EFEITOS DE COMPOSTOS ORGÂNICOS VOLÁTEIS PRODUZIDOS POR *Gluconacetobacter diazotrophicus* Pal5 SOBRE A MORFOLOGIA, FISIOLOGIA E O PROTEOMA DE *Arabidopsis thaliana*

FABIANO SILVA SOARES

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO – UENF

> CAMPOS DOS GOYTACAZES - RJ MARÇO – 2022

EFEITOS DE COMPOSTOS ORGÂNICOS VOLÁTEIS PRODUZIDOS POR *Gluconacetobacter diazotrophicus* Pal5 SOBRE A MORFOLOGIA, FISIOLOGIA E O PROTEOMA DE *Arabidopsis thaliana*

FABIANO SILVA SOARES

"Tese apresentada ao Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Doutor em Genética e Melhoramento de Plantas"

Orientador: Prof. Gonçalo Apolinário de Souza Filho

CAMPOS DOS GOYTACAZES - RJ MARÇO – 2022

FICHA CATALOGRÁFICA

UENF - Bibliotecas

Elaborada com os dados fornecidos pelo autor.

S676 Soares, Fabiano Silva.

Efeitos de compostos orgânicos voláteis produzidos por *Gluconacetobacter diazotrophicus* Pal5 sobre a morfologia, fisiologia e o proteoma de *Arabidopsis thaliana* / Fabiano Silva Soares. - Campos dos Goytacazes, RJ, 2022.

151 f. : il. Bibliografia: 57 - 74.

Tese (Doutorado em Genética e Melhoramento de Plantas) - Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Ciências e Tecnologias Agropecuárias, 2022. Orientador: Goncalo Apolinario de Souza Filho.

1. PGPB. 2. VOCs. 3. proteômica. 4. fotossíntese. 5. defesa. I. Universidade Estadual do Norte Fluminense Darcy Ribeiro. II. Título.

CDD - 631.5233

EFEITOS DE COMPOSTOS ORGÂNICOS VOLÁTEIS PRODUZIDOS POR Gluconacetobacter diazotrophicus Pal5 SOBRE A MORFOLOGIA, FISIOLOGIA E O PROTEOMA DE Arabidopsis thaliana

FABIANO SILVA SOARES

"Tese apresentada ao Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Doutor em Genética e Melhoramento de Plantas."

Aprovada em 28 de março de 2022.

Comissão Examinadora:

Prof. Fabio Lopes Olivares (D.Sc., Agronomia) - UENF

Dr. Guilherme Julião Zocolo (D.Sc., Química Analítica) - Embrapa Agroindústria Tropical

Prof. Vanildo Silveira (D.Sc., Biotecnologia) - UENF

Prof. Gonçalo Apolinário de Souza Filho (D.Sc., Biociências e Biotecnologia) - UENF (Orientador)

DEDICATÓRIA

Dedico esta tese de doutorado a cada professor que passou pela minha vida. Em especial, à professora Laura Alexsandra Neves Monteiro que me ensinou a ler e escrever na Escola Estadual Criança Cidadã/CAIC, localizada na rua Hermes da Fonseca, s/n, Jardim Cidade Nova, no município de Cáceres - MT.

AGRADECIMENTOS

Ao Prof. Dr. Gonçalo Apolinário de Souza Filho pelos valiosos ensinamentos, paciência e por acreditar no meu potencial;

Aos membros da banca, Prof. Dr. Fábio Lopes Olivares, Prof. Dr. Vanildo Silveira e Dr. Guilherme Julião Zocolo pelas contribuições;

Aos companheiros do Setor Multiusuário de Genômica e Proteômica do Laboratório de Biotecnologia (LBT): Mariana Ramos Leandro, Tamires Cruz dos Santos, Patrícia Louzada Rangel Terra, Júlia Rosa Moreira, Vivian Ribeiro Pimentel, Danyelle Barbosa Mayrink Rodrigues, Clara Yohana Maia, Rafael Tavares Rocha, Wálaci da Silva Santos, Renato Carvalho Rocha Machado, Daniel Quintanilha Pacheco, Kariny Marley de Castro Martins e Ana Luísa Vaz pelo convívio diário, contribuições na pesquisa e momentos de descontração;

Ao Prof. Dr. Vanildo Silveira e seus orientandos Felipe Astolpho de Almeida e Lucas Rodrigues Xavier pelo acompanhamento nas análises proteômicas;

Ao Prof. Dr. Eliemar Campostrini e os seus orientandos Wallace de Paula Bernardo e Guilherme Augusto Rodrigues de Souza pelo auxílio nas análises de fluorescência da clorofila *a*;

Ao corpo técnico do LBT, especialmente Telma Ferreira Costa e Frederico de Carvalho pelos auxílios prestados;

Aos meus pais, Marinete Silvana de Almeida Silva e Francisco Cruz Soares pelo esforço em me manter estudando. Neste país estudar é um privilégio!

Aos meus irmãos, Flávio Silva Soares e Mirelli Fernanda Silva Soares pelo incentivo.

Ao Paulo Henrique da Silva pela amizade, companhia e compreensão durante esses anos;

À Julyene Oliveira Teixeira, Jefferson Deluque da Silva, Marcelo Ribeiro Rondon, Thalita Neves Marostega, Celina Francisca de Almeida Silva, Domingos da Silva, Natalino de Almeida Silva, Tássia Nunes da Silva, Valdirene Francisca da Silva, Samuel Laudelino da Silva, Verônica Dias Almeida, Monise de Matos e Maria de Lourdes Pinheiro Bezerra por toda a ajuda inicial;

Aos conterrâneos mato-grossenses: Moisés Ambrósio, Nádia Botini, Kaliane Zaira Camacho Maximiano da Cruz e Priscila Fernanda Simioni pela recepção em Campos dos Goytacazes;

À Josefa Grasiela Silva Santana pelas longas conversas, trocas de informações, e o melhor de tudo pela amizade;

À Águina Lúcia Pimentel Pessanha pelo suporte médico e atendimento impecável, maximizando a minha sensação de bem-estar, confiança e autoestima para lidar com os desafios da pós-graduação;

À Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), ao Programa de Pós-Graduação em Genética e Melhoramento de Plantas (PGGMP) e ao Laboratório de Melhoramento Genético Vegetal (LMGV) pela oportunidade;

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

SUMÁRIO

RESUMO vii
ABSTRACTix
1 INTRODUÇÃO1
2 OBJETIVOS
2.1 Objetivo Geral
2.2 Objetivos Específicos
3 REVISÃO DE LITERATURA4
3.1 Compostos orgânicos voláteis bacterianos: definição e propriedades
química4
3.2 mVOCs bacterianos e plantas7
3.2.1 mVOCs bacterianos identificados como promotores do crescimento
vegetal14
3.2.2 Proteção vegetal mediada por mVOCs bacterianos16
3.3 A bactéria promotora do crescimento vegetal Gluconacetobacter
diazotrophicus: caracterização e mecanismos de ação19
3.4 Arabidopsis thaliana nos estudos de interação planta-PGPB23
3.5 Abordagens proteômicas para estudar a interação planta-PGPB24
4 MATERIAL E MÉTODOS26
4.1 Cepa bacteriana e condições de cultivo26
4.2 Material vegetal e condições de cultivo26
4.3 Inoculação e promoção do crescimento das plantas27
4.4 Pigmentos fotossintéticos

4.5 Fluorescência da clorofila a28
4.6 Análise proteômica
Extração de proteínas totais29
Digestão de proteínas
Análise de espectrometria de massas
4.7 Análise de dados de proteômica31
4.8 Análises de via e localização subcelular
4.9 Análise estatística
5 RESULTADOS
5.1 Efeito de VOCs produzidos por Gluconacetobacter diazotrophicus Pal5 sobre o
crescimento de A. thaliana
5.2 VOCs produzidos por Gluconacetobacter diazotrophicus Pal5 induziram
mudanças nos proteomas da parte aérea e raiz das plantas de A. thaliana35
5.3 Principais vias reguladas em plantas de A. thaliana expostas aos VOCs de
Gluconacetobacter diazotrophicus Pal5
5.4 VOCs de Gluconacetobacter diazotrophicus Pal5 regulam o metabolismo da
fotossíntese
Proteínas da maquinária fotossintética
Teores de clorofila
Fluorescência da clorofila a40
5.5 Os mecanismos regulados na raiz pelos VOCs de Gluconacetobacter
diazotrophicus Pal542
Parede celular42
Sistema antioxidante44
5.6 Regulação de proteínas de defesa vegetal em resposta aos VOCs produzidos
por Gluconacetobacter diazotrophicus Pal545
5.7 Participação das vias hormonais vegetais na resposta de A. thaliana aos VOCs
de Gluconacetobacter diazotrophicus Pal547
6 DISCUSSÃO
7 CONCLUSÕES55
8 PERSPECTIVAS
REFERÊNCIAS57
APÊNDICE75

RESUMO

SOARES, Fabiano Silva; D. Sc.; Universidade Estadual do Norte Fluminense Darcy Ribeiro, Março, 2022. Efeitos de compostos orgânicos voláteis produzidos por *Gluconacetobacter diazotrophicus* Pal5 sobre a morfologia, fisiologia e proteoma de *Arabidopsis thaliana*. Orientador: Gonçalo Apolinário de Souza Filho. Conselheiros: Fábio Lopes Olivares, Valdirene Moreira Gomes e Vanildo Silveira.

