl-transferase family protein	6.64	5.28618E-17	Unique LP
B4FAB2	Molecular chaperone Hsp40/DnaJ family protein	6.64	5.28618E-17	Unique LP

_

Accession	Description	Fold change	P value	DEPs:
	-	(log2)		
B4FAL8	Methanethiol oxidase	6.64	5.28618E-17	Unique LP
B4FAT6	Glycosyltransferase	6.64	5.28618E-17	Unique LP
B4FBW5	Mannitol dehydrogenase	6.64	5.28618E-17	Unique LP
B4FCR7	inorganic diphosphatase	6.64	5.28618E-17	Unique LP
B4FG53	Malate dehydrogenase	6.64	5.28618E-17	Unique LP
B4FGY0	Calcyclin-binding protein	6.64	5.28618E-17	Unique LP
B4FHX7	Endo-1,31,4-beta-D-glucanase	6.64	5.28618E-17	Unique LP
B4FIE4	2,4-dienoyl-CoA reductase [(3E)- enoyl-CoA-producing]	6.64	5.28618E-17	Unique LP
B4FIH9	Xylose isomerase	6.64	5.28618E-17	Unique LP
B4FIL5	Leucine-rich repeat (LRR) family protein	6.64	5.28618E-17	Unique LP
B4FJN0	Phosphoglucan phosphatase DSP4 chloroplastic	6.64	5.28618E-17	Unique LP
B4FKB8	Palmitoyl-protein thioesterase 1	6.64	5.28618E-17	Unique LP
B4FMW6	Aspartyl protease AED3	6.64	5.28618E-17	Unique LP
B4FPG2	Actin-1	6.64	5.28618E-17	Unique LP
B4FQL2	SEC13-related protein	6.64	5.28618E-17	Unique LP
B4FRA6	OSJNBb0091E11.19-like protein	6.64	5.28618E-17	Unique LP
B4FRD6	Peroxidase	6.64	5.28618E-17	Unique LP
B4FT62	Putative aldo-keto reductase 4	6.64	5.28618E-17	LP
B4FTR1	Alkyl transferase	6.64	5.28618E-17	Unique LP
B4FUW7	Uncharacterized conserved protein UCP022280	6.64	5.28618E-17	Unique LP
B4FZ81	TRANSCRIPTIONALLY ACTIVE	6.64	5.28618E-17	Unique LP
B4FZB8	Signal recognition particle 54 kDa protein chloroplastic	6.64	5.28618E-17	Unique LP
B4G0F3	Probable bifunctional methylthioribulose-1-phosphate dehydratase/enolase-phosphatase F1	6.64	5.28618E-17	Unique LP
B4G0U5	Pectin lyase-like superfamily protein	6.64	5.28618E-17	Unique LP
B4G0Z5	60S ribosomal protein L27a-3	6.64	5.28618E-17	Unique LP
B4G124	26S protease regulatory subunit 8	6.64	5.28618E-17	Unique LP
B6ETR5	Asparagine synthetase [glutamine- hydrolyzing]	6.64	5.28618E-17	Unique LP
B6SJR3	Mitochondrial import receptor subunit TOM7-1	6.64	5.28618E-17	Unique LP
B6SLA5	2Fe-2S ferredoxin-like superfamily protein	6.64	5.28618E-17	Unique I P

Accession	Description	Fold change (log2)	P value	DEPs:
B6SMW8	Succinate dehydrogenase assembly factor 2 mitochondrial	6.64	5.28618E-17	Unique LP
B6SP43	ABC family1	6.64	5.28618E-17	Unique LP
B6ST57	DNA photolyase	6.64	5.28618E-17	Unique LP
B6SVI8	Cytochrome P450 13	6.64	5.28618E-17	Unique LP
B6T033	glutathione transferase	6.64	5.28618E-17	Unique LP
B6T1E3	Mitochondrial outer membrane protein porin 4	6.64	5.28618E-17	Unique LP
B6T3Q3	Adenine nucleotide alpha hydrolase-like superfamily protein	6.64	5.28618E-17	Unique LP
B6T484	Mitogen-activated protein kinase	6.64	5.28618E-17	Unique LP
B6T563	Nucleoside N-ribohydrolase 3	6.64	5.28618E-17	Unique LP
B6T8F6	ATP synthase subunit	6.64	5.28618E-17	Unique LP
B6T9P0	UDP-glucose 6-dehydrogenase	6.64	5.28618E-17	Unique LP
B6TF38	Tubulin beta chain	6.64	5.28618E-17	Unique LP
B6TIQ8	ATP/GTP binding protein	6.64	5.28618E-17	Unique LP
B6TJX4	SnRK1-interacting protein 1	6.64	5.28618E-17	Unique LP
B6TLS0	Ubiquitin carboxyl-terminal hydrolase	6.64	5.28618E-17	Unique LP
B6TM36	Energy transducer TonB	6.64	5.28618E-17	Unique LP
B6TQ08	Actin-1	6.64	5.28618E-17	Unique LP
B6U3A0	Glycine-rich RNA-binding protein 7	6.64	5.28618E-17	Unique LP
B6UHU1	Catalase	6.64	5.28618E-17	Unique LP
B7ZXD5	methenyltetrahydrofolate cyclohydrolase	6.64	5.28618E-17	Unique LP
B7ZZ71	Cobalt ion binding	6.64	5.28618E-17	Unique LP
B8A1T1	Peroxidase	6.64	5.28618E-17	Unique LP
B8A2W3	Peptidase_M28 domain-containing protein	6.64	5.28618E-17	Unique LP
B8A3K0	glutathione transferase	6.64	5.28618E-17	Unique LP
B8A3M0	Glutamine synthetase	6.64	5.28618E-17	Unique LP
C0HDZ4	S-adenosyl-L-methionine- dependent methyltransferase superfamily protein	6.64	5.28618E-17	Unique LP
C0HFI5	ATP-dependent 6- phosphofructokinase	6.64	5.28618E-17	Unique LP
C0P429	UTPglucose-1-phosphate uridvlvltransferase	6.64	5.28618E-17	Unique LP
C0P6C4	4HBT domain-containing protein	6.64	5.28618E-17	Unique LP
C0P7E7	Actin-interacting protein 1-2	6.64	5.28618E-17	Unique LP

Accession	Description	Fold change (log2)	P value	DEPs:
C0P820	3-ketoacyl-CoA thiolase 2 peroxisomal	6.64	5.28618E-17	Unique LP
C0P8C6	CCT-theta	6.64	5.28618E-17	Unique LP
C0PC61	transaldolase	6.64	5.28618E-17	Unique LP
C0PCK6	adenylate kinase	6.64	5.28618E-17	Unique LP
C0PDR3	4-hydroxy-3-methylbut-2-enyl diphosphate reductase	6.64	5.28618E-17	Unique LP
C0PDY0	Purple acid phosphatase	6.64	5.28618E-17	Unique LP
C0PFA1	Adenylosuccinate synthetase,	6.64	5.28618E-17	Unique
C0PFM8	Protein RETICULATA-RELATED 3 chloroplastic	6.64	5.28618E-17	Unique LP
C0PHQ1	cysteinetRNA ligase	6.64	5.28618E-17	Unique LP
C0PJA6	GTP cyclohydrolase II	6.64	5.28618E-17	Unique LP
C0PJM7	Signal recognition particle 14 kDa protein	6.64	5.28618E-17	Unique LP
C0PN00	Protein YLS3	6.64	5.28618E-17	Unique LP
C0PPB8	UDP-glycosyltransferase 76C1	6.64	5.28618E-17	Unique LP
C4J240	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12	6.64	5.28618E-17	Unique LP
C4J9Q3	glutathione transferase	6.64	5.28618E-17	Unique LP
C4JBJ3	Calmodulin-7	6.64	5.28618E-17	Unique LP
K7TEL4	Purple acid phosphatase	6.64	5.28618E-17	Unique LP
K7TFB6	ABA-responsive protein	6.64	5.28618E-17	Unique LP
K7TLJ6	valinetRNA ligase	6.64	5.28618E-17	Unique LP
K7TNW2	Leucoanthocyanidin reductase	6.64	5.28618E-17	Unique LP
K7TQX2	Kinesin motor domain-containing protein	6.64	5.28618E-17	Unique LP
K7TTX0	Plant UBX domain-containing protein 4	6.64	5.28618E-17	Unique LP
K7TZ17	Glycosyltransferase	6.64	5.28618E-17	Unique LP
K7U557	dCTP pyrophosphatase 1	6.64	5.28618E-17	Unique LP
K7U5A5	14-3-3-like protein	6.64	5.28618E-17	Unique LP
K7U8I5	NEP-interacting protein 1	6.64	5.28618E-17	Unique LP
K7UC48	3-isopropylmalate dehydratase	6.64	5.28618E-17	Unique LP
K7V4Q5	Proteasome subunit alpha type	6.64	5.28618E-17	Unique LP
K7V686	Eukaryotic translation initiation factor 3 subunit F	6.64	5.28618E-17	Unique LP
K7V6J0	Dirigent protein	6.64	5.28618E-17	Unique I P

Accession	Description	Fold change (log2)	P value	DEPs:
K7VJF3	Heat shock 70 kDa protein 5	6.64	5.28618E-17	Unique LP
K7VNE0	phosphoenolpyruvate carboxykinase (ATP)	6.64	5.28618E-17	Unique LP
K7VQ25	Uncharacterized protein	6.64	5.28618E-17	Unique LP
K7VQ98	Class I heat shock protein 3	6.64	5.28618E-17	Unique LP
K7VUU0	Protein DJ-1 homolog B	6.64	5.28618E-17	Unique LP
P04712	Sucrose synthase 1	6.64	5.28618E-17	Unique LP
P18026	Tubulin beta-2 chain	6.64	5.28618E-17	Unique LP
P24825	Chalcone synthase C2	6.64	5.28618E-17	Unique LP
P38559	Glutamine synthetase root isozyme 1	6.64	5.28618E-17	Unique LP
P46620	NAD(P)H-quinone oxidoreductase subunit 5, chloroplastic	6.64	5.28618E-17	Unique LP
P50472	Probable glutathione S-transferase BZ2	6.64	5.28618E-17	Unique LP
Q08275	17.0 kDa class II heat shock protein	6.64	5.28618E-17	Unique LP
Q41815	Heat shock protein 26	6.64	5.28618E-17	Unique LP
Q43264	Alcohol dehydrogenase 1	6.64	5.28618E-17	Unique LP
Q5EUD6	Protein disulfide isomerase	6.64	5.28618E-17	Unique LP
Q6R9J5	ATP synthase protein MI25	6.64	5.28618E-17	Unique LP
Q8GT71	Ubiquinol oxidase	6.64	5.28618E-17	Unique LP
Q8W0V2	Lipoxygenase	6.64	5.28618E-17	Unique LP
Q9FQB5	glutathione transferase	6.64	5.28618E-17	Unique LP
Q9XF14	Protein BUNDLE SHEATH DEFECTIVE 2, chloroplastic	6.64	5.28618E-17	Unique LP
Q9XGD6	Caffeoyl-CoA O-methyltransferase	6.64	5.28618E-17	Unique LP
Q9ZP60	glutathione transferase	6.64	5.28618E-17	Unique LP