Compostos orgânicos voláteis (VOCs) de bactérias promotoras do crescimento vegetal (PGPB) desempenham papéis-chave na modulação do crescimento e defesa das plantas. Apesar de sua relevância, os efeitos dos VOCs produzidos por Gluconacetobacter diazotrophicus ainda não foram elucidados. Assim, o presente trabalho teve como objetivo investigar o potencial de VOCs de G. diazotrophicus Pal5 em promover o crescimento de Arabidopsis thaliana (Col-0), avaliando as alterações fisiológicas e as vias moleculares ativadas durante tal processo. Os resultados demonstraram que os VOCs de G. diazotrophicus Pal5 promovem o crescimento vegetal em A. thaliana, levando um ganho de peso fresco da planta de 314,2% em relação ao controle. Uma diminuição no comprimento da raiz principal foi observada (27,4%), porém as plantas apresentaram incremento no desenvolvimento de raízes laterais. Visando avaliar as vias moleculares reguladas em plantas de A. thaliana após exposição aos VOCs de G. diazotrophicus Pal5, análises proteômicas comparativas revelaram que 25,8% das proteínas positivamente reguladas na parte aérea das plantas estavam relacionadas à fotossíntese. Observou-se um aumento no conteúdo de clorofila e eficiência fotossintética das plantas. Nas raízes das plantas de A. thaliana, os VOCs de G.

vii

diazotrophicus Pal5 regularam proteínas relacionadas à lignificação е remodelamento da parede celular (14 aumentadas/7 reduzidas), atenuação do sistema antioxidante (5 aumentadas/10 reduzidas) e aos mecanismos de defesa (4 aumentadas/9 reduzidas). A utilização da linhagem transgênica NahG deficiente no acúmulo de ácido salicílico e dos mutantes abi4 (insensível ao ácido abscísico), aux1-7 (resistente ao etileno e auxina), etr1-3, ein3-1 (insensível ao etileno), jar1 (moderadamente insensível ao jasmonato de metila e sensível ao jasmonilisoleucina), jin1 (insensível ao jasmonato de metila), eds16 e sid2-2 (deficiente no acúmulo de ácido salicílico) de A. thaliana aos VOCs de G. diazotrophicus Pal5, revelaram que a indução de promoção do crescimento é dependente das vias de sinalização dos hormônios etileno e ácido abscísico. Este estudo fornece novas informações sobre o papel dos VOCs de G. diazotrophicus Pal5 como promotores de crescimento vegetal, bem como sobre os mecanismos moleculares envolvidos em tal processo.

Palavras-chave: PGPB; VOCs; proteômica; fotossíntese; defesa.

ABSTRACT

SOARES, Fabiano Silva; D. Sc.; North Fluminense State University Darcy Ribeiro; March, 2022; Effects of volatile organic compounds produced by *Gluconacetobacter diazotrophicus* Pal5 on morphology, physiology, and proteome of *Arabidopsis thaliana*. Advisor: Gonçalo Apolinário de Souza Filho. Counselors: D. Sc. Fábio Lopes Olivares, D. Sc. Valdirene Gomes Moreira, and D. Sc. Vanildo Silveira.

Volatile organic compounds (VOCs) from plant growth-promoting bacteria (PGPB) play key roles in modulating plant growth and plant defense. Despite their significance, the effects of the VOCs produced by Gluconacetobacter diazotrophicus have not been elucidated. The present work aimed to investigate the potential of G. diazotrophicus Pal5 VOCs to promote the growth of Arabidopsis thaliana (Col-0), to evaluate the plant physiology, the molecular pathways regulated in plants, as well as the hormonal pathways of the plant involved in such a response. The results showed that G. diazotrophicus Pal5 VOCs promote plant growth in A. thaliana, promoting a plant fresh weight gain of 314.2% in relation to the control. A decrease in principal root length was observed (27.4%), however, the plants showed improved development of lateral roots. In order to evaluate the molecular pathways regulated in plants of A. thaliana after exposure to VOCs produced by G. diazotrophicus Pal5, comparative proteomic analyzes revealed that 25.8% of the proteins positively regulated in shoots were related to the photosynthesis. We observed an increase in the chlorophyll content and photosynthetic efficiency of the plants. In the roots of A. thaliana plants, G. diazotrophicus Pal5 VOCs targeted cell

wall lignification and remodeling (14 up- /7 down-regulated), attenuation of the antioxidant system (5 up-/10 down-regulated), and defense (4 up-/9 down-regulated). Using SA-deficient transgenic *NahG* line and mutants *abi4* (ABA-insensitive), *aux1-7* (auxin and ET-resistant), *etr1-3*, *ein3-1* (ET-insensitive), *jar1* (MeJA-moderate insensitive and JA-IIe-sensitive), *jin1* (JA-insensitive), *eds16* and *sid2-2* (SA-accumulation deficient) of *A. thaliana*, we provide evidence that the signaling pathways activated by volatiles from *G. diazotrophicus* Pal5 depend on ethylene and abscisic acid. This study provides new insight into the role of *G. diazotrophicus* Pal5 VOCs as growth-promoting in plants.

Key-words: PGPB; VOCs; proteomics; photosynthesis; defense

1 INTRODUÇÃO

O advento da Revolução Verde, na segunda metade do século XX, mudou drasticamente o setor agrícola, ao aumentar o uso de fertilizantes químicos, defensivos sintéticos e herbicidas (Kesavan e Swaminathan 2018). Embora essas mudanças contribuíram significativamente para aumentar a produtividade das plantas e da produção agrícola, o uso excessivo dos agroquímicos sintéticos trouxe efeitos ambientais e sociais indesejáveis (Pahalvi et al. 2021; Vasco et al. 2021). Estimulada pela crescente demanda e pela conscientização do impacto negativo causado pelas práticas agrícolas atuais, a agricultura caminha para uma abordagem mais sustentável (Ramakrishna et al. 2019).

Bactérias Promotoras do Crescimento Vegetal (PGPBs) despontam como substitutas adequadas para minimizar o uso de agroquímicos sintéticos na produção agrícola (Glick 2020). PGPBs melhoram a nutrição vegetal pela fixação biológica de nitrogênio, solubilizando fosfato, zinco e potássio, e segregando substâncias promotoras do crescimento vegetal, incluindo vários hormônios, sideróforos e voláteis (Sarathambal et al. 2010; Piechulla et al. 2017).

As bactérias são capazes de sintetizar uma série de várias substâncias voláteis, chamadas de compostos orgânicos voláteis (VOCs). Eles são propagados em meio líquido e aéreo, bem como no solo, e atuam em curtas e longas distâncias (Veselova et al. 2019). Foram encontrados VOCs para proteção contra patógenos vegetais, ativação de respostas de defesa vegetal e aumento do crescimento de plantas (Aziz et al. 2016; Jiang et al. 2019; Bavaresco et al. 2020). Assim, os VOCs

bacterianos destacam-se como potenciais bioestimulantes e bioprotetores eficazes (Poveda 2021).

Para diversas PGPBs, a produção de VOCs e seus efeitos benéficos sobre as plantas são bem descritas. Cepas dos gêneros *Bacillus, Pseudomonas, Arthobacter, Serratia* e *Streptomyces* contam com estudos caracterizando o seu volatiloma e o papel de alguns dos voláteis que são liberados na promoção do crescimento e saúde de plantas (Ryu et al. 2003; Kai e Piechulla 2009; Velázquez-Becerra et al. 2011; Vaishnav et al. 2015; Dotson et al. 2020).

Gluconacetobacter diazotrophicus é uma PGPB endofítica capaz de fixar nitrogênio atmosférico que pode promover o crescimento em diversas espécies vegetais, como cana-de-açúcar, feijão e *A. thaliana* (Eskin et al. 2014; Rangel de Souza et al. 2016; de Oliveira et al. 2019). Além disso, essa bactéria apresenta atividade antagônica contra fitopatógenos e resistência a diversos estresses abióticos, como seca, salinidade e metais pesados (Rodriguez et al. 2019; Leandro et al. 2021a,b; Moreira et al. 2022). Essas características chamam atenção para a aplicação dessa bactéria na agricultura.

Apesar do amplo conhecimento adquirido através de estudos anteriores alegando que *G. diazotrophicus* pode promover o crescimento das plantas através da colonização dos tecidos internos do seu hospedeiro vegetal (Muthukumarasamy et al. 2005; Eskin et al. 2014), ainda permanece desconhecido se ela também é capaz de produzir VOCs com efeito indutor do crescimento vegetal, como descrito para outras espécies PGPBs.

Neste sentido, este trabalho foi dedicado a avaliar a resposta de plantas de *A. thaliana* aos VOCs produzidos por *G. diazotrophicus*. O efeito dos VOCs bacterianos sobre a promoção do crescimento vegetal foi observado através da morfologia, fisiologia e proteoma das plantas após a exposição aos voláteis. A maneira como as plantas percebem os VOCs produzidos pela bactéria também foi investigada. Juntos, essas evidências sugerem que *G. diazotrophicus* também pode promover o crescimento vegetal sem colonizar endofiticamente a planta, apresentando os principais mecanismos moleculares pelos quais a promoção do crescimento da planta acontece.

2 OBJETIVOS

2.1 Objetivo Geral

Estudar o efeito dos compostos orgânicos voláteis (VOCs) de *Gluconacetobacter diazotrophicus* Pal5 na promoção do crescimento de plantas a partir de análises morfológicas, fisiológicas e de análises das proteínas diferencialmente reguladas durante a interação.

2.2 Objetivos Específicos

- Analisar o efeito dos VOCs emitidos por *G. diazotrophicus* Pal5 no crescimento e peso fresco de *A. thaliana*;

- Avaliar o conteúdo de pigmentos fotossintéticos e fluorescência de clorofila *a* nas plantas de *A. thaliana* após exposição aos VOCs de *G. diazotrophicus* Pal5;

 Verificar o envolvimento das vias de produção e percepção hormonal vegetal na promoção do crescimento de plantas de *A. thaliana* após exposição aos VOCs de *G. diazotrophicus* Pal5;

- Identificar as principais vias moleculares reguladas em *A. thaliana* após exposição aos VOCs de *G. diazotrophicus* Pal5 através de proteômica comparativa por LC-MS/MS.

3 REVISÃO DE LITERATURA

3.1 Compostos orgânicos voláteis bacterianos: definição e propriedades químicas

Os microrganismos são capazes de sintetizar uma mistura complexa de compostos voláteis (mVCs) com pequenas massas moleculares (<300 Da) que podem ser facilmente difundidas no ar e na água (Veselova et al. 2019). Tais mVCs podem ser de natureza inorgânica e orgânica (Effmert et al. 2012). mVCs inorgânicos inclui um número limitado de compostos com massas moleculares inferiores a ~45 Da, como hidrogênio molecular (H₂; 2 Da), monóxido de carbono (CO; 28 Da), óxido nítrico (NO; 30 Da), sulfeto de hidrogênio (H₂S; 36 Da), dióxido de carbono (CO₂; 44 Da) e dióxido de nitrogênio (NO₂; 46 Da) (Gámez-Arcas et al. 2022), enquanto que mVCs orgânicos (a partir de agora designados como mVOCs) engloba uma ampla gama de compostos com massas moleculares que variam entre ~45 Da e 300 Da (Effmert et al. 2012). Ambos são infoquímicos predestinados para comunicação entre diferentes organismos que atuam na atmosfera, bem como abaixo do solo em pequenas e longas distâncias (Schulz-Bohm et al. 2017).

Nas últimas duas décadas as pesquisas concentraram esforços no papel dos mVOCs de origem bacteriana nas interações microbianas intra-reinos (bactérias, fungos e protistas) e nas interações inter-reinos com plantas e insetos. Cerca de 1.860 mVOCs de 604 espécies bacterianas foram identificados até agora (Lemfack et al. 2018), mas apenas <10% desses mVOCs estão associados a uma função biológica e ecológica (Piechulla et al. 2017). Foram encontrados mVOCs bacterianos para modular o crescimento vegetal e microbiano, causar resistência sistêmica em plantas, afetar insetos, nematoides e outros organismos, atuar como atrativos e repelentes e auxiliar o metabolismo enérgico em humanos (Netzker et al. 2020).

A diversidade química de mVOCs bacterianos fornece uma fonte de compostos que podem ser aplicados na medicina, biotecnologia e agricultura (Veselova et al. 2019). Esses mVOCs pertencem às classes químicas: alcanos, alcenos, álcoois, cetonas, terpenos, ácidos, ésteres, compostos aromáticos e compostos contendo nitrogênio e enxofre (Veselova et al. 2019). O metabolismo aeróbico, heterotrófico de carbono, fermentação, catabolismo de aminoácidos, biossíntese de terpenoides, degradação de ácidos graxos e redução de enxofre são os principais caminhos para a síntese dos mVOCs bacterianos (Schmidt et al. 2015). Assim, os mVOCs bacterianos são produzidos por uma multiplicidade de vias biossintéticas e, portanto, apresentam alta variabilidade estrutural (Figura 1).

Figura 1 - Principais vias metabólicas para formação de compostos voláteis de origem microbiana. As linhas pontilhadas indicam a formação dos voláteis. Os voláteis bacterianos são destacados nas caixas coloridas e exemplos desses voláteis são mostrados. Adaptado de Veselova et al. (2019).

Os mVOCs bacterianos podem ser classificados em três grupos diferentes: compostos comuns, de grupo e específicos (Weisskopf et al. 2021). Os compostos comuns ocorrem aleatoriamente em todo o reino bacteriano, e incluem todos os produtos básicos de fermentação e compostos derivados do metabolismo primário e alguns compostos de enxofre. Exemplos são o dissulfeto de dimetila e o 2-feniletanol (Weisskopf et al. 2021) e o bem estudado indol, o composto que possui o maior número de funções biológicas atribuídas do que qualquer outro mVOCs (Lee et al. 2015). Os compostos de grupo são encontrados preferencialmente dentro de certos gêneros ou espécies (Weisskopf et al. 2021). Geosmina pertence a esta classe de compostos porque até agora foi relatada apenas em actinobactérias, micobactérias e cianobactérias (Martín-Sánchez et al. 2019). Finalmente, compostos específicos são produzidos por apenas uma ou algumas cepas intimamente relacionadas (Weisskopf et al. 2021) como estreptopiridina em *Streptomyces* sp. FORM5 (Groenhagen et al. 2014) e sodorifeno em *Serratia plymuthica* PRI-2C (Schmidt et al. 2017).

Os perfis de mVOCs bacterianos são estudados utilizando a cromatografia gasosa acoplado à espectrometria de massas (GC-MS) (Farag et al. 2017). Esse é o método preferido para análise química de mVOCs devido à alta resolução, alta sensibilidade e metodologia padronizada para configuração da máquina e análise de dados (Reaves e Rabinowitz 2011). A microextração em fase sólida do Headspace (HS-SPME) tem sido a abordagem utilizada para capturar os mVOCs derivados de culturas bacterianas puras cultivadas *in vitro* e foi estabelecida como eficaz por vários grupos (Park et al. 2015; Tahir et al. 2017; Montes-Osuna et al. 2022). Essa abordagem envolve o uso de uma fibra SPME para capturar os mVOCs usando um tempo predeterminado e temperatura de incubação, e que não requer a circulação de ar para concentrar os voláteis (Farag et al. 2017). O conjunto de mVOCs produzidos por um microrganismo é denominado de volatiloma (Meredith e Tfaily 2022).

3.2 mVOCs bacterianos e plantas

Em 2003, Ryu e colaboradores mostraram pela primeira vez a importância dos mVOCs produzidos por duas cepas bacterianas colonizadoras de raiz, *Bacillus subtilis* GB03 e *B. amyloliquefaciens* IN937a, como agente de crescimento de

plantas de *A. thaliana* (Ryu et al. 2003). Posteriormente, Ryu e colaboradores sugeriram que os mVOCs das mesmas bactérias também eram capazes de provocar respostas de defesa vegetal em plantas de *A. thaliana* (Ryu et al. 2004). Até o momento, uma série de estudos têm revelado não só como os mVOCs produzidos por diferentes cepas de bactérias promotoras do crescimento são capazes de melhorar o crescimento e a saúde das plantas, como também a identidade química de muitos desses mVOCs bacterianos (Tabela 1).

A maioria dos estudos utilizaram o sistema de placas I para testar in vitro os efeitos dos mVOCs de origem bacteriana sobre o crescimento e a saúde das plantas (Tabela 1). Nesse sistema, as placas contêm uma divisão central que impede que a bactéria entre em contato físico com a planta, garantindo que as plantas respondam apenas aos voláteis que são liberados pela bactéria (Ryu et al. 2003, 2004). Outros estudos para simular a barreira física das placas I utilizaram duas placas de Petri, aonde uma placa menor é colocada no interior de uma placa maior, formando um sistema fechado de cultivo in vitro (Meldau et al. 2013; Cordovez et al. 2015; Ledger et al. 2016). A placa menor é utilizada para o crescimento das bactérias e a placa maior para o crescimento das plantas. Adicionalmente, microplacas, frascos de vidro e caixas Magenta também são descritas para experimentos in vitro (Rudrappa et al. 2010; Lee et al. 2012; Castulo-Rubio et al. 2015). Além disso, outros estudos já demonstraram com sucesso que a exposição de plantas aos mVOCs bacterianos em condições de estufa (Kai e Piechulla 2009) ou campo aberto (Cho et al. 2008) induzem o seu crescimento e proteção contra patógenos, destacando o esforço da pesquisa para desenvolver ferramentas que permitam sua aplicação fora do laboratório.

Com relação às plantas, *A. thaliana* é proposta como um modelo de estudo dos mVOCs sobre ela (Ryu et al. 2003; Aziz et al. 2016; Li et al. 2021). Contudo, diversas culturas de interesse agronômico têm sido utilizadas como, por exemplo, pepino (Song e Ryu 2013), sorgo (Castulo-Rubio et al. 2015), soja (Bavaresco et al. 2020) e tomate (Tahir et al. 2017), aproximando o potencial de uso dos mVOCs na agricultura.

Cepa bacteriana	mVOCs	Efeito na planta	Experimento	Referência
	ŀ	rabidopsis thaliana		
<i>Bacillus subtilis</i> GB03 <i>Bacillus amyloliquefaciens</i> IN937a	2,3-butanodiol	Área foliar total	Placas I	Ryu et al. (2003)
<i>Bacillus subtilis</i> GB03 <i>Bacillus amyloliquefaciens</i> IN937a	2,3-butanodiol	Proteção contra <i>Erwinia</i> <i>carotovora</i> ssp. <i>carotovora</i> Sinalização ET-dependente Alargamento de células da	Placas I	Ryu et al. (2004)
<i>Bacillus subtilis</i> GB03	ND	folha e raiz Homeostase de auxina Atividade fotossintética do fotossistema II	Placas I	Zhang et al. (2007)
Bacillus subtilis GB03	ND	Teor de clorofila Sinalização de glicose Níveis de ABA	Placas I	Zhang et al. (2008)
Pseudomonas chlororaphis O6	2,3-butanodiol	Tolerância à seca Sinalização SA-dependente	Placas I	Cho et al. (2008)
Serratia odorifera 4Rx13	ND	Biomassa fresca	Placas I Potes (miniestufa)	Kai e Piechulla (2009)
<i>Bacillus subtilis</i> GB03	ND	Tolerância ao estresse osmótico Biossíntese de glicina e betaína Sinalização ABA- independente	Placas I Potes	Zhang et al. (2010)
Bacillus megaterium XTBG34	2-pentilfurano	Aumento de biomassa fresca	Placas de Petri	Zou et al. (2010)

 Tabela 1 - Efeito dos mVOCs produzidos por bactérias promotoras do crescimento vegetal em plantas

Tabela 1, Cont.