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0009507	chloroplast	1592	14	1.95	Cellular Component	5.90E-11	3.82E-08	0.00879397	2.055815	10.22915
GO:0009536	plastid	1669	14	2.05	Cellular Component	1.10E-10	3.82E-08	0.008388256	2.076328	9.958607
GO:0043231	intracellular membrane- bounded organelle	6349	17	7.78	Cellular Component	6.80E-06	1.18E-03	0.002677587	2.572256	5.167491
GO:0043227	membrane-bounded organelle	6351	17	7.78	Cellular Component	6.80E-06	1.18E-03	0.002676744	2.572393	5.167491
GO:0044444	cytoplasmic part	5088	15	6.23	Cellular Component	3.10E-05	3.38E-03	0.002948113	2.530456	4.508638
GO:0043229	intracellular organelle	7014	17	8.6	Cellular Component	3.40E-05	3.38E-03	0.002423724	2.615517	4.468521
GO:0043226	organelle	7018	17	8.6	Cellular Component	3.40E-05	3.38E-03	0.002422343	2.615764	4.468521
GO:0005737	cytoplasm	5580	15	6.84	Cellular Component	0.00011	9.56E-03	0.002688172	2.570543	3.958607
GO:0009579	thylakoid	468	5	0.57	Cellular Component	2.00E-04	1.54E-02	0.010683761	1.971276	3.69897
GO:0044424	intracellular part	8058	17	9.87	Cellular Component	0.00032	2.22E-02	0.002109705	2.675778	3.49485
GO:0005622	intracellular	8394	17	10.29	Cellular Component	0.00061	3.85E-02	0.002025256	2.69352	3.21467
GO:0044434	chloroplast part	955	6	1.17	Cellular Component	7.00E-04	4.05E-02	0.006282723	2.201852	3.154902
GO:0044435	plastid part	972	6	1.19	Cellular Component	0.00077	4.12E-02	0.00617284	2.209515	3.113509
GO:0009534	chloroplast thylakoid	367	4	0.45	Cellular Component	0.00089	4.12E-02	0.010899183	1.962606	3.05061
GO:0031976	plastid thylakoid	367	4	0.45	Cellular Component	0.00089	4.12E-02	0.010899183	1.962606	3.05061
GO:0010287	plastoglobule	67	2	0.08	Cellular Component	0.00299	1.15E-01	0.029850746	1.525045	2.524329

Supplementary	v Table 5	. List of differentiall	v abundant	proteins ([DEPs) (down reau	ulated in I	L80 LP	enriched by	GO	antolog	iv analv	vsis
	,			p: 0:0:::0 (E		aonnioge				~ ~ ~	antereg	,,	,

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0044464	cell part	9180	17	11.25	Cellular Component	0.00248	1.08E-01	0.001851852	2.732394	2.605548
GO:0005623	cell	9301	17	11.4	Cellular Component	0.00305	1.15E-01	0.00182776	2.738081	2.5157
GO:0009570	chloroplast stroma	518	4	0.63	Cellular Component	0.00315	1.15E-01	0.007722008	2.11227	2.501689
GO:0009532	plastid stroma	533	4	0.65	Cellular Component	0.0035	1.17E-01	0.00750469	2.124667	2.455932
GO:0031984	organelle subcompartment	542	4	0.66	Cellular Component	0.00371	1.17E-01	0.007380074	2.131939	2.430626
GO:0009523	photosystem II	81	2	0.1	Cellular Component	0.00434	1.31E-01	0.024691358	1.607455	2.36251
GO:0009535	chloroplast thylakoid membrane	296	3	0.36	Cellular Component	0.00528	1.44E-01	0.010135135	1.99417	2.277366
GO:0055035	plastid thylakoid membrane	298	3	0.37	Cellular Component	0.00538	1.44E-01	0.010067114	1.997095	2.269218
GO:0032991	macromolecular complex	2033	7	2.49	Cellular Component	0.00758	1.88E-01	0.003443187	2.463039	2.120331
GO:0042651	thylakoid membrane	339	3	0.42	Cellular Component	0.00769	1.88E-01	0.008849558	2.053078	2.114074
GO:0009521	photosystem	110	2	0.13	Cellular Component	0.00786	1.88E-01	0.018181818	1.740363	2.104577
GO:0034357	photosynthetic membrane	360	3	0.44	Cellular Component	0.00906	2.03E-01	0.008333333	2.079181	2.042872
GO:0044436	thylakoid part	374	3	0.46	Cellular Component	0.01006	2.12E-01	0.00802139	2.09575	1.997402
GO:0098796	membrane protein complex	407	3	0.5	Cellular Component	0.01264	2.53E-01	0.007371007	2.132473	1.898253
GO:0009941	chloroplast envelope	408	3	0.5	Cellular Component	0.01273	2.53E-01	0.007352941	2.133539	1.895172
GO:0009526	plastid envelope	424	3	0.52	Cellular Component	0.01411	2.65E-01	0.007075472	2.150245	1.850473
GO:0044446	intracellular organelle part	2917	8	3.57	Cellular Component	0.01555	2.79E-01	0.002742544	2.561846	1.80827

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0044422	organelle part	2920	8	3.58	Cellular Component	0.01565	2.79E-01	0.002739726	2.562293	1.805486
GO:0005840	ribosome	605	3	0.74	Cellular Component	0.03577	6.22E-01	0.004958678	2.304634	1.446481
GO:0031967	organelle envelope	690	3	0.85	Cellular Component	0.04976	7.63E-01	0.004347826	2.361728	1.30312
GO:0016168	chlorophyll binding	34	2	0.04	Molecular Function	0.00073	1.00E+00	0.058823529	1.230449	3.136677
GO:0019843	rRNA binding	54	2	0.06	Molecular Function	0.00183	1.00E+00	0.037037037	1.431364	2.737549
GO:0003723	RNA binding	713	4	0.84	Molecular Function	0.009	1.00E+00	0.005610098	2.25103	2.045757
GO:0003735	structural constituent of ribosome	526	3	0.62	Molecular Function	0.0231	1.00E+00	0.005703422	2.243864	1.636388
GO:0046906	tetrapyrrole binding	557	3	0.66	Molecular Function	0.0268	1.00E+00	0.005385996	2.268734	1.571865
GO:0009055	electron carrier activity	236	2	0.28	Molecular Function	0.03119	1.00E+00	0.008474576	2.071882	1.505985
GO:0005198	structural molecule activity	592	3	0.7	Molecular Function	0.03134	1.00E+00	0.005067568	2.2952	1.503901
GO:0015979	photosynthesis	216	4	0.31	Biological Process	0.00022	1.00E+00	0.018518519	1.732394	3.657577
GO:0018298	protein-chromophore linkage	37	2	0.05	Biological Process	0.00123	1.00E+00	0.054054054	1.267172	2.910095
GO:1901566	organonitrogen compound biosvnthetic process	1349	7	1.91	Biological Process	0.00193	1.00E+00	0.005189029	2.284914	2.714443
GO:0009658	chloroplast organization	104	2	0.15	Biological Process	0.00938	1.00E+00	0.019230769	1.716003	2.027797
GO:0019684	photosynthesis, light reaction	104	2	0.15	Biological Process	0.00938	1.00E+00	0.019230769	1.716003	2.027797
GO:0006091	generation of precursor metabolites and energy	323	3	0.46	Biological Process	0.0102	1.00E+00	0.009287926	2.032081	1.9914
GO:1901564	organonitrogen compound metabolic process	1843	7	2.61	Biological Process	0.01105	1.00E+00	0.003798155	2.420427	1.956638

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0009657	plastid organization	151	2	0.21	Biological Process	0.01905	1.00E+00	0.013245033	1.877947	1.720105
GO:0008152	metabolic process	11940	21	16.89	Biological Process	0.0228	1.00E+00	0.001758794	2.754785	1.642065
GO:0006412	translation	792	4	1.12	Biological Process	0.02346	1.00E+00	0.005050505	2.296665	1.629672
GO:0051188	cofactor biosynthetic process	171	2	0.24	Biological Process	0.02404	1.00E+00	0.011695906	1.931966	1.619066
GO:0043043	peptide biosynthetic process	804	4	1.14	Biological Process	0.02464	1.00E+00	0.004975124	2.303196	1.608359
GO:0006518	peptide metabolic process	821	4	1.16	Biological Process	0.02638	1.00E+00	0.004872107	2.312283	1.578725
GO:0043604	amide biosynthetic process	836	4	1.18	Biological Process	0.02797	1.00E+00	0.004784689	2.320146	1.553308
GO:0044237	cellular metabolic process	8634	17	12.21	Biological Process	0.03015	1.00E+00	0.00196896	2.705763	1.520713
GO:0044711	single-organism biosynthetic process	1286	5	1.82	Biological Process	0.03085	1.00E+00	0.003888025	2.410271	1.510745
GO:0071704	organic substance metabolic process	9451	18	13.37	Biological Process	0.03124	1.00E+00	0.00190456	2.720205	1.505289
GO:0043603	cellular amide metabolic process	874	4	1.24	Biological Process	0.03226	1.00E+00	0.004576659	2.339451	1.491336
GO:0044249	cellular biosynthetic process	4133	10	5.85	Biological Process	0.04378	1.00E+00	0.00241955	2.616265	1.358724
GO:1901576	organic substance biosynthetic process	4195	10	5.93	Biological Process	0.04811	1.00E+00	0.00238379	2.622732	1.317765