Cepa bacteriana	mVOCs	Efeito na planta	Experimento	Referência
	/	Arabidopsis thaliana		
Bacillus subtilis FB17	Acetoína	Proteção contra <i>Pseudomonas syringae</i> pv. <i>syringae</i> DC3000 Sinalização ET/SA- dependente	Caixas Magenta	Rudrappa et al. (2010)
Burkholderia spp.	Indol 1-hexanol	Biomassa fresca	Placas I	Blom et al. (2011)
Paenibacillus polymyxa E681	Tridecano	Proteção contra <i>P. syringae</i> pv. <i>maculicola</i> ES4326 Sinalização ET-dependente	Microplacas	Lee et al. (2012)
Streptomyces spp.	1,3,5-tricloro-2- metoxibenzeno	Atividade antifúngica contra <i>Rhizoctonia solani</i> Atividade antifúngica contra	Placas de Petri	Cordovez et al. (2015)
Bacillus subtilis GB03	ND	Botrytis cinerea Sinalização JA/SA- dependente	Placas I	Sharifi e Ryu (2016)
Paraburkholderia phytofirmans PsJN	2-undecanona 7-hexanol 3-metil-butanol	Tolerância à salinidade	Placas de Petri Potes	Ledger et al. (2016)
Bacillus subtilis GB03	ND	Proteção contra o inseto <i>Spodoptera exigua</i> BAW Produção de glucosinolatos	Placas I	Aziz et al. (2016)
<i>Bacillus amyloliquefaciens</i> UCMB5113	Vários compostos	Número de raízes laterais (dependente da dose e do meio de cultura)	Placas I	Asari et al. (2016)

Tabela 1, Cont.

Cepa bacteriana	mVOCs	Efeito na planta	Experimento	Referência
	A	rabidopsis thaliana		
<i>Alcaligenes faecalis</i> JBCS1294	Ácido butírico Ácido propiônico Ácido benzóico	Tolerância à salinidade Sinalização auxina e giberelina-dependente	Placas I	Bhattacharyya e Lee (2017)
<i>Bacillus amyloliquefaciens</i> BF06	Vários compostos	Aumento da fotossíntese e absorção de ferro e selênio Número de folhas	Placas I	Wang et al. (2017)
<i>Bacillus methylotrophicu</i> s M4- 96	Acetoína	Comprimento de raiz Número de raízes laterais Sinalização de auxina	Placas I	Pérez-Flores et al. (2017)
Bacillus mojavensis RRC101	Acetoína	Biomassa fresca	Placas I	Rath et al. (2018)
<i>Bacillus amyloliquefaciens</i> FBZ42	Acetoína 2,3-butanodiol	Fechamento estomático	Potes	Wu et al. (2018)
<i>Bacillus</i> sp. JC03	3-hidroxitetrahidrofurano 2-heptanona 2-etilhexanol	Biomassa fresca Comprimento de raiz Número de raízes laterais Sinalização de auxina e estrigolactona	Placas I	Jiang et al. (2019)
Streptomyces coelicolor M145	3-octanona	Comprimento de raiz principal Número de raízes laterais Homeostase de auxina/citocinina	Placas de Petri	Dotson et al. (2020)
Azospirillum brasilense Sp245	ND	Comprimento da raiz primária Número de raízes laterais Sinalização de auxina	Placas de Petri	Méndez-Gómez et al. (2021)
Bacillus amyloliquefaciens SQR9	Acetoína	Número de raízes laterais Sinalização de auxina	Placas I	Li et al. (2021)

Tabela 1, Cont.				
Cepa bacteriana	mVOCs	Efeito na planta	Experimento	Referência
	Д	rabidopsis thaliana		
Gluconacetobacter diazotrophicus Pal5	Metanotiol Ácido 2-metilpropanóico Ácido 2-metilbutanóico Ácido 3-metilbutanóico Étilbenzeno 2,2,4,4,7,7- hexametilocta-hidro-1H- indeno Ácido sórbico Ácido acético Dissulfeto de dimetila Tri-terc-butilmetanol	Biomassa fresca de parte aérea e raiz Redução do comprimento de raiz Teor de clorofila <i>a,</i> clorofila b, carotenoides, flavonóis e antocianinas Sinalização de auxina	Placas I	Maia (2021)
		Cucumis sativus		
Muitas espécies de bactérias	2-butanona 3-pentanol	Proteção contra Pseudomonas syringae pv. lachrymans Atração de Coccinella septempunctata predadora natural de Myzus persicae	Campo	Song e Ryu (2013)
		Glycine max		
Bacillus subtilis AP-3	ND	Altura e biomassa de planta Comprimento, diâmetro, volume e área total de raiz	Frascos de vidro	Bavaresco et al. (2020)
Pseudomonas simiae AU	2-metoxi-4-nitrofenol Quinolina	Tolerância à salinidade Proteínas antioxidantes Nitrato redutase	Placas de Petri	Vaishnav et al. (2016)

Tabela 1, Cont.

Cepa bacteriana	mVOCs	Efeito na planta	Experimento	Referência	
		Medicago sativa			
Arthobacter agilis UMCV2	N,N- dimetilhexadecanamina	Biomassa fresca Comprimento do caule Número de raízes laterais Comprimento de raiz primária	Placas de Petri	Velázquez-Becerra et al. (2011)	
	I	Nicotiana attenuata			
Bacillus sp. B55	Dissulfeto de dimetila	Nutrição de enxofre	Placas de Petri	Meldau et al. (2013)	
	Ni	cotiana benthamiana			
<i>Bacillus amyloliquefaciens</i> FBZ42	Acetoína 2,3-butanodiol	Fechamento estomático	Potes	Wu et al. (2018)	
		Nicotiana tabacum			
Pseudomonas fluorescens SS101	(3E)-tetradeca-3,13-dien 1-ol 2-metiltridec-1-eno 2-butanona	Biomassa fresca	Potes	Park et al. (2015)	
Solanum lycopersicum					
Bacillus subtilis SYST2	Albuterol Propano-1,3-diol	Fotossíntese Conteúdo de giberelina, auxina e citocinina	Potes	Tahir et al. (2017)	
		Sorghum bicolor			
Arthrobacter agilis UMCV2	N,N- dimetilhexadecanamina	Nutrição de ferro	Frascos de vidro	Castulo-Rubio et al. (2015)	
Abreviações. ND = nenhum c	omposto; ET = etileno; SA =	ácido salicílico			

3.2.1 mVOCs bacterianos identificados como promotores do crescimento vegetal

O primeiro estudo que mostrou o efeito promotor do crescimento de mVOCs de bactérias sobre plantas foi realizado por Ryu et al. (2003) que descobriram que os mVOCs produzidos pelas cepas B. subtilis GB03 e B. amyloliquefaciens IN937a provocaram um aumento de aproximadamente 5 vezes na área total da folha de A. thaliana após 10 dias de exposição. A análise de cromatografia gasosa dos mVOCs revelou que dois compostos, 2,3-butanodiol e acetoína (ou 3-hidroxi-2-butanona), foram liberados consistentemente pelas cepas GB03 e IN937a. Em seguida, com 2,3-butanodiol sintético na presença de plantas de A. thaliana cultivadas em placas I foi confirmado a eficácia do primeiro mVOCs bacteriano na promoção do crescimento vegetal (Ryu et al. 2003). Posteriormente, Zhang et al. (2007) demonstraram que os mVOCs produzidos pela cepa B. subtilis GB03 aumentaram a expansão das células de folha e raiz de A. thaliana após 10 dias de exposição em placas I, e concluíram que a síntese e o transporte de auxina foram responsáveis pelo controle do crescimento da planta. Depois, Zhang et al. (2008) mostraram que a capacidade fotossintética de A. thaliana foi aprimorada pelos mVOCs da cepa B. subtilis GB03 através da modulação da sinalização de açúcar e ABA da planta. Embora os estudos de Zhang e colaboradores (Zhang et al. 2007, 2008) não tenham atribuído um papel biológico ao 2,3-butanodiol como nos trabalhos anteriores, eles foram pioneiros na elucidação de como o "pool" de VOCs de uma bactéria do solo regulam a promoção do crescimento das plantas. Uma revisão sobre os mVOCs de *B. subtilis* foi publicada por Kai (2020) e revelou que 26 isolados individuais da espécie produzem um total de 231 mVOCs quimicamente diversos, dos quais 69 foram encontrados com propriedades bioativas, por exemplo, por influenciar a promoção do crescimento das plantas, mostrar atividade antimicrobiana e afetar o comportamento de insetos.

Além disso, outras cepas de *Bacillus* sp. foram testadas como promotoras do crescimento através da produção de mVOCs utilizando *A. thaliana* como plantamodelo de estudo. Zou et al. (2010) mostraram que os mVOCs produzidos pela *B. megaterium* XTBG-34 provocaram um aumento de aproximadamente 2 vezes na biomassa fresca das plantas após 7 dias de exposição em placas I. Dos 11 compostos identificados, o 2-pentilfurano foi descrito como um novo mVOCs de promoção do crescimento vegetal (Zou et al. 2010). Posteriormente, Asari et al. (2016) mostraram que a B. amyloliquefaciens UCMB5113 produz vários mVOCs, dentre eles acetoína e 2,3-butanodiol, com efeitos no comprimento de raiz primária e número de raízes laterais das plantas cultivadas em placas I. Adicionalmente, foi verificado que o efeito máximo de promoção do crescimento das plantas foi alcançado em baixos níveis de bactéria, e que os perfis de mVOCs liberados pela bactéria diferem dependendo do meio de cultura (Asari et al. 2016). Depois, Wang et al. (2017) relataram que A. thaliana exposta aos mVOCs da cepa B. amyloliquefaciens BF06 apresentou melhor absorção de Fe e S, e identificaram que o decanal foi produzido em maior quantidade pela bactéria. Além disso, Pérez-Flores et al. (2017) relataram que a acetoína liberada pela cepa B. methylotrophicus M4-96 favoreceu o crescimento de plantas pela via de sinalização de auxina. Outros estudos comprovaram que a acetoína produzida por duas cepas de Bacillus, B. mojavensis RRC101 (Rath et al. 2018) e B. amyloliquefaciens SQR9 (Li et al. 2021) tinham efeito indutor de crescimento de plantas. Finalmente, Jiang et al. (2019) demonstraram pela primeira vez que os mVOCs produzidos pela cepa Bacillus sp. JC03 promoveram o crescimento de plantas através da ação de auxina e a estrigolactonas, e identificaram três novos compostos, 3-hidroxitetrahidrofurano, 2heptanona e 2-etil-1-hexanol, que poderiam promover o crescimento vegetal.