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0042651	thylakoid membrane	339	6	0.39	Cellular Component	1.40E-06	6.02E-04	0.02	1.752048448	5.853872
GO:0034357	photosynthetic membrane	360	6	0.42	Cellular Component	2.00E-06	6.02E-04	0.02	1.77815125	5.69897
GO:0044436	thylakoid part	374	6	0.43	Component	2.60E-06	6.02E-04	0.02	1.794720352	5.585027
GO:0009579	thylakoid	468	6	0.54	Cellular Component	9.30E-06	1.62E-03	0.01	1.892094603	5.031517
GO:0009535	chloroplast thylakoid membrane	296	5	0.34	Cellular Component	1.60E-05	1.97E-03	0.02	1.772321707	4.79588
GO:0055035	plastid thylakoid membrane	298	5	0.34	Cellular Component	1.70E-05	1.97E-03	0.02	1.77524626	4.769551
GO:0009507	chloroplast	1592	9	1.84	Component	2.20E-05	2.18E-03	0.01	2.247700554	4.657577
GO:0009536	plastid	1669	9	1.93	Cellular Component	3.20E-05	2.78E-03	0.01	2.268213827	4.49485
GO:0009534	chloroplast thylakoid	367	5	0.42	Cellular Component	4.60E-05	3.20E-03	0.01	1.86569606	4.337242
GO:0031976	plastid thylakoid	367	5	0.42	Cellular Component	4.60E-05	3.20E-03	0.01	1.86569606	4.337242
GO:0005737	cytoplasm	5580	14	6.46	Component	0.00024	1.52E-02	0.00	2.600506163	3.619789
GO:0031984	organelle subcompartment	542	5	0.63	Cellular Component	0.00029	1.68E-02	0.01	2.035029282	3.537602
GO:0044434	chloroplast part	955	6	1.11	Cellular Component	0.00049	2.39E-02	0.01	2.201852121	3.309804
GO:0044444	cytoplasmic part	5088	13	5.89	Cellular Component	0.00052	2.39E-02	0.00	2.59260375	3.283997
GO:0044435	plastid part	972	6	1.12	Cellular Component	0.00054	2.39E-02	0.01	2.209515015	3.267606
GO:0044424	intracellular part	8058	16	9.33	Cellular Component	0.00055	2.39E-02	0.00	2.70210728	3.259637
GO:0005622	intracellular	8394	16	9.71	Cellular Component	0.00101	4.13E-02	0.00	2.719848982	2.995679
GO:0044446	intracellular organelle part	2917	9	3.38	Cellular Component	0.00244	8.96E-02	0.00	2.51069392	2.61261

Supplementary Table 6. List of differentially abundant proteins (DEPs) down regulated in P7 LP enriched by GO antology analysis

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0044422	organelle part				Cellular					
00.0044422	organelle part	2920	9	3.38	Component	0.00245	8.96E-02	0.00	2.511140342	2.610834
GO:0044464	cell part	0400	10	40.00	Cellular	0.00070		0.00	0 750700000	0.400500
		9180	16	10.62	Component	0.00378	1.31E-01	0.00	2.758722699	2.422508
GO:0005623	cell	0301	16	10.76	Component	0 00457	1 51E_01	0.00	2 764400662	2 340084
		3001	10	10.70	Cellular	0.00407	1.512-01	0.00	2.704403002	2.040004
GO:0043229	intracellular organelle	7014	13	8.12	Component	0.0156	4.54E-01	0.00	2.732022409	1.806875
CO.0042222					Cellular					
GO:0043226	organelle	7018	13	8.12	Component	0.01568	4.54E-01	0.00	2.732270012	1.804654
GO:00/3231	intracellular membrane-				Cellular					
00.0043231	bounded organelle	6349	12	7.35	Component	0.02116	5.67E-01	0.00	2.723524081	1.674484
GO:0043227	membrane-bounded	0054	10		Cellular					4 070055
	organelle	6351	12	7.35	Component	0.02122	5.67E-01	0.00	2.723660867	1.673255
GO:0005730	nucleolus	226	2	0.27	Cellular	0 02083	7 63 5 01	0.01	2 071882007	1 525247
		230	2	0.27	Collular	0.02903	7.03E-01	0.01	2.07 1002007	1.525547
GO:0005840	ribosome	605	3	0.7	Component	0.03073	7.63E-01	0.00	2.30463412	1.512437
00 000055					Molecular					
GO:0009055	electron carrier activity	236	2	0.17	Function	0.01204	1.00E+00	0.01	2.071882007	1.919374
CO:000735	rosponso to cutokinin				Biological					
60.0009755		140	2	0.15	Process	0.01	1.00E+00	0.01	1.84509804	2
GO:1901564	organonitrogen compound		_		Biological					
	metabolic process	1843	6	2.01	Process	0.0107	1.00E+00	0.00	2.487374085	1.970616
GO:0015979	photosynthesis	216	2	0.24	Biological	0 0000		0.01	0 000 100755	1 640065
	collular macromolocular	210	2	0.24	Biological	0.0228	1.00E+00	0.01	2.033423755	1.042005
GO:0034622	complex assembly	271	2	03	Process	0 0346	1 00E+00	0.01	2 131030205	1 460924
	macromolecular complex	211	2	0.0	Biological	0.0040	1.002.00	0.01	2.101000200	1.400024
GO:0065003	assembly	314	2	0.34	Process	0.0453	1.00E+00	0.01	2.195899652	1.343902

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P-</i> value
GO:0005737	cytoplasm	5580	31	13.68	Cellular Component	3.40E-09	2.36E-06	0.005556	2.255273	8.468521
GO:0044444	cytoplasmic part	5088	28	12.47	Cellular Component	1.50E-07	4.17E-05	0.005503	2.259389	6.823909
GO:0044424	intracellular part	8058	34	19.75	Cellular Component	1.80E-07	4.17E-05	0.004219	2.374748	6.744727
GO:0005622	intracellular	8394	34	20.57	Cellular Component	6.70E-07	1.16E-04	0.004051	2.39249	6.173925
GO:0044464	cell part	9180	35	22.5	Cellular Component	9.90E-07	1.38E-04	0.003813	2.418775	6.004365
GO:0005623	cell	9301	35	22.8	Cellular Component	1.50E-06	1.74E-04	0.003763	2.424462	5.823909
GO:0005777	peroxisome	129	5	0.32	Cellular Component	1.50E-05	1.30E-03	0.038760	1.41162	4.823909
GO:0042579	microbody	129	5	0.32	Cellular Component	1.50E-05	1.30E-03	0.038760	1.41162	4.823909
GO:0043231	intracellular membrane- bounded organelle	6349	26	15.56	Cellular Component	4.00E-04	2.85E-02	0.004095	2.387732	3.39794
GO:0043227	membrane-bounded organelle	6351	26	15.57	Cellular Component	0.00041	2.85E-02	0.004094	2.387869	3.387216
GO:0005829	cytosol	1094	9	2.68	Cellular Component	0.00102	6.45E-02	0.008227	2.084775	2.9914
GO:0043229	intracellular organelle	7014	26	17.19	Cellular Component	0.00252	1.20E-01	0.003707	2.430992	2.598599
GO:0043226	organelle	7018	26	17.2	Cellular Component	0.00255	1.20E-01	0.003705	2.43124	2.59346
GO:0009506	plasmodesma	404	5	0.99	Cellular Component	0.00287	1.20E-01	0.012376	1.907411	2.542118
GO:0055044	symplast	404	5	0.99	Cellular Component	0.00287	1.20E-01	0.012376	1.907411	2.542118
GO:0005911	cell-cell junction	405	5	0.99	Cellular Component	0.0029	1.20E-01	0.012346	1.908485	2.537602
GO:0030054	cell junction	406	5	1	Cellular Component	0.00293	1.20E-01	0.012315	1.909556	2.533132

Supplementary Table 7. List of differentially abundant proteins (DEPs) Up regulated in L80 LP enriched by GO antology analysis

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0009536	plastid	1669	10	4.09	Cellular Component	0.00552	2.02E-01	0.005992	2.222456	2.258061
GO:0005773	vacuole	493	5	1.21	Cellular Component	0.00666	2.31E-01	0.010142	1.993877	2.176526
GO:0009507	chloroplast	1592	9	3.9	Cellular Component	0.01264	4.18E-01	0.005653	2.247701	1.898253
GO:0000502	proteasome complex	75	2	0.18	Cellular Component	0.01449	4.58E-01	0.026667	1.574031	1.838932
GO:0000786	nucleosome	103	2	0.25	Cellular Component	0.02628	7.57E-01	0.019417	1.711807	1.580375
GO:0005739	mitochondrion	954	6	2.34	Cellular Component	0.02698	7.57E-01	0.006289	2.201397	1.568958
GO:0044815	DNA packaging complex	105	2	0.26	Cellular Component	0.02723	7.57E-01	0.019048	1.720159	1.564952
GO:0032993	protein-DNA complex	110	2	0.27	Cellular Component	0.02967	7.93E-01	0.018182	1.740363	1.527682
GO:0000785	chromatin	128	2	0.31	Cellular Component	0.03914	1.00E+00	0.015625	1.80618	1.407379
GO:0048037	cofactor binding	530	9	1.28	Molecular Function	4.10E-06	3.34E-03	0.016981	1.770033	5.387216
GO:0030170	pyridoxal phosphate binding	103	5	0.25	Molecular Function	4.80E-06	3.34E-03	0.048544	1.313867	5.318759
GO:0070546	L-phenylalanine aminotransferase activity	2	2	0	Molecular Function	5.70E-06	3.34E-03	1.000000	0	5.244125
GO:0080130	L-phenylalanine:2- oxoglutarate aminotransferase activity	2	2	0	Molecular Function	5.70E-06	3.34E-03	1.000000	0	5.244125
GO:0003824	catalytic activity	9657	38	23.26	Molecular Function	9.00E-06	4.22E-03	0.003935	2.405059	5.045757
GO:0004069	L-aspartate:2-oxoglutarate aminotransferase activity	5	2	0.01	Molecular Function	5.70E-05	2.23E-02	0.400000	0.39794	4.244125
GO:0008483	transaminase activity	46	3	0.11	Molecular Function	0.00018	5.27E-02	0.065217	1.185637	3.744727