Outras espécies bacterianas têm sido relatadas por sua capacidade de produzir mVOCs com atividade promotora do crescimento em *A. thaliana*. Um estudo realizado por Kai e Piechulla (2009) concluiu que a cepa *Serratia odorifera* 4Rx13 tinha capacidade de liberar mVOCs induzindo o crescimento vegetal, aumentando 3 vezes a biomassa fresca das plantas cultivadas em placas I, bem como em potes contendo substrato estéril e mantidas em condições de miniestufa. Além disso, os autores especularam um possível papel do CO₂ na promoção do crescimento das plantas (Kai e Piechulla, 2009). Essa é uma questão controversa se o CO₂ ou outros mVOCs bacterianos promovem o crescimento de plantas em sistemas fechados. Até o presente momento os achados indicam que, além do CO₂ respiratório, que têm um grande impacto, também outras moléculas nas misturas voláteis contribuem para os efeitos observados no crescimento das plantas (García-Gómez et al. 2019; Venneman et al. 2020; Zhang et al. 2021b).

Posteriormente, Blom et al. (2011) demonstraram que plantas expostas aos mVOCs produzidos por 26 espécies de *Burkholderia* aumentaram a biomassa

fresca de 190% (*B. andropogonis* LMG 2129) a 427% (*B. caribensis* LMG 18531), e que o indol e 1-hexanol poderiam ser os potenciais mVOCs com atividade promotora do crescimento das plantas (Blom et al. 2011). Recentemente, Dotson et al. (2020) mostraram que 3-octanona liberada da *Streptomyces coelicolor* M145 alterou a homeostase de auxina/citocina para promover o crescimento de raízes laterais e inibir a raiz principal das plantas. Similarmente, os mVOCs produzidos pela cepa *Azospirillum brasilense* Sp245 modularam o sistema radicular de *A. thaliana* pela via de sinalização de auxina (Méndez-Gómez et al. 2021).

Em culturas de interesse agronômico, como alfafa, foi determinado que o mVOCs N,N-dimetilhexadecanamina produzida pela Arthobacter agilis UMCV2 é capaz de aumentar o seu crescimento in vitro (Velázquez-Becerra et al. 2011). O N,N-dimetilhexadecilamina também liberado pela cepa UMCV2 aumentou a nutrição de Fe em plantas de sorgo cultivadas in vitro (Castulo-Rubio et al. 2015). Da mesma forma, o dissulfeto de dimetila da bactéria Bacillus sp. B55 aumentou o crescimento de plantas de tabaco através da absorção de S (Meldau et al. 2013), assim como o (3E)-tetradeca-3,13-dien-1-ol, 2-metiltridec-1-eno e 2-butanona da Pseudomonas fluorescens SS101 estimulou a biomassa fresca das plantas de tabaco (Park et al. 2015). Em tomate foi comprovado que os mVOCs albuterol e 1,3-propanodiol produzidos pela B. subtilis SYST2 foram capazes de aumentar a fotossíntese e o teor de auxina, citocinina e giberelina após 14 dias de exposição das plantas (Tahir et al. 2017). Também da cepa B. subtilis AP-3, mVOCs não identificados aumentaram a biomassa vegetal e mudaram a arquitetura da raiz da soja que exibia raízes com maior comprimento, diâmetro, área de superfície e volume (Bavaresco et al. 2020).

3.2.2 Proteção vegetal mediada por mVOCs bacterianos

A capacidade de diferentes mVOCs de proteger contra diferentes estresses abióticos e bióticos tem sido relatada em diferentes espécies bacterianas e vegetais.

Quanto aos estresses abióticos, a proteção das plantas contra a seca pelos mVOCs bacterianos foram descritos. Por exemplo, os mVOCs da *B. subtilis* GB03 aumentaram o acúmulo dos níveis de colina e glicina betaína em plantas de *A. thaliana* cultivadas em *in vitro* com estresse osmótico (Zhang et al. 2010). Sob

condições de estufa, as plantas tratadas com os mVOCs da cepa B. subtilis GB03 e as plantas não tratadas apresentaram níveis igualmente elevados de ácido abscísico (ABA), que é um fitohormônio responsivo ao estresse crucial para a tolerância ao estresse abiótico da planta (Zhang et al. 2010). Esse padrão indicou que o ABA basal regula, mas não aumenta a tolerância ao estresse da planta desencadeado pelos mVOCs. Em outro estudo, a tolerância à seca da planta induzida por mVOCs bacterianos também não foi atribuída ao ABA, porque as plantas expostas ao mVOCs apresentaram níveis mais baixos de ABA do que as plantas controle (Cho et al. 2008). Nesse sentido, o ácido salicílico (SA) pareceu ser crítico para a tolerância à seca de A. thaliana induzida por 2,3-butanodiol produzido pela Pseudomonas chlororaphis O6 (Cho et al. 2008). Em nível fisiológico, a tolerância à seca da planta induzida pela cepa O6 e o 2,3-butanodiol foi correlacionada com o aumento do fechamento estomático (Cho et al. 2008). Da mesma forma, 2,3-butanodiol e a acetoína liberados da *B. amyloliquefaciens* FBZ42 estimularam o acúmulo de peróxido de hidrogênio e óxido nítrico, resultando no fechamento estomático em plantas de A. thaliana e tabaco (Wu et al. 2018). Notavelmente, Wu et al. (2018) também mostraram que a adição desses dois mVOCs diretamente ao solo foram mais eficazes na redução das aberturas estomáticas em comparação com o tratamento de volatilização.

A tolerância da planta ao estresse salino também pode ser aumentada por algumas cepas de PGPB através da produção de mVOCs. A cepa *P. simiae* AU produz dois mVOCs, 2-metoxi-4-nitrofenol e quinolina, que demonstraram aumentar a tolerância da soja ao estresse salino (Vaishnav et al. 2016). Esses dois mVOCs induziram enzimas antioxidantes e nitrato redutase, resultando em taxas de germinação de sementes de soja sob condições de estresse salino (Vaishnav et al. 2016). No estudo de Ledger et al. (2016), a exposição de *A. thaliana* à combinação de 2-undecanona, 7-hexanol e 3-metil-butanol, uma mistura sintética dos mVOCs da cepa *Paraburkholderia phytofirmans* PsJN, aumentou a taxa de crescimento das plantas e a tolerância à salinidade avaliada tanto *in vitro* quanto no solo. De maneira semelhante, outra mistura sintética de mVOCs bacterianos, incluindo ácido butírico, ácido propiônico e ácido benzoico, demonstrou imitar os mVOCs naturais da *Alcaligenes faecalis* JBCS1294 na promoção do crescimento de *A. thaliana* em condições de estresse salino (Bhattacharyya e Lee 2017). Além disso, foi demonstrado que a regulação bacteriana das vias de sinalização de auxina e giberelina mediavam a tolerância da planta aprimorada pelos mVOCs ao estresse salino (Bhattacharyya e Lee 2017).

No que diz respeito aos estresses bióticos, há uma grande diversidade de mVOCs bacterianos com capacidade repelente de insetos ou atração de inimigos naturais, antibacteriana e antifúngica. Contra insetos, nas plantas de *A. thaliana*, os mVOCs da cepa *B. amyloliquefaciens* GB03 induziram proteção à biomassa vegetal dependente do acúmulo de glucosinolatos contra o herbívoro generalista *Spodoptera exigua* BAW (Aziz et al. 2016). No caso de atração de insetos predadores, foi comprovado que 2-butanona e 3-pentanol causa a atração ativa da joaninha *Coccinella septempunctata*, uma controladora do pulgão-do-pessegueiro *Myzus persicae* (Song e Ryu 2013).

Na antibiose de patógenos vegetais, 2,3-butanodiol emitido pelas cepas *B. subtilis* GB03 e *B. amyloliquefaciens* IN937a foi capaz de induzir resistência sistêmica (ISR) em plantas de *A. thaliana* contra a bactéria *Erwinia carotovora* spp. *carotovora* (Ryu et al. 2004). Contra cepas de *Pseudomonas syringae*, os mVOCs acetoína da *B. subtilis* FB17 (Rudrappa et al. 2010) e tridecano da *Paenibacillus polymyxa* E681 (Lee et al. 2012) já foram descritos como indutores de ISR em *A. thaliana*. O efeito antibacteriano também foi relatado para 2-butanona e 3-pentanol sintético, restringindo a severidade da doença no pepino no campo aberto aos 7 dias após pulverização de *P. syringae* pv. *lachrymans* (Song e Ryu 2013). Nesses estudos, o consenso de que a via de sinalização de ET e/ou SA regula as respostas de defesa da planta é unânime.

No que diz respeito aos fungos patogênicos, o estudo de Cordovez et al. (2015) demonstrou que o mVOC 1,3,5-tricloro-2-metoxibenzeno emitido consistentemente por 11 isolados de *Streptomyces* spp., obtidos da rizosfera de beterraba, eram capazes de aumentar o crescimento de *A. thaliana in vitro* e inibir o desenvolvimento de *Rhizoctonia solani.* Também em *A. thaliana* foi verificado que os mVOCs da *B. subtilis* GB03 eram capazes de suprimir o crescimento e o desenvolvimento fúngico de *Botrytis cinerea* (Sharifi e Ryu 2016). Além disso, Sharifi e Ryu (2016) relataram que as vias de sinalização de SA e ET foram ativadas pelos mVOCs da cepa GB03, confirmada pelo aumento da expressão dos genes *pdf1.2* e *pr-1* nas plantas tratadas em comparação com as plantas controle.

3.3 A bactéria promotora do crescimento vegetal *Gluconacetobacter diazotrophicus*: caracterização e mecanismos de ação

Em 1988, Cavalcante e Döbereiner descobriram uma nova espécie de bactéria fixadora de nitrogênio tolerante a ácidos associada a variedades brasileiras de cana-de-açúcar (Cavalcante e Döbereiner 1988). Inicialmente, eles sugeriram que a espécie de bactéria fosse chamada de *Saccharobacter nitrocaptans* (Cavalcante e Döbereiner 1988). Depois Gillis e colaboradores nomearam a bactéria como *Acetobacter diazotrophicus* com base em evidências genômicas, fenotípicas e quimiotaxonômicas (Gilis et al. 1989). Em 1997, após análises de rRNA 16S, foi reclassificada como *Gluconacetobacter diazotrophicus* (Yamada et al. 1997). Esta bactéria pertence ao filo Proteobacteria, à classe α -proteobacteria, à ordem Rhodospirillales, à família Acetobacteraceae e ao gênero *Gluconacetobacter* (Kersters et al. 2006).

Gluconacetobacter diazotrophicus é uma bactéria ácido tolerante, gramnegativa e aeróbica obrigatória. Possui formato de haste e extremidades arredondadas com tamanho de 0,7-0,9 µm por 2 µm. As células bacterianas têm de 1 a 3 flagelos laterais para motilidade. A bactéria pode crescer em alto teor de sacarose e baixa acidez. A concentração ótima de açúcar é de 10% e o pH em torno de 5,5, embora possa sobreviver em pH abaixo de 3,0 e até 30% de açúcar. É uma bactéria endofítica, localizada nos tecidos internos do hospedeiro sem causar nenhum efeito prejudicial à planta (Cavalcante e Döbereiner 1988).

A espécie hospedeira de *G. diazotrophicus* não se limita apenas à canade-açúcar, mas também inclui batata-doce, capim-elefante (Döbereiner et al. 1993), café (Jimenez-Salgado et al. 1997), milheto (Loganathan et al. 1999), abacaxi (Tapia-Hernández et al. 2000), banana, beterraba, cenoura, laranja-azeda, rabanete, tomate, pimenta-do-reino (Madhaiyan et al. 2004) e arroz de pântano (Muthukumarasamy et al. 2005). Estudos posteriores mostraram que *G. diazotrophicus* também coloniza diversas plantas hospedeiras não nativas após a inoculação, incluindo o milho, arroz, trigo, canola, trevo-branco (Cocking et al. 2006), sorgo (Luna et al. 2010), *Arabidopsis thaliana* (Rangel de Souza et al. 2016), feijão (de Oliveira et al. 2019), mandioca (Lopes et al. 2019), morango (Delaporte-Quintana et al. 2020) e alface (Sebring et al. 2022). A capacidade de introduzir *G. diazotrophicus* em diversos hospedeiros forneceu não só evidências acerca dos métodos de inoculação, localização e sobrevivência dentro das plantas (Eskin et al. 2014), como também a sua contribuição no crescimento e proteção das plantas (Dent 2018).

O genoma completo da estirpe *G. diazotrophicus* Pal5 (ATCC 49037) foi sequenciado e publicado em 2009 pela RioGene no Brasil, financiada pela FAPERJ (Bertalan et al. 2009), embora uma segunda sequência, do *U.S. Department of Energy* (DOE) do *Joint Genome Institute* (JGI) na Califórnia, pode ser encontrada no *National Center for Biotechnology Information* (NCBI) com o nome de montagem ASM2132v1. As principais diferenças entre as duas sequências do genoma de *G. diazotrophicus* Pal5 são discutidas por Giongo et al. (2010). No geral, as análises do genoma revelaram várias características relacionadas ao seu estilo de vida endofítico como fixação biológica de nitrogênio (FBN), promoção do crescimento vegetal, metabolismo de açúcar, sistemas de transporte, síntese de auxinas e ocorrência de bacteriocinas (Bertalan et al. 2009).

A característica mais importante de *G. diazotrophicus* é a sua capacidade de FBN. A *G. diazotrophicus* pode fornecer ao seu hospedeiro quantidade suficiente de nitrogênio fixado sem formação de nódulos (Cavalcante e Döbereiner 1988). Por exemplo, a cana-de-açúcar obtém mais de 40 kg de N₂ por hectare fixados por ano de *G. diazotrophicus* (Urquiaga et al. 2012). Uma característica única de *G. diazotrophicus* é a ausência da enzima nitrato redutase (Cavalcante e Döbereiner 1988) que habilita a bactéria para corrigir o nitrogênio mesmo na presença de nitrogênio do solo. Essa característica torna *G. diazotrophicus* uma bactéria diazotrófica ainda mais interessante associada às plantas. Um estudo recente mostrou que *G. diazotrophicus* melhora o desempenho e a produtividade dos cultivos de cana-de-açúcar que foram suplementados com fertilizantes nitrogenados (Pereira et al. 2019).

Como uma bactéria que promove o crescimento vegetal (PGPB), *G. diazotrophicus* auxilia a planta hospedeira de várias maneiras diferentes, além da FBN. *G. diazotrophicus* foi encontrada para fornecer as suas plantas hospedeiras fitohormônios. A produção de ácido indol-3-acético (AIA) por *G. diazotrophicus* foi relatada pela primeira vez por Fuentes-Ramirez et al. (1993). Estudos posteriores revelaram que *G. diazotrophicus* produz AIA através da via ácido indol-3-pirúvico (IPyA) (Lee et al. 2004; Rodrigues et al. 2016), embora não seja descartada a possibilidade de a bactéria sintetizar AIA pelas vias trypamida (TAM) e indol-3-

acetonitrila (IAN) (Bertalan et al. 2009). O segundo fitohormônio detectado em *G. diazotrophicus* foram as giberelinas $A_1 e A_3$ (Bastián et al. 1998). Apesar de a maquinaria de biossíntese de giberelinas ser completamente desconhecida em *G. diazotrophicus*, o seu genoma contém genes que poderiam cumprir tal função (Bertalan et al. 2009).

Além do nitrogênio, o fósforo (P) é um importante fator limitante de nutrientes na agricultura. Segundo Billah et al. (2019), a maior parte do solo contém P na forma de compostos insolúveis, que não estão disponíveis para as plantas. Assim, grandes quantidades de fertilizantes fosfatados químicos são utilizadas para repor o estoque do solo, resultando em uma contaminação ambiental considerável (Billah et al. 2019). *G. diazotrophicus* demonstrou aumentar a solubilização de P pela produção de ácido glucônico (Intorne et al. 2009). Por exemplo, plantas de morango inoculadas com *G. diazotrophicus* aumentaram o teor de P e reverteram a deficiência de P (Delaporte-Quintana et al. 2017). *G. diazotrophicus* também pode aumentar a solubilização de zinco (Zn) pela produção de compostos orgânicos como o ácido glucônico (Saravanan et al. 2007). Também foi demonstrado que plantas de milho inoculadas com *G. diazotrophicus* apresentaram maior absorção de compostos de Zn insolúveis do que plantas não inoculadas (Sarathambal et al. 2010).

O ferro (Fe) é um micronutriente essencial para o crescimento das plantas e desempenha um papel fundamental na regulação de muitos processos biológicos como cofator (Verma et al. 2021). Segundo os autores, o Fe no solo está presente principalmente como Fe³⁺ que não é facilmente acessível pelas plantas e algumas PGPBs secretam sideróforos que se ligam ao Fe³⁺. Posteriormente, o Fe³⁺ é reduzido para Fe²⁺ e, então, disponibilizado para as plantas (Verma et al. 2021). *G. diazotrophicus* é uma PGPB conhecida por produzir sideróforos e melhorar a nutrição de Fe das plantas. Experimentos revelaram que isolados de *G. diazotrophicus* produzem dois tipos químicos de sideróforos: catecolatos e hidroxamatos (Logeshwarn et al. 2009). Posteriormente, foi verificado que a inoculação com *G. diazotrophicus* aumentou a biomassa total, área radicular e o teor de ferro nas plantas de morango cultivadas hidroponicamente (Delaporte-Quintana et al. 2020). Adicionalmente, a participação dos hidroxamatos foi melhor do que as dos catecolatos no fornecimento de Fe às plantas (Delaporte-Quintana et al. 2020).

A produção de mVOCs foi relatada recentemente para *G. diazotrophicus*. Maia (2021) caracterizou o perfil químico desses compostos em culturas de *G. diazotrophicus* Pal5 crescidas em meio DYGS sólido, utilizando a técnica HS-SPME via espectrometria de massas. Foram identificados 11 compostos químicos diferentes, incluindo ácidos carboxílicos, hidrocarbonetos, ésteres, compostos de S e álcool simples (Tabela 1). A exposição de plantas de *A. thaliana* a esses mVOCs durante 21 dias resultou em promoção do crescimento vegetal, observado pelo ganho de biomassa fresca, acúmulo de pigmentos fotossintéticos e compostos fenólicos. Foi sugerido que a via de sinalização de auxina poderia mediar a resposta das plantas aos mVOCs produzidos por *G. diazotrophicus*.