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0016769	transferase activity, transferring nitrogenous groups	46	3	0.11	Molecular Function	0.00018	5.27E-02	0.065217	1.185637	3.744727
GO:0051536	iron-sulfur cluster binding	132	3	0.32	Molecular Function	0.00395	6.61E-01	0.022727	1.643453	2.403403
GO:0051540	metal cluster binding	132	3	0.32	Molecular Function	0.00395	6.61E-01	0.022727	1.643453	2.403403
GO:0016799	hydrolase activity, hydrolyzing N-glycosyl compounds	41	2	0.1	Molecular Function	0.00439	6.63E-01	0.048780	1.311754	2.357535
GO:0005507	copper ion binding	146	3	0.35	Molecular Function	0.00523	6.81E-01	0.020548	1.687232	2.281498
GO:0016798	hydrolase activity, acting on glycosyl bonds	498	5	1.2	Molecular Function	0.00674	7.68E-01	0.010040	1.998259	2.17134
GO:0016491	oxidoreductase activity	1790	10	4.31	Molecular Function	0.00911	8.65E-01	0.005587	2.252853	2.040482
GO:0016903	oxidoreductase activity, acting on the aldehyde or oxo group of donors	65	2	0.16	Molecular Function	0.01072	8.73E-01	0.030769	1.511883	1.969805
GO:0004812	aminoacyl-tRNA ligase activity	71	2	0.17	Molecular Function	0.0127	8.73E-01	0.028169	1.550228	1.896196
GO:0016875	ligase activity, forming carbon-oxygen bonds	71	2	0.17	Molecular Function	0.0127	8.73E-01	0.028169	1.550228	1.896196
GO:0016876	ligase activity, forming aminoacyl-tRNA and related compounds	71	2	0.17	Molecular Function	0.0127	8.73E-01	0.028169	1.550228	1.896196
GO:0016627	oxidoreductase activity, acting on the CH-CH group of donors	72	2	0.17	Molecular Function	0.01304	8.73E-01	0.027778	1.556303	1.884722
GO:0035251	UDP-glucosyltransferase activity	104	2	0.25	Molecular Function	0.02603	1.00E+00	0.019231	1.716003	1.584526
GO:0046527	glucosyltransferase activity	105	2	0.25	Molecular Function	0.02649	1.00E+00	0.019048	1.720159	1.576918
GO:0043168	anion binding	3484	14	8.39	Molecular Function	0.03128	1.00E+00	0.004018	2.39595	1.504733

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0016835	carbon-oxygen lyase activity	140	2	0.34	Molecular Function	0.04478	1.00E+00	0.014286	1.845098	1.348916
GO:0016829	lyase activity	342	3	0.82	Molecular Function	0.04913	1.00E+00	0.008772	2.056905	1.308653
GO:0044281	small molecule metabolic process	1473	16	4.07	Biological Process	8.60E-07	4.10E-03	0.010862	1.964083	6.065502
GO:1901564	organonitrogen compound metabolic process	1843	16	5.1	Biological Process	1.60E-05	2.77E-02	0.008681	2.061405	4.79588
GO:0019752	carboxylic acid metabolic process	897	11	2.48	Biological Process	2.30E-05	2.77E-02	0.012263	1.9114	4.638272
GO:0043436	oxoacid metabolic process	916	11	2.53	Biological Process	2.80E-05	2.77E-02	0.012009	1.920503	4.552842
GO:0006082	organic acid metabolic process	918	11	2.54	Biological Process	2.90E-05	2.77E-02	0.011983	1.92145	4.537602
GO:0006520	cellular amino acid metabolic process	431	7	1.19	Biological Process	0.00016	1.27E-01	0.016241	1.789379	3.79588
GO:0009308	amine metabolic process	128	4	0.35	Biological Process	0.00042	2.62E-01	0.031250	1.50515	3.376751
GO:0010035	response to inorganic substance	507	7	1.4	Biological Process	0.00044	2.62E-01	0.013807	1.85991	3.356547
GO:0044710	single-organism metabolic process	4290	22	11.86	Biological Process	0.00088	4.66E-01	0.005128	2.290035	3.055517
GO:0046686	response to cadmium ion	191	4	0.53	Biological Process	0.00187	7.77E-01	0.020942	1.678973	2.728158
GO:0006098	pentose-phosphate shunt	26	2	0.07	Biological Process	0.00233	7.77E-01	0.076923	1.113943	2.632644
GO:0051156	glucose 6-phosphate metabolic process	27	2	0.07	Biological Process	0.00251	7.77E-01	0.074074	1.130334	2.600326
GO:0019682	glyceraldehyde-3- phosphate metabolic process	33	2	0.09	Biological Process	0.00373	8.78E-01	0.060606	1.217484	2.428291
GO:1901565	organonitrogen compound catabolic process	118	3	0.33	Biological Process	0.00421	8.78E-01	0.025424	1.594761	2.375718

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0006739	NADP metabolic process	36	2	0.1	Biological Process	0.00443	8.78E-01	0.055556	1.255273	2.353596
GO:0008152	metabolic process	11940	40	33.02	Biological Process	0.00505	8.78E-01	0.003350	2.474944	2.296709
GO:0010038	response to metal ion	254	4	0.7	Biological Process	0.0052	8.78E-01	0.015748	1.802774	2.283997
GO:0009309	amine biosynthetic process	42	2	0.12	Biological Process	0.00599	8.93E-01	0.047619	1.322219	2.222573
GO:0042401	cellular biogenic amine biosynthetic process	42	2	0.12	Biological Process	0.00599	8.93E-01	0.047619	1.322219	2.222573
GO:0055086	nucleobase-containing small molecule metabolic process	437	5	1.21	Biological Process	0.00685	9.90E-01	0.011442	1.941511	2.164309
GO:0009605	response to external stimulus	627	6	1.73	Biological Process	0.00718	1.00E+00	0.009569	2.019116	2.143876
GO:0072350	tricarboxylic acid metabolic process	50	2	0.14	Biological Process	0.00841	1.00E+00	0.040000	1.39794	2.075204
GO:0044712	single-organism catabolic process	479	5	1.32	Biological Process	0.00997	1.00E+00	0.010438	1.981366	2.001305
GO:0010150	leaf senescence	60	2	0.17	Biological Process	0.01194	1.00E+00	0.033333	1.477121	1.922996
GO:0010260	organ senescence	60	2	0.17	Biological Process	0.01194	1.00E+00	0.033333	1.477121	1.922996
GO:0006081	cellular aldehyde metabolic process	63	2	0.17	Biological Process	0.01311	1.00E+00	0.031746	1.498311	1.882397
GO:0009414	response to water deprivation	180	3	0.5	Biological Process	0.01341	1.00E+00	0.016667	1.778151	1.872571
GO:0009415	response to water	185	3	0.51	Biological Process	0.01442	1.00E+00	0.016216	1.79005	1.841035
GO:0006418	tRNA aminoacylation for protein translation	70	2	0.19	Biological Process	0.01601	1.00E+00	0.028571	1.544068	1.795609
GO:0043648	dicarboxylic acid metabolic process	70	2	0.19	Biological Process	0.01601	1.00E+00	0.028571	1.544068	1.795609
GO:0007568	aging	72	2	0.2	Biological Process	0.01689	1.00E+00	0.027778	1.556303	1.77237

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P-</i> value
GO:0098542	defense response to other organism	359	4	0.99	Biological Process	0.01698	1.00E+00	0.011142	1.953034	1.770062
GO:0042742	defense response to bacterium	197	3	0.54	Biological Process	0.01704	1.00E+00	0.015228	1.817345	1.76853
GO:0043038	amino acid activation	73	2	0.2	Biological Process	0.01734	1.00E+00	0.027397	1.562293	1.760951
GO:0043039	tRNA aminoacylation	73	2	0.2	Biological Process	0.01734	1.00E+00	0.027397	1.562293	1.760951
GO:0042221	response to chemical	1481	9	4.1	Biological Process	0.01815	1.00E+00	0.006077	2.216313	1.741123
GO:0031669	cellular response to nutrient levels	77	2	0.21	Biological Process	0.01917	1.00E+00	0.025974	1.585461	1.717378
GO:0006576	cellular biogenic amine metabolic process	78	2	0.22	Biological Process	0.01964	1.00E+00	0.025641	1.591065	1.706859
GO:0016054	organic acid catabolic process	82	2	0.23	Biological Process	0.02157	1.00E+00	0.024390	1.612784	1.66615
GO:0046395	carboxylic acid catabolic process	82	2	0.23	Biological Process	0.02157	1.00E+00	0.024390	1.612784	1.66615
GO:0044106	cellular amine metabolic process	87	2	0.24	Biological Process	0.02408	1.00E+00	0.022989	1.638489	1.618344
GO:0009617	response to bacterium	233	3	0.64	Biological Process	0.0264	1.00E+00	0.012876	1.890235	1.578396
GO:0031667	response to nutrient levels	92	2	0.25	Biological Process	0.02672	1.00E+00	0.021739	1.662758	1.573164
GO:0031668	cellular response to extracellular stimulus	92	2	0.25	Biological Process	0.02672	1.00E+00	0.021739	1.662758	1.573164
GO:0044270	cellular nitrogen compound catabolic process	94	2	0.26	Biological Process	0.0278	1.00E+00	0.021277	1.672098	1.555955
GO:0045333	cellular respiration	94	2	0.26	Biological Process	0.0278	1.00E+00	0.021277	1.672098	1.555955
GO:0046700	heterocycle catabolic process	94	2	0.26	Biological Process	0.0278	1.00E+00	0.021277	1.672098	1.555955
GO:0071496	cellular response to external stimulus	96	2	0.27	Biological Process	0.0289	1.00E+00	0.020833	1.681241	1.539102