Gluconacetobacter diazotrophicus também é caracterizada por seu papel no biocontrole de patógenos de plantas. O potencial antagônico desta bactéria foi documentado contra uma série de organismos de importância agrícola como *Colletotrichum falcatum* (Muthukumarasamy et al. 2000), *Xanthomonas albilineans* (Piñón et al. 2002), *Meloidogyne incognita* (Bansal et al. 2005), *Fusarium oxysporum* (Logeshwarn et al. 2011), *X. campestris* pv. *campestris*, *Pseudomonas syringae* pv. *syringae*, *Acidovorax avenae* subsp. *avenae* (Nieto-Peñalver et al. 2014), *X. axonopodis* pv. *vasculorum*, *X. vasicola* pv. *Vascolorum* (Oliveira et al. 2018) e *Ralstonia solanecearum* (Rodriguez et al. 2019; Srebot et al. 2021). Esses estudos revelaram que a produção de enzimas líticas, antibióticos e bacteriocinas são responsáveis pela atividade antagônica de *G. diazotrophicus*. Além disso, um conjunto de mudanças estruturais, bioquímicas e moleculares nas plantas após a interação com *G. diazotrophicus* reforçam o seu papel no biocontrole dos patógenos (Cavalcante et al. 2006; Rangel de Souza et al. 2016; Rodriguez et al. 2019).

A ação de *G. diazotrophicus* sobre a proteção das plantas durante situações de estresse abiótico causada pela seca é outra característica relatada em diversos estudos. Por exemplo, *G. diazotrophicus* melhorou a tolerância à seca na cana-de-açúcar, prolongando sua sobrevivência mesmo após 40 dias da falta de água (Vargas et al. 2014). A inoculação da bactéria também foi benéfica para as plantas de arroz (Filgueiras et al. 2020) e milho (Tufail et al. 2021), suprimindo os diversos efeitos deletérios do estresse de seca e aumentando os componentes de biomassa e produtividade. Adicionalmente, *G. diazotrophicus* é apontada como promissora para uso em solos com déficit hídrico (Leandro et al. 2021a), salinizados

(Leandro et al. 2021b) e contaminados por metais pesados (Moreira et al. 2022) devido aos seus diversos mecanismos moleculares de resistência nessas condições adversas.

Essas evidências sustentam a habilidade de *G. diazotrophicus* para estimular o crescimento das plantas e ajudar as plantas a se defenderem contra doenças vegetais e tolerar estresses abióticos, resultando em uma agricultura sustentável e melhorada.

3.4 Arabidopsis thaliana nos estudos de interação planta-PGPB

Adotada pela comunidade científica de pesquisa há mais de 50 anos como modelo de pesquisa vegetal, *Arabidopsis thaliana*, um membro da família Brassicaceae, continua ocupando um lugar de destaque na biologia vegetal (Provart et al. 2016). Fatores como crescimento fácil de alcançar em laboratório, rápido desenvolvimento de uma semente para uma planta com sementes maduras em apenas 6 semanas, dependendo das condições de crescimento, e sementes e mudas pequenas o suficiente para germinar às centenas em uma única placa de Petri levaram a um enorme aumento no volume de pesquisas com *A. thaliana* (Woodward e Bartel 2018).

Além da velocidade e tamanho, várias características adicionais tornam *A. thaliana* favoráveis à pesquisa. O genoma é pequeno (~132 Mbp) para uma planta, com 38.194 loci, incluindo 27.655 genes codificadores de proteínas dispersos entre cinco cromossomos nucleares (Cheng et al. 2017). Ao contrário de muitas plantas-modelo, *A. thaliana* tolera um alto grau de homozigosidade e é autofértil; cada indivíduo pode produzir dezenas de milhares de descendentes. Adicionalmente, *A. thaliana* dispõe de uma riqueza de telas genéticas mutagenizadas e transformadas (Woodward e Bartel 2018), além de vários recursos de bioinformática, como os dados de sequências proteicas (Baerenfaller et al. 2008), que podem ser explorados na pesquisa.

Nos últimos anos, *A. thaliana* tem sido utilizada como planta-modelo para prever a heterose (Vasseur et al. 2019), investigar genes candidatos que regulam o número de sementes por sílica (Jiang et al. 2020) e traçar um painel transcricional de sinalização imune mediada por padrões (Bjornson et al. 2021), dentre outros aspectos. Além disso, a espécie vegetal é empregada para estudo das interações
entre plantas e PGPBs. Neste sentido, *A. thaliana* é, também, considerada um sistema modelo para estudar tanto a colonização (O'Callaghan et al. 2001) quanto o papel dos mVOCs (Li et al. 2019) na saúde, nutrição e crescimento de plantas.

Até o momento, poucos estudos dedicaram-se a investigar a interação entre *A. thaliana* e *G. diazotrophicus*. O estudo de Cocking et al. (2006) foi o primeiro a relatar que essa bactéria era capaz de colonizar endofiticamente as plantas de *A. thaliana*, porém, sem apresentar qualquer evidência de promoção do crescimento vegetal. Depois de 10 anos, o estudo de Rangel de Souza et al. (2016) demonstrou que *G. diazotrophicus* não só colonizou o xilema das raízes de *A. thaliana*, como também promoveu o crescimento da planta e aumentou a fotossíntese de dossel inteiro. A inoculação de plantas defeituosas na defesa da resistência sistêmica adquirida (SAR) revelou que o sistema imunológico vegetal desempenha um papel importante durante os estágios iniciais de associação com a bactéria (Rangel de Souza et al. 2016). Posteriormente, o papel de SAR na proteção das plantas contra o patógeno *R. solanecearum* comprovou que *G. diazotrophicus* desempenha um papel protetor em plantas (Rodriguez et al. 2019).

Assim, a planta-modelo *A. thaliana* é útil para as investigações das bases moleculares da associação com PGPBs, especialmente aquelas que envolvem *G. diazotrophicus*. No âmbito do papel dos mVOCs na comunicação de *G. diazotrophicus* e suas plantas hospedeiras não existem relatos na literatura.

3.5 Abordagens proteômicas para estudar a interação planta-PGPB

A proteômica é definida como o estudo em larga escala de diferentes proteínas expressas por um organismo (Witzel et al. 2017) e tornou-se uma ferramenta na descoberta da comunicação hospedeiro-microrganismo (Jain et al. 2021). Embora as análises transcriptômicas deem uma boa indicação do que a célula "pode fazer", as análises proteômicas podem produzir uma imagem melhor do que a célula "está fazendo" a qualquer momento. Neste sentido, a espectrometria de massa (MS) é essencial para entender as mudanças globais do proteoma durante a interação e quantificar o maior número de proteínas possível (Elmore et al. 2021).

Diversos estudos têm usado a espectrometria de massas (MS) para estudar interações entre plantas e PGPB. A análise de duas variedades de cana-

de-açúcar inoculadas com *G. diazotrophicus* Pal5 quantificou mais de 400 proteínas e encontrou forte regulação de proteínas envolvidas no metabolismo lipídico, sinalização, remodelação da cromatina e degradação de proteínas (Lery et al. 2011). Uma estratégia semelhante identificou cerca de 595 proteínas na parte aérea e 1.148 proteínas na raiz de plantas de *A. thaliana* colonizadas pela cepa *Herbaspirillum seropedicae* HRC54 (Leandro et al. 2019). Um aumento das proteínas relacionadas à fotossíntese nas folhas e de biossíntese de fenilpropanoides nas raízes foi observado nas plantas inoculadas com a cepa HRC54 em comparação com as plantas não-inoculadas. Além disso, a análise proteômica da parte aérea e raízes das plantas revelou a regulação de proteínas relacionadas à defesa (Leandro et al. 2019). Uma análise de proteômica comparativa também quantificou mais de 450 proteínas nas folhas de trigo e descobriu que as proteínas relacionadas à produção de energia e metabólitos estiveram principalmente envolvidas no crescimento das mudas após inoculação com a cepa *Bacillus* sp. wp-6 sob estresse salino (Zhao et al. 2021).

Para explorar a expressão global de proteínas vegetais por mVOCs liberados por bactérias, Kwon et al. (2010) analisaram o proteoma de *A. thaliana* após exposição aos mVOCs da cepa *B. subtilis* GB03. O estudo revelou que os mVOCs da cepa GB03 regularam muitos traços de promoção do crescimento e a defesa basal da planta, os quais foram orquestrados por vias endógenas de produção de etileno e geração de espécies reativas de oxigênio (Kwon et al. 2010). Diante do exposto, as análises proteômicas auxiliam na compreensão dos mecanismos moleculares envolvidos na interação planta-PGPB. Os dados oriundos destas análises podem contribuir para a viabilidade do uso de biofertilizantes, colaborando para o desenvolvimento de práticas agrícolas sustentáveis.

4 MATERIAL E MÉTODOS

4.1 Cepa bacteriana e condições de cultivo

A cepa selvagem de *Gluconacetobacter diazotrophicus* Pal5 foi utilizada em todos os experimentos. Essa cepa foi gentilmente cedida pelo Prof. Dr. Fábio Lopes Olivares do Laboratório de Biologia Celular e Tecidual (LBCT), da Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), localizada em Campos dos Goytacazes, RJ, Brasil. Para uso experimental, a cepa foi cultivada rotineiramente em meio DYGS (Rodrigues Neto et al. 1986) a 30 °C. Para o armazenamento de longo prazo, a cepa foi mantida em glicerol 25% a -80 °C. Todos os experimentos foram realizados no Laboratório de Biotecnologia (LBT), Setor Multiusuário de Biologia Integrativa na UENF (Campos dos Goytacazes, RJ, Brasil).

4.2 Material vegetal e condições de cultivo

As sementes de *A. thaliana* foram esterilizadas na superfície (imersão em etanol 95% por 1 min seguido de imersão em hipoclorito de sódio 2,5% por 15 min), enxaguadas seis vezes em água destilada estéril e vernalizadas no escuro por 48h a 4 °C. As sementes vernalizadas foram semeadas em meio Murashige e Skoog (MS) 0,5X (Murashige e Skoog 1962) complementado com 0,5% de sacarose, 0,05% de MES e 0,8% de ágar. As plantas foram cultivadas em uma sala de

crescimento, com controle de luz (ciclos de 12h de luz e 12h de escuro), temperatura (23 °C) e umidade relativa (em torno de 60%).