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log <i>P</i> - value
GO:0016053	organic acid biosynthetic process	429	4	1.19	Biological Process	0.03023	1.00E+00	0.009324	2.030397	1.519562
GO:0046394	carboxylic acid biosynthetic process	429	4	1.19	Biological Process	0.03023	1.00E+00	0.009324	2.030397	1.519562
GO:0044248	cellular catabolic process	663	5	1.83	Biological Process	0.03511	1.00E+00	0.007541	2.122544	1.454569
GO:0055114	oxidation-reduction process	1936	10	5.35	Biological Process	0.03531	1.00E+00	0.005165	2.286905	1.452102
GO:0009991	response to extracellular stimulus	108	2	0.3	Biological Process	0.03587	1.00E+00	0.018519	1.732394	1.445269
GO:0015980	energy derivation by oxidation of organic compounds	110	2	0.3	Biological Process	0.03709	1.00E+00	0.018182	1.740363	1.430743
GO:0043207	response to external biotic stimulus	465	4	1.29	Biological Process	0.03891	1.00E+00	0.008602	2.065393	1.409939
GO:0051707	response to other organism	465	4	1.29	Biological Process	0.03891	1.00E+00	0.008602	2.065393	1.409939
GO:0044282	small molecule catabolic process	113	2	0.31	Biological Process	0.03895	1.00E+00	0.017699	1.752048	1.409493
GO:0009056	catabolic process	920	6	2.54	Biological Process	0.03962	1.00E+00	0.006522	2.185637	1.402086
GO:0009607	response to biotic stimulus	482	4	1.33	Biological Process	0.04347	1.00E+00	0.008299	2.080987	1.36181
GO:0019693	ribose phosphate metabolic process	285	3	0.79	Biological Process	0.04389	1.00E+00	0.010526	1.977724	1.357634
GO:1901361	organic cyclic compound catabolic process	126	2	0.35	Biological Process	0.0474	1.00E+00	0.015873	1.799341	1.324222
GO:0048827	phyllome development	298	3	0.82	Biological Process	0.04899	1.00E+00	0.010067	1.997095	1.309893
GO:0006952	defense response	502	4	1.39	Biological Process	0.04919	1.00E+00	0.007968	2.098644	1.308123

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
GO:0005737	cytoplasm	5580	35	14.44	Cellular Component	3.90E-12	2.71E-09	0.006272	2.202566	11.40894
GO:0044444	cytoplasmic part	5088	30	13.16	Cellular Component	2.80E-08	9.73E-06	0.005896	2.229426	7.552842
GO:0044424	intracellular part	8058	36	20.85	Cellular Component	6.10E-08	1.41E-05	0.004468	2.349925	7.21467
GO:0005622	intracellular	8394	36	21.72	Cellular Component	2.40E-07	4.17E-05	0.004289	2.367666	6.619789
GO:0044435	plastid part	972	13	2.51	Cellular Component	4.90E-07	6.81E-05	0.013374	1.873723	6.309804
GO:0009536	plastid	1669	16	4.32	Cellular Component	1.40E-06	1.30E-04	0.009587	2.018336	5.853872
GO:0044446	intracellular organelle part	2917	21	7.55	Cellular Component	1.40E-06	1.30E-04	0.007199	2.142717	5.853872
GO:0044422	organelle part	2920	21	7.55	Cellular Component	1.50E-06	1.30E-04	0.007192	2.143164	5.823909
GO:0044434	chloroplast part	955	12	2.47	Cellular Component	3.00E-06	2.32E-04	0.012565	1.900822	5.522879
GO:0009507	chloroplast	1592	15	4.12	Cellular Component	4.30E-06	2.97E-04	0.009422	2.025852	5.366532
GO:0044464	cell part	9180	36	23.75	Cellular Component	4.70E-06	2.97E-04	0.003922	2.40654	5.327902
GO:0009532	plastid stroma	533	9	1.38	Cellular Component	6.50E-06	3.77E-04	0.016886	1.772485	5.187087
GO:0005623	cell	9301	36	24.06	Cellular Component	7.30E-06	3.90E-04	0.003871	2.412227	5.136677
GO:0009570	chloroplast stroma	518	8	1.34	Cellular Component	4.40E-05	2.18E-03	0.015444	1.81124	4.356547
GO:0043229	intracellular organelle	7014	29	18.15	Cellular Component	0.00031	1.35E-02	0.004135	2.383568	3.508638
GO:0043226	organelle	7018	29	18.16	Cellular Component	0.00031	1.35E-02	0.004132	2.383815	3.508638
GO:0043231	intracellular membrane- bounded organelle	6349	27	16.42	Cellular Component	0.00048	1.85E-02	0.004253	2.371342	3.318759

Supplementary Table 8. List of differentially abundant proteins (DEPs) Up regulated in P7 LP enriched by GO antology analysis

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
GO:0043227	membrane-bounded organelle	6351	27	16.43	Cellular Component	0.00048	1.85E-02	0.004251	2.371478	3.318759
GO:0005829	cytosol	1094	9	2.83	Cellular Component	0.00155	5.67E-02	0.008227	2.084775	2.809668
GO:0070469	respiratory chain	106	3	0.27	Cellular Component	0.00256	8.90E-02	0.028302	1.548185	2.59176
GO:0043234	protein complex	1303	8	3.37	Cellular Component	0.01656	4.80E-01	0.00614	2.211854	1.78094
GO:0005746	mitochondrial respiratory chain	79	2	0.2	Cellular Component	0.01772	4.93E-01	0.025316	1.596597	1.751536
GO:0098803	respiratory chain complex	81	2	0.21	Cellular Component	0.01857	4.96E-01	0.024691	1.607455	1.731188
GO:0098800	inner mitochondrial membrane protein complex	98	2	0.25	Cellular Component	0.0265	6.82E-01	0.020408	1.690196	1.576754
GO:0098798	mitochondrial protein complex	104	2	0.27	Cellular Component	0.02958	6.82E-01	0.019231	1.716003	1.529002
GO:0031967	organelle envelope	690	5	1.79	Cellular Component	0.03139	6.82E-01	0.007246	2.139879	1.503209
GO:0009505	plant-type cell wall	108	2	0.28	Cellular Component	0.03171	6.82E-01	0.018519	1.732394	1.498804
GO:0031975	envelope	694	5	1.8	Cellular Component	0.03207	6.82E-01	0.007205	2.142389	1.493901
GO:0005739	mitochondrion	954	6	2.47	Cellular Component	0.03429	6.82E-01	0.006289	2.201397	1.464833
GO:0005773	vacuole	493	4	1.28	Cellular Component	0.03763	6.82E-01	0.008114	2.090787	1.424466
GO:1990204	oxidoreductase complex	124	2	0.32	Cellular Component	0.04079	6.82E-01	0.016129	1.792392	1.389446
GO:0005777	peroxisome	129	2	0.33	Cellular Component	0.0438	6.82E-01	0.015504	1.80956	1.358526
GO:0042579	microbody	129	2	0.33	Cellular Component	0.0438	6.82E-01	0.015504	1.80956	1.358526
GO:0005774	vacuolar membrane	306	3	0.79	Cellular Component	0.04419	6.82E-01	0.009804	2.0086	1.354676

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
GO:0044437	vacuolar part	307	3	0.79	Cellular Component	0.04455	6.82E-01	0.009772	2.010017	1.351152
GO:0005777	peroxisome	129	2	0.33	Cellular Component	0.0438	6.82E-01	0.015504	1.80956	1.358526
GO:0042579	microbody	129	2	0.33	Cellular Component	0.0438	6.82E-01	0.015504	1.80956	1.358526
GO:0005774	vacuolar membrane	306	3	0.79	Cellular Component	0.04419	6.82E-01	0.009804	2.0086	1.354676
GO:0044437	vacuolar part	307	3	0.79	Cellular Component	0.04455	6.82E-01	0.009772	2.010017	1.351152
GO:0005874	microtubule	131	2	0.34	Cellular Component	0.04503	6.82E-01	0.015267	1.816241	1.346498
GO:0044455	mitochondrial membrane part	131	2	0.34	Cellular Component	0.04503	6.82E-01	0.015267	1.816241	1.346498
GO:0003824	catalytic activity	9657	43	27.22	Molecular Function	1.20E-05	2.81E-02	0.004453	2.351374	4.920819
GO:0043295	glutathione binding	4	2	0.01	Molecular Function	4.70E-05	3.67E-02	0.5	0.30103	4.327902
GO:1900750	oligopeptide binding	4	2	0.01	Molecular Function	4.70E-05	3.67E-02	0.5	0.30103	4.327902
GO:0004364	glutathione transferase activity	11	2	0.03	Molecular Function	0.00042	1.97E-01	0.181818	0.740363	3.376751
GO:0072341	modified amino acid binding	11	2	0.03	Molecular Function	0.00042	1.97E-01	0.181818	0.740363	3.376751
GO:0042277	peptide binding	26	2	0.07	Molecular Function	0.00243	6.00E-01	0.076923	1.113943	2.614394
GO:1901681	sulfur compound binding	26	2	0.07	Molecular Function	0.00243	6.00E-01	0.076923	1.113943	2.614394
GO:0005200	structural constituent of cytoskeleton	28	2	0.08	Molecular Function	0.00281	6.00E-01	0.071429	1.146128	2.551294
GO:0003993	acid phosphatase activity	31	2	0.09	Molecular Function	0.00344	6.71E-01	0.064516	1.190332	2.463442

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
GO:0033218	amide binding	35	2	0.1	Molecular Function	0.00437	6.94E-01	0.057143	1.243038	2.359519
GO:0003954	NADH dehydrogenase activity	43	2	0.12	Molecular Function	0.00654	6.96E-01	0.046512	1.332438	2.184422
GO:0008137	NADH dehydrogenase (ubiquinone) activity	43	2	0.12	Molecular Function	0.00654	6.96E-01	0.046512	1.332438	2.184422
GO:0033218	amide binding	35	2	0.1	Molecular Function	0.00437	6.94E-01	0.057143	1.243038	2.359519
GO:0003954	NADH dehydrogenase activity	43	2	0.12	Molecular Function	0.00654	6.96E-01	0.046512	1.332438	2.184422
GO:0008137	NADH dehydrogenase (ubiquinone) activity	43	2	0.12	Molecular Function	0.00654	6.96E-01	0.046512	1.332438	2.184422
GO:0050136	NADH dehydrogenase (guinone) activity	43	2	0.12	Molecular Function	0.00654	6.96E-01	0.046512	1.332438	2.184422
GO:0016835	carbon-oxygen lyase activity	140	3	0.39	Molecular Function	0.00722	7.35E-01	0.021429	1.669007	2.141463
GO:0016655	oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor	53	2	0.15	Molecular Function	0.0098	7.74E-01	0.037736	1.423246	2.008774
GO:0016597	amino acid binding	63	2	0.18	Molecular Function	0.01365	8.42E-01	0.031746	1.498311	1.864867
GO:0016829	lyase activity	342	4	0.96	Molecular Function	0.01568	8.53E-01	0.011696	1.931966	1.804654
GO:0016836	hydro-lyase activity	70	2	0.2	Molecular Function	0.01667	8.53E-01	0.028571	1.544068	1.778064
GO:0004812	aminoacyl-tRNA ligase activity	71	2	0.2	Molecular Function	0.01712	8.53E-01	0.028169	1.550228	1.766496
GO:0016875	ligase activity, forming carbon-oxygen bonds	71	2	0.2	Molecular Function	0.01712	8.53E-01	0.028169	1.550228	1.766496
GO:0016876	ligase activity, forming aminoacyl-tRNA and related compounds	71	2	0.2	Molecular Function	0.01712	8.53E-01	0.028169	1.550228	1.766496

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
GO:0016627	oxidoreductase activity, acting on the CH-CH group of donors	72	2	0.2	Molecular Function	0.01758	8.58E-01	0.027778	1.556303	1.754981
GO:0016779	nucleotidyltransferase activity	208	3	0.59	Molecular Function	0.02087	9.58E-01	0.014423	1.840942	1.680478
GO:0016765	transferase activity, transferring alkyl or aryl (other than methyl) groups	84	2	0.24	Molecular Function	0.02346	9.79E-01	0.02381	1.623249	1.629672
GO:0031406	carboxylic acid binding	87	2	0.25	Molecular Function	0.02505	9.79E-01	0.022989	1.638489	1.601192
GO:0043177	organic acid binding	87	2	0.25	Molecular Function	0.02505	9.79E-01	0.022989	1.638489	1.601192
GO:0016491	oxidoreductase activity	1790	10	5.05	Molecular Function	0.02645	1.00E+00	0.005587	2.252853	1.577574
GO:0016791	phosphatase activity	232	3	0.65	Molecular Function	0.02767	1.00E+00	0.012931	1.888367	1.557991
GO:0016874	ligase activity	239	3	0.67	Molecular Function	0.02985	1.00E+00	0.012552	1.901277	1.525056
GO:0016651	oxidoreductase activity, acting on NAD(P)H	109	2	0.31	Molecular Function	0.03789	1.00E+00	0.018349	1.736397	1.421475
GO:0016787	hydrolase activity	3046	14	8.59	Molecular Function	0.03984	1.00E+00	0.004596	2.337602	1.399681
GO:0042578	phosphoric ester hydrolase activity	293	3	0.83	Molecular Function	0.04963	1.00E+00	0.010239	1.989746	1.304256
GO:0044281	small molecule metabolic process	1473	16	4.36	Biological Process	2.40E-06	9.54E-03	0.010862	1.964083	5.619789
GO:0031668	cellular response to extracellular stimulus	92	5	0.27	Biological Process	7.40E-06	9.54E-03	0.054348	1.264818	5.130768
GO:0071496	cellular response to external stimulus	96	5	0.28	Biological Process	9.10E-06	9.54E-03	0.052083	1.283301	5.040959
GO:0043436	oxoacid metabolic process	916	12	2.71	Biological Process	9.80E-06	9.54E-03	0.0131	1.882714	5.008774
GO:0006082	organic acid metabolic process	918	12	2.72	Biological Process	1.00E-05	9.54E-03	0.013072	1.883661	5

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
GO:0006082	organic acid metabolic process	918	12	2.72	Biological Process	1.00E-05	9.54E-03	0.013072	1.883661	5
GO:0009991	response to extracellular stimulus	108	5	0.32	Biological Process	1.60E-05	1.27E-02	0.046296	1.334454	4.79588
GO:0009267	cellular response to starvation	67	4	0.2	Biological Process	4.50E-05	2.74E-02	0.059701	1.224015	4.346787
GO:0019752	carboxylic acid metabolic process	897	11	2.65	Biological Process	4.60E-05	2.74E-02	0.012263	1.9114	4.337242
GO:0042594	response to starvation	74	4	0.22	Biological Process	6.60E-05	3.50E-02	0.054054	1.267172	4.180456
GO:0031669	cellular response to nutrient levels	77	4	0.23	Biological Process	7.70E-05	3.67E-02	0.051948	1.284431	4.113509
GO:0031667	response to nutrient levels	92	4	0.27	Biological Process	0.00015	6.50E-02	0.043478	1.361728	3.823909
GO:0016036	cellular response to phosphate starvation	41	3	0.12	Biological Process	0.00024	9.54E-02	0.073171	1.135663	3.619789
GO:0044763	single-organism cellular process	5424	27	16.04	Biological Process	0.00081	2.97E-01	0.004978	2.302956	3.091515
GO:0044283	small molecule biosynthetic process	548	7	1.62	Biological Process	0.00105	3.37E-01	0.012774	1.893683	2.978811
GO:0044711	single-organism biosynthetic process	1286	11	3.8	Biological Process	0.00106	3.37E-01	0.008554	2.067848	2.974694
GO:0016053	organic acid biosynthetic process	429	6	1.27	Biological Process	0.00157	4.24E-01	0.013986	1.854306	2.8041
GO:0046394	carboxylic acid biosynthetic process	429	6	1.27	Biological Process	0.00157	4.24E-01	0.013986	1.854306	2.8041
GO:0006520	cellular amino acid metabolic process	431	6	1.27	Biological Process	0.0016	4.24E-01	0.013921	1.856326	2.79588
GO:0009605	response to external stimulus	627	7	1.85	Biological Process	0.00228	5.30E-01	0.011164	1.95217	2.642065
GO:0046686	response to cadmium ion	191	4	0.56	Biological Process	0.00241	5.30E-01	0.020942	1.678973	2.617983
GO:0033554	cellular response to stress	468	6	1.38	Biological Process	0.00243	5.30E-01	0.012821	1.892095	2.614394
GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
------------	---	-----------	-----------------	----------	-----------------------	---------	----------	----------------	-------------------------	-----------------
GO:0045333	cellular respiration	94	3	0.28	Biological Process	0.00269	5.30E-01	0.031915	1.496007	2.570248
GO:0008652	cellular amino acid biosynthetic process	203	4	0.6	Biological Process	0.003	5.30E-01	0.019704	1.705436	2.522879
GO:0050896	response to stimulus	3255	18	9.63	Biological Process	0.00368	6.27E-01	0.00553	2.257278	2.434152
GO:0000302	response to reactive oxygen species	107	3	0.32	Biological Process	0.00388	6.38E-01	0.028037	1.552263	2.411168
GO:0015980	oxidation of organic compounds	110	3	0.33	Biological Process	0.00419	6.66E-01	0.027273	1.564271	2.377786
GO:0006950	response to stress	1815	12	5.37	Biological Process	0.00539	8.05E-01	0.006612	2.179695	2.268411
GO:0050896	response to stimulus	3255	18	9.63	Biological Process	0.00368	6.27E-01	0.00553	2.257278	2.434152
GO:0000302	response to reactive oxygen species	107	3	0.32	Biological Process	0.00388	6.38E-01	0.028037	1.552263	2.411168
GO:0015980	energy derivation by oxidation of organic compounds	110	3	0.33	Biological Process	0.00419	6.66E-01	0.027273	1.564271	2.377786
GO:0006950	response to stress	1815	12	5.37	Biological Process	0.00539	8.05E-01	0.006612	2.179695	2.268411
GO:0044710	single-organism metabolic process	4290	21	12.69	Biological Process	0.00656	8.53E-01	0.004895	2.310238	2.183096
GO:0010038	response to metal ion	254	4	0.75	Biological Process	0.00662	8.53E-01	0.015748	1.802774	2.179142
GO:0042221	response to chemical	1481	10	4.38	Biological Process	0.01004	1.00E+00	0.006752	2.170555	1.998266
GO:0044699	single-organism process	7726	31	22.85	Biological Process	0.01148	1.00E+00	0.004012	2.396593	1.940058
GO:1901607	alpha-amino acid biosynthetic process	159	3	0.47	Biological Process	0.01154	1.00E+00	0.018868	1.724276	1.937794
GO:0009628	response to abiotic stimulus	1067	8	3.16	Biological Process	0.01211	1.00E+00	0.007498	2.125074	1.916856

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
GO:0009073	aromatic amino acid family biosynthetic process	58	2	0.17	Biological Process	0.01274	1.00E+00	0.034483	1.462398	1.894831
GO:0006081	cellular aldehyde metabolic process	63	2	0.19	Biological Process	0.01491	1.00E+00	0.031746	1.498311	1.826522
GO:0006091	generation of precursor metabolites and energy	323	4	0.96	Biological Process	0.01503	1.00E+00	0.012384	1.907143	1.823041
GO:0007154	cell communication	897	7	2.65	Biological Process	0.01551	1.00E+00	0.007804	2.107694	1.809388
GO:0010035	response to inorganic substance	507	5	1.5	Biological Process	0.01648	1.00E+00	0.009862	2.006038	1.783043
GO:0009648	photoperiodism	67	2	0.2	Biological Process	0.01675	1.00E+00	0.029851	1.525045	1.775985
GO:0006418	tRNA aminoacylation for protein translation	70	2	0.21	Biological Process	0.0182	1.00E+00	0.028571	1.544068	1.739929
GO:0043648	dicarboxylic acid metabolic process	70	2	0.21	Biological Process	0.0182	1.00E+00	0.028571	1.544068	1.739929
GO:0043038	amino acid activation	73	2	0.22	Biological Process	0.01969	1.00E+00	0.027397	1.562293	1.705754
GO:0043039	tRNA aminoacylation	73	2	0.22	Biological Process	0.01969	1.00E+00	0.027397	1.562293	1.705754
GO:0006417	regulation of translation	75	2	0.22	Biological Process	0.02072	1.00E+00	0.026667	1.574031	1.68361
GO:0034248	regulation of cellular amide metabolic process	75	2	0.22	Biological Process	0.02072	1.00E+00	0.026667	1.574031	1.68361
GO:1901135	carbohydrate derivative metabolic process	548	5	1.62	Biological Process	0.02227	1.00E+00	0.009124	2.039811	1.65228
GO:0009117	nucleotide metabolic process	372	4	1.1	Biological Process	0.02388	1.00E+00	0.010753	1.968483	1.621966
GO:0006753	nucleoside phosphate metabolic process	378	4	1.12	Biological Process	0.02514	1.00E+00	0.010582	1.975432	1.599635
GO:0016311	dephosphorylation	215	3	0.64	Biological Process	0.02559	1.00E+00	0.013953	1.855317	1.59193

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
GO:0006979	response to oxidative stress	382	4	1.13	Biological Process	0.026	1.00E+00	0.010471	1.980003	1.585027
GO:0009072	aromatic amino acid family metabolic process	87	2	0.26	Biological Process	0.02731	1.00E+00	0.022989	1.638489	1.563678
GO:0019637	organophosphate metabolic process	586	5	1.73	Biological Process	0.02871	1.00E+00	0.008532	2.068928	1.541967
GO:0051716	cellular response to stimulus	1259	8	3.72	Biological Process	0.02977	1.00E+00	0.006354	2.196936	1.526221
GO:0032787	monocarboxylic acid metabolic process	407	4	1.2	Biological Process	0.03181	1.00E+00	0.009828	2.007534	1.497436
GO:0009553	embryo sac development	97	2	0.29	Biological Process	0.03337	1.00E+00	0.020619	1.685742	1.476644
GO:0008299	isoprenoid biosynthetic process	100	2	0.3	Biological Process	0.03528	1.00E+00	0.02	1.69897	1.452471
GO:0071214	cellular response to abiotic stimulus	102	2	0.3	Biological Process	0.03657	1.00E+00	0.019608	1.70757	1.436875
GO:0006090	pyruvate metabolic process	104	2	0.31	Biological Process	0.03789	1.00E+00	0.019231	1.716003	1.421475
GO:0009793	embryo development ending in seed dormancy	251	3	0.74	Biological Process	0.03792	1.00E+00	0.011952	1.922552	1.421132
GO:1901605	alpha-amino acid metabolic process	254	3	0.75	Biological Process	0.03907	1.00E+00	0.011811	1.927712	1.408157
GO:0048229	gametophyte development	255	3	0.75	Biological Process	0.03945	1.00E+00	0.011765	1.929419	1.403953
GO:0055086	nucleobase-containing small molecule metabolic process	437	4	1.29	Biological Process	0.03972	1.00E+00	0.009153	2.038421	1.400991
GO:1901564	organonitrogen compound metabolic process	1843	10	5.45	Biological Process	0.04014	1.00E+00	0.005426	2.265525	1.396423
GO:0009790	embryo development	271	3	0.8	Biological Process	0.04588	1.00E+00	0.01107	1.955848	1.338377

GO ID	Functional Class	Annotated	Input number	Expected	Aspect	p-value	q-value	Rich Factor	Log (Rich Factor)	Log P- value
GO:0042440	pigment metabolic process	116	2	0.34	Biological Process	0.04615	1.00E+00	0.017241	1.763428	1.335828
GO:0006720	isoprenoid metabolic process	117	2	0.35	Biological Process	0.04686	1.00E+00	0.017094	1.767156	1.329198
GO:0046939	nucleotide phosphorylation	119	2	0.35	Biological Process	0.04831	1.00E+00	0.016807	1.774517	1.315963

			Proteins down re	gulated in L80 LP				
ID	Pathway	Input number	Background number	P-Value	Corrected P- Value	Rich Factor	Log (Rich Factor)	Log P-value
zma00195	Photosynthesis	5	117	8.71E-07	1.57E-05	0.042735043	1.369215857	6.060154434
zma01100	Metabolic pathways	12	2906	0.000599726	0.00539753	0.004129387	2.384114364	3.222047428
zma03010	Ribosome	5	577	0.0014153	0.008491801	0.008665511	2.062205809	2.849151432
zma00196	Photosynthesis - antenna proteins	2	47	0.002264559	0.010190517	0.042553191	1.371067862	2.645016286
zma00944	Flavone and flavonol biosynthesis	1	7	0.011422426	0.041120735	0.142857143	0.84509804	1.94224163
zma00190	Oxidative phosphorylation	2	197	0.033139172	0.099417515	0.010152284	1.99343623	1.47965835
zma01110	Biosynthesis of secondary metabolites	5	1478	0.059820081	0.143596146	0.00338295	2.47070443	1.223153006
zma00592	alpha-Linolenic acid metabolism	1	55	0.077329606	0.143596146	0.018181818	1.740362689	1.111654202
zma01230	Biosynthesis of amino acids	2	327	0.080850355	0.143596146	0.006116208	2.213517757	1.092318068
zma00400	Phenylalanine, tyrosine and tryptophan biosynthesis	1	59	0.082624055	0.143596146	0.016949153	1.770852012	1.082893495
zma00970	Aminoacyl-tRNA biosynthesis	1	64	0.089200424	0.143596146	0.015625	1.806179974	1.049633081
zma00860	Porphyrin and chlorophyll metabolism	1	69	0.095730764	0.143596146	0.014492754	1.838849091	1.018948476
zma01210	2-Oxocarboxylic acid metabolism	1	80	0.109937034	0.152220509	0.0125	1.903089987	0.958855982
zma00020	Citrate cycle (TCA cycle)	1	91	0.123925354	0.159332598	0.010989011	1.959041392	0.906839833
zma00561	Glycerolipid metabolism	1	106	0.14265498	0.171185975	0.009433962	2.025305865	0.845713064
zma00564	Glycerophospholipid metabolism	1	141	0.184850301	0.207956588	0.007092199	2.149219113	0.733179838
zma04141	Protein processing in endoplasmic reticulum	1	312	0.363540599	0.38492534	0.003205128	2.494154594	0.439447082
zma01200	Carbon metabolism	1	358	0.404676337	0.404676337	0.002793296	2.553883027	0.39289219
			Proteins down re	egulated in P7 LP				
zma03010	Ribosome	5	577	9.52E-05	0.001427799	0.008665511	2.062205809	4.0214241
zma00402	Benzoxazinoid biosynthesis	1	15	0.013049277	0.097869577	0.066666667	1.176091259	1.884413554
zma01230	Biosynthesis of amino acids	2	327	0.029569714	0.135328617	0.006116208	2.213517757	1.529152882
zma00220	Arginine biosynthesis	1	44	0.036286276	0.135328617	0.022727273	1.643452676	1.440257604

Supplementary Table 9. Pathways enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

ID	Pathway	Input number	Background number	P-Value	Corrected P- Value	Rich Factor	Log (Rich Factor)	Log P-value
zma00250	Alanine, aspartate and glutamate metabolism	1	69	0.055896523	0.135328617	0.014492754	1.838849091	1.252615205
zma00052	Galactose metabolism	1	76	0.061318495	0.135328617	0.013157895	1.880813592	1.21240851
zma01210	2-Oxocarboxylic acid metabolism	1	80	0.064403354	0.135328617	0.0125	1.903089987	1.191091514
zma03050	Proteasome	1	98	0.078165393	0.135328617	0.010204082	1.991226076	1.106985483
zma00710	Carbon fixation in photosynthetic organisms	1	102	0.08119717	0.135328617	0.009803922	2.008600172	1.090459108
zma00195	Photosynthesis	1	117	0.092481451	0.138722177	0.008547009	2.068185862	1.033945363
zma00270	Cysteine and methionine metabolism	1	150	0.116841235	0.159328957	0.006666667	2.176091259	0.93240386
zma00500	Starch and sucrose metabolism	1	186	0.142700617	0.178375771	0.005376344	2.269512944	0.84557415
zma01100	Metabolic pathways	4	2906	0.211484867	0.244021001	0.001376462	2.861235619	0.674720703
zma01200	Carbon metabolism	1	358	0.256557016	0.274882517	0.002793296	2.553883027	0.590816104
zma01110	Biosynthesis of secondary metabolites	1	1478	0.712238195	0.712238195	0.00067659	3.169674434	0.147374741

			Proteins up re	egulated in L80 L	P			
ID	Pathway	Input number	Background number	P-Value	Corrected P- Value	Rich Factor	Log (Rich Factor)	Log P-value
zma01100	Metabolic pathways	25	2906	1.60E-09	7.21E-08	0.008602891	2.065355601	8.795348498
zma00960	Tropane, piperidine and pyridine alkaloid biosynthesis	3	18	1.41E-05	0.000268723	0.166666667	0.77815125	4.850502528
zma01200	Carbon metabolism	7	358	1.82E-05	0.000268723	0.019553073	1.708784987	4.739345856
zma01110	Biosynthesis of secondary metabolites	13	1478	2.39E-05	0.000268723	0.00879567	2.055731082	4.621846911
zma00950	Isoquinoline alkaloid biosynthesis	3	24	3.07E-05	0.000276576	0.125	0.903089987	4.512427845
zma01210	2-Oxocarboxylic acid metabolism	4	80	3.96E-05	0.000296865	0.05	1.301029996	4.402502088
zma01230	Biosynthesis of amino acids	6	327	0.000105562	0.000615935	0.018348624	1.736396502	3.976491073
zma00360	Phenylalanine metabolism	3	38	0.0001095	0.000615935	0.078947368	1.102662342	3.960587423
zma00350	Tyrosine metabolism	3	48	0.000210501	0.001052504	0.0625	1.204119983	3.676746199
zma00410	beta-Alanine metabolism	3	58	0.000357989	0.001536497	0.051724138	1.286306739	3.446130131
zma00400	Phenylalanine, tyrosine and tryptophan biosynthesis	3	59	0.000375588	0.001536497	0.050847458	1.293730757	3.425288209
zma00330	Arginine and proline metabolism	3	63	0.000451529	0.001693235	0.047619048	1.322219295	3.345314154
zma00750	Vitamin B6 metabolism	2	16	0.000747189	0.002586425	0.125	0.903089987	3.126569331
zma00260	Glycine, serine and threonine metabolism	3	82	0.000945329	0.003038559	0.036585366	1.436692598	3.024416827
zma00630	Glyoxylate and dicarboxylate metabolism	3	89	0.001188517	0.003565552	0.033707865	1.472268752	2.924994536
zma00640	Propanoate metabolism	2	42	0.004448834	0.012512345	0.047619048	1.322219295	2.351753808
zma00220	Arginine biosynthesis	2	44	0.004853309	0.012846993	0.045454545	1.342422681	2.313962093
zma00280	Valine, leucine and isoleucine degradation	2	59	0.00839712	0.0209928	0.033898305	1.469822016	2.075869649
zma00970	Aminoacyl-tRNA biosynthesis	2	64	0.009771747	0.023143611	0.03125	1.505149978	2.010027783
zma00250	Alanine, aspartate and glutamate metabolism	2	69	0.011239307	0.02528844	0.028985507	1.537819095	1.949260471
zma00240	Pyrimidine metabolism	2	84	0.016177841	0.034666802	0.023809524	1.62324929	1.791079445

Supplementary Table 10. Pathways enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

Supple	ementary	Table	10 –	Cont.
--------	----------	-------	------	-------

ID	Pathway	Input number	Background number	P-Value	Corrected P- Value	Rich Factor	Log (Rich Factor)	Log P-value
zma01212	Fatty acid metabolism	2	91	0.018745826	0.036676615	0.021978022	1.658011397	1.727095429
zma00020	Citrate cycle (TCA cycle)	2	91	0.018745826	0.036676615	0.021978022	1.658011397	1.727095429
zma03050	Proteasome	2	98	0.021473591	0.040262983	0.020408163	1.69019608	1.668095324
zma00710	Carbon fixation in photosynthetic organisms	2	102	0.023101939	0.04158349	0.019607843	1.707570176	1.636351566
zma04146	Peroxisome	2	113	0.027831539	0.048169971	0.017699115	1.752048448	1.555462783
zma00230	Purine metabolism	2	119	0.030561434	0.049964808	0.016806723	1.774516966	1.514826268
zma04122	Sulfur relay system	1	13	0.031089214	0.049964808	0.076923077	1.113943352	1.507390261
zma00480	Glutathione metabolism	2	126	0.033874815	0.052564368	0.015873016	1.799340549	1.470123073
zma00511	Other glycan degradation	1	18	0.041960196	0.062940294	0.055555556	1.255272505	1.377162494
zma00270	Cysteine and methionine metabolism	2	150	0.046219969	0.067093503	0.013333333	1.875061263	1.335170351
zma00730	Thiamine metabolism	1	35	0.078030663	0.10973062	0.028571429	1.544068044	1.107734704
zma01040	Biosynthesis of unsaturated fatty acids	1	37	0.082185303	0.112070868	0.027027027	1.568201724	1.085205839
zma00770	Pantothenate and CoA biosynthesis	1	42	0.092491407	0.122415097	0.023809524	1.62324929	1.033898614
zma00062	Fatty acid elongation	1	51	0.110755967	0.142400529	0.019607843	1.707570176	0.955632868
zma00592	alpha-Linolenic acid metabolism	1	55	0.118756885	0.144434049	0.018181818	1.740362689	0.925341204
zma00071	Fatty acid degradation	1	55	0.118756885	0.144434049	0.018181818	1.740362689	0.925341204
zma00061	Fatty acid biosynthesis	1	65	0.138450315	0.16395432	0.015384615	1.812913357	0.858706052
zma00030	Pentose phosphate pathway	1	76	0.159612673	0.184168469	0.013157895	1.880813592	0.796932629
zma04145	Phagosome	1	123	0.244412825	0.274964428	0.008130081	2.089905111	0.61187601
zma00520	Amino sugar and nucleotide sugar metabolism	1	183	0.340516473	0.373737593	0.005464481	2.26245109	0.467861873
zma00190	Oxidative phosphorylation	1	197	0.361147009	0.386943224	0.005076142	2.294466226	0.442315977
zma03013	RNA transport	1	226	0.401880721	0.420572847	0.004424779	2.354108439	0.395902828
zma00940	Phenylpropanoid biosynthesis	1	245	0.427169982	0.436878391	0.004081633	2.389166084	0.369399274
zma04141	Protein processing in endoplasmic reticulum	1	312	0.508224676	0.508224676	0.003205128	2.494154594	0.293944252

			Proteins up r	egulated in P7 LI	P			
ID	Pathway	Input number	Background number	P-Value	Corrected P- Value	Rich Factor	Log (Rich Factor)	Log P-value
zma01100	Metabolic pathways	30	2906	9.12E-13	4.65E-11	0.010323469	1.986174355	12.04000723
zma01110	Biosynthesis of secondary metabolites	17	1478	5.90E-08	1.50E-06	0.01150203	1.939225513	7.229220122
zma00480	Glutathione metabolism	6	126	7.72E-07	1.31E-05	0.047619048	1.322219295	6.112440754
zma00941	Flavonoid biosynthesis	3	58	0.000425547	0.00542572	0.051724138	1.286306739	3.37105277
zma00520	Amino sugar and nucleotide sugar metabolism	4	183	0.001060611	0.010261178	0.021857923	1.660391098	2.974444049
zma00190	Oxidative phosphorylation	4	197	0.001383863	0.010261178	0.020304569	1.692406235	2.858906802
zma00630	Glyoxylate and dicarboxylate metabolism	3	89	0.001408397	0.010261178	0.033707865	1.472268752	2.851274907
zma00220	Arginine biosynthesis	2	44	0.00544107	0.030832729	0.045454545	1.342422681	2.264315696
zma00920	Sulfur metabolism	2	44	0.00544107	0.030832729	0.045454545	1.342422681	2.264315696
zma00910	Nitrogen metabolism	2	50	0.006906918	0.032291807	0.04	1.397940009	2.160715673
zma04141	Protein processing in endoplasmic reticulum	4	312	0.0069649	0.032291807	0.012820513	1.892094603	2.157085138
zma00592	alpha-Linolenic acid metabolism	2	55	0.008249752	0.035061448	0.036363636	1.439332694	2.083559084
zma00500	Starch and sucrose metabolism	3	186	0.010536676	0.041336189	0.016129032	1.792391689	1.977296393
zma00250	Alanine, aspartate and glutamate metabolism	2	69	0.012572398	0.04579945	0.028985507	1.537819095	1.900581878
zma00030	Pentose phosphate pathway	2	76	0.015031333	0.049081779	0.026315789	1.579783597	1.823002507
zma00900	Terpenoid backbone biosynthesis	2	77	0.015398205	0.049081779	0.025974026	1.58546073	1.812529897
zma04070	Phosphatidylinositol signaling system	2	106	0.027628563	0.082885688	0.018867925	1.72427587	1.55864171
zma00230	Purine metabolism	2	119	0.034036422	0.09643653	0.016806723	1.774516966	1.468056095
zma00402	Benzoxazinoid biosynthesis	1	15	0.037557353	0.100811842	0.066666667	1.176091259	1.425305026
zma00261	Monobactam biosynthesis	1	18	0.044442925	0.10829616	0.055555556	1.255272505	1.35219737
zma01230	Biosynthesis of amino acids	3	327	0.044592537	0.10829616	0.009174312	2.037426498	1.350737823

Supplementary	Table 10 – Cont.
---------------	------------------

ID	Pathway	Input number	Background number	P-Value	Corrected P- Value	Rich Factor	Log (Rich Factor)	Log P-value
zma00270	Cysteine and methionine metabolism	2	150	0.051337553	0.119009782	0.013333333	1.875061263	1.289564836
zma01200	Carbon metabolism	3	358	0.055493339	0.123050447	0.008379888	2.076761772	1.255759146
zma00450	Selenocompound metabolism	1	29	0.069277102	0.147213842	0.034482759	1.462397998	1.159410288
zma00945	Stilbenoid, diarylheptanoid and gingerol biosynthesis	1	31	0.073723553	0.150396048	0.032258065	1.491361694	1.132393744
zma00010	Glycolysis / Gluconeogenesis	2	197	0.08212647	0.155934824	0.010152284	1.99343623	1.085516844
zma00730	Thiamine metabolism	1	35	0.08255373	0.155934824	0.028571429	1.544068044	1.083263298
zma00906	Carotenoid biosynthesis	1	44	0.10211938	0.186003156	0.022727273	1.643452676	0.990891832
zma00460	Cyanoamino acid metabolism	1	48	0.11068265	0.187930476	0.020833333	1.681241237	0.95592045
zma00350	Tyrosine metabolism	1	48	0.11068265	0.187930476	0.020833333	1.681241237	0.95592045
zma00062	Fatty acid elongation	1	51	0.117052225	0.187930476	0.019607843	1.707570176	0.931620326
zma00940	Phenylpropanoid biosynthesis	2	245	0.117917161	0.187930476	0.008163265	2.088136089	0.928422984
zma00071	Fatty acid degradation	1	55	0.125475086	0.193916042	0.018181818	1.740362689	0.901442497
zma00400	Phenylalanine, tyrosine and tryptophan biosynthesis	1	59	0.133818735	0.198518964	0.016949153	1.770852012	0.87348308
zma03040	Spliceosome	2	268	0.136238505	0.198518964	0.007462687	2.127104798	0.865700132
zma00970	Aminoacyl-tRNA biosynthesis	1	64	0.144138021	0.204195529	0.015625	1.806179974	0.841221446
zma00053	Ascorbate and aldarate metabolism	1	67	0.150271324	0.207130744	0.014925373	1.826074803	0.823123886
zma00860	Porphyrin and chlorophyll metabolism	1	69	0.154336103	0.207135296	0.014492754	1.838849091	0.81153247
zma00052	Galactose metabolism	1	76	0.168412465	0.220231685	0.013157895	1.880813592	0.773625768
zma00040	Pentose and glucuronate interconversions	1	84	0.18421708	0.234603541	0.011904762	1.924279286	0.734670106
zma00051	Fructose and mannose metabolism	1	90	0.195875885	0.234603541	0.011111111	1.954242509	0.708019029
zma01212	Fatty acid metabolism	1	91	0.197802985	0.234603541	0.010989011	1.959041392	0.703767158
zma00020	Citrate cycle (TCA cycle)	1	91	0.197802985	0.234603541	0.010989011	1.959041392	0.703767158
zma00562	Inositol phosphate metabolism	1	98	0.211165813	0.244760374	0.010204082	1.991226076	0.675376392

ID	Pathway	Input number	Background number	P-Value	Corrected P- Value	Rich Factor	Log (Rich Factor)	Log P-value
zma00562	Inositol phosphate metabolism	1	98	0.211165813	0.244760374	0.010204082	1.991226076	0.675376392
zma00710	Carbon fixation in photosynthetic organisms	1	102	0.218702948	0.247863341	0.009803922	2.008600172	0.660145363
zma00620	Pyruvate metabolism	1	121	0.253545977	0.279006166	0.008264463	2.08278537	0.595943276
zma04145	Phagosome	1	123	0.257123329	0.279006166	0.008130081	2.089905111	0.589858517
zma04626	Plant-pathogen interaction	1	214	0.403189692	0.425605141	0.004672897	2.330413773	0.39449058
zma04144	Endocytosis	1	218	0.408914744	0.425605141	0.004587156	2.338456494	0.38836723
zma03013	RNA transport	1	226	0.420202927	0.428529359	0.004424779	2.354108439	0.376540927
zma04016	MAPK signaling pathway - plant	1	232	0.428529359	0.428529359	0.004310345	2.365487985	0.368019419