Todas as linhagens mutantes e a transgênica foram derivadas do ecótipo selvagem Columbia (Col-0) de *A. thaliana*, que foram gentilmente cedidas pelo Ph.D Frederick M. Ausubel da Harvard Medical School, Boston, MA, Estados Unidos. As linhagens mutantes incluíam o mutante *abi4* [insensível ao ácido abscísico] (Finkelstein 1994), *aux1-7* [resistente ao etileno e auxina] (Pickett et al. 1990), *eds16* [deficiente no acúmulo de ácido salicílico] (Dewdney et al. 2000), *ein3-1* [insensível ao etileno] (Guzmán e Ecker 1990; Chao et al. 1997), *etr1-3* [insensível ao etileno] (Bleecker et al. 1988), *jar1* [moderadamente insensível ao jasmonato de metila e sensível ao jasmonil-isoleucina] (Staswick et al. 1992), *jin1* [insensível ao jasmonato de metila] (Berger et al. 1996) e *sid2-2* [deficiente no acúmulo de ácido salicílico] (Nawrath e Métraux 1999). A linhagem transgênica incluiu o transgênico *NahG* [deficiente no acúmulo de ácido salicílico e em desenvolver resistência sistêmica induzida] (Delaney et al. 1994).

4.3 Inoculação e promoção do crescimento das plantas

Antes da inoculação das plantas, 5 mL de uma cultura estoque de *G. diazotrophicus* Pal5 foi transferida para um frasco Erlenmeyer de 250 mL contendo 45 mL de DYGS líquido (Rodrigues Neto et al. 1986). O frasco foi coberto com uma manta de algodão e gaze e presa com elástico, e em seguida, transferido para um incubator rotativo (C25 Incubator – New Brunswik Scientific), a 30 °C e 250 rpm. Após 12h de crescimento, a suspensão bacteriana foi ajustada para a concentração de 1x10⁸ CFU/mL⁻¹ com base na densidade ótica e contagem em câmara de Neubauer. Placas de Petri I de poliestireno (90 x 15 mm) que continham uma partição central (Placas I) foram preparadas com meio 0,5 X MS (Murashige e Skoog 1962), e as sementes vernalizadas foram transferidas para um dos lados da placa (seis sementes/placa).

As plantas tratadas foram inoculadas com 5 µL da suspensão bacteriana colocada em forma de gota no outro lado da placa que não continha plantas. O tratamento controle foi simulado com 5 µL de meio DYGS líquido puro. As placas

foram completamente seladas com filme PVC transparente e mantidas verticalmente em sala de crescimento.

Após 21 dias de inoculação, a promoção do crescimento das plantas foi avaliada através do peso fresco total e o comprimento da raiz principal das plantas. O peso fresco total de plantas foi determinado com auxílio de balança analítica (ATY224, Shimadzu Corporation). O comprimento de raiz principal foi medido com um paquímetro digital (acurácia \pm 0,2 mm).

4.4 Pigmentos fotossintéticos

O conteúdo de pigmentos fotossintéticos foi medido nas plantas após 21 dias de inoculação. Para extração dos pigmentos fotossintéticos, amostras de folhas (20 mg) foram coletadas e colocadas em tubos de ensaio contendo 300 μ L de dimetil sulfóxido (DMSO). Os tubos de ensaio foram incubados no escuro por 48h a 25 °C. Uma alíquota de 200 μ L foi analisada espectrofotometricamente em 480 e 649 nm (Synergy 2 Multi-mode Reader, Biotek Instruments). O conteúdo de clorofila *a*, clorofila *b* e clorofila total foram calculados de acordo com Wellburn (1994).

4.5 Fluorescência da clorofila a

A fluorescência da clorofila *a* foi analisada nas plantas após 21 dias de inoculação usando um fluorímetro por imagem modulado FluorCam 800 MF (Photon System Instruments). O fluorímetro de imagem foi previamente configurado e calibrado para o protocolo "*light curve*" (Serôdio et al. 2007). As plantas adaptadas no escuro por 30 min foram inicialmente expostas a um *flash* de medição, seguida pela exposição a um *flash* de saturação e intensidades de radiação actínica crescentes (145, 247, 449, 652, 854 e 1057 µmol m⁻² s⁻¹), as quais foram intercaladas por *flashs* de medição e saturação. Foram registradas as seguintes variáveis: fluorescência mínima (F₀), *quenching* fotoquímico (qP), *quenching* nãofotoquímico (NPQ) e taxa de transporte de elétrons (ETR). O software FluorCam 7 foi utilizado para associar as variáveis a uma imagem nas respectivas amostras colocadas no fluorímetro.

4.6 Análise proteômica

Extração de proteínas totais

Para a extração de proteínas totais, foram utilizadas três amostras biológicas de parte aérea e raízes de A. thaliana, expostas ou não aos VOCs de G. diazotrophicus Pal5. Cada amostra correspondeu a 0,3 g de tecido fresco por tratamento. As proteínas foram extraídas pelo método de TCA/acetona (Damerval et al. 1986), com modificações. Resumidamente, as amostras foram moídas em pó em nitrogênio líquido e dissolvidas em 1 mL de tampão de lise contendo 10% (p/v) de TCA em acetona com 20 mM de ditiotreitol (DTT, GE Healtcare), agitado em vórtex por 2 min. Em seguida, as amostras foram mantidas a -20 °C por 60 min e centrifugadas a 16.000 x g por 30 min a 4 °C. Os precipitados resultantes foram lavados três vezes com acetona gelada contendo 20 mM de DTT e centrifugados a 16.000 x q por 5 min a 4 °C. Os precipitados foram secos ao ar e redissolvidos em 1 mL de tampão contendo ureia 7 M, tioureia 2 M, Triton X-100 2%, DTT 1%, fluoreto de fenilmetanossulfonil (PMSF) 1 mM, agitado em vórtex por 5 min, incubada em gelo por 30 min e então centrifugadas a 16.000 x g por 20 min a 4 °C. Os sobrenadantes foram coletados e a concentração de proteínas foi medida utilizando um kit 2-D Quant (GE Healthcare).

Digestão de proteínas

Alíquotas de 100 µg de proteínas foram submetidas à digestão tríptica utilizando a metodologia de preparação de amostras auxiliada por filtros (FASP) (Passamani et al. 2018). Resumidamente, as amostras foram dessalinizadas em filtros centrífugos Amicon Ultra-0,5 3 kDa (Merck Millipore), cheios até a capacidade máxima com tampão e centrifugados por 12.000 x *g* por 5 min a 25 °C. As lavagens foram realizadas duas vezes com ureia 8 M e depois mais duas vezes com bicabornato de amônio 50 mM, pH 8,5, com aproximadamente 50 µL de amostra resultante após a última lavagem. Um total de 100 µL de iodoacetamida (IAA, GE Healtcare) 50 mM foi adicionado às amostras, as quais foram incubadas a 25 °C por 20 min, protegidas da luz. As proteínas foram digeridas durante a noite com 25

 μ L de RapiGest a 0,2% (Waters) e 20 μ L de solução de tripsina (V5111, Promega). Os peptídeos foram eluidos duas vezes pela adição de 50 μ L de bicarbonato de amônio 50 mM e centrifugados por 10 min. Para precipitação do RapiGest, 5 μ L de ácido trifluoroacético (TFA, Sigma-Aldrich) a 5% (v/v) foram adicionados e incubados por 30 min a 37 °C, seguido por uma etapa de centrifugação por 15 min. Os peptídeos foram ressuspensos em 50 μ L de solução contendo 5% de acetonitrila e 0,1% de ácido fórmico em água MS (Sigma-Aldrich) e quantificados a 205 nm em um espectrofotômetro NanoDrop 2000c (Thermo Fisher Scientific). As amostras foram transferidas para Frascos de Recuperação Total (Waters) para análise de espectrometria de massas.

Análise de espectrometria de massas

A espectrometria de massas foi realizada utilizando um nanoAcquity acoplado ao instrumento Q-TOF SYNAPT G2-Si (Waters) de acordo com Passamani et al. (2018). As injeções consistiram em três réplicas biológicas de 2 µg de peptídeos digeridos. Durante a separação, as amostras foram carregadas na coluna nanoACQUITY UPLC 5- μ m C18 trap (180 μ M × 20 mm) a 5 μ L/min⁻¹ por 3 min e depois na coluna analítica nanoACQUITY HSS T3 1,8 µm de fase reversa (75 µM × 150 mm) a 400 nL/min⁻¹, com temperatura de coluna de 45 °C. Para eluição dos peptídeos, foi utilizado um gradiente binário com a fase móvel A consistindo em água MS e ácido fórmico 0,1% e a fase móvel B consistindo em acetonitrila e ácido fórmico 0,1%. O gradiente de eluição começou em 7% B, depois aumentou de 7 a 40% B até 91,12 min, e de 40 a 99,9% B até 92,7 min; o gradiente foi mantido a 99,9% B até 106,0 min, depois diminuiu para 7% B até 106,1 min e mantido até o final da corrida em 120,0 min. O espectrômetro de massas foi operado em modo de resolução (modo V) e positivo com mobilidade iônica (HDSME); transferência de energia de colisão de 19 a 45 V, no modo de alta energia; cone de tensão e capilar de 30 V e 2800 V, respectivamente, e temperatura da fonte de 70 °C. Em parâmetros TOF, o tempo de verificação foi definido para 0.5 s em modo contínuo, com um intervalo de massa de 50 a 2000 Da. A [GLu1] fibrinopeptídeo B humana (Sigma-Aldrich) a 100 fmol.µL⁻¹ foi utilizada como

calibrador externo e a aquisição de sua massa feita a cada 30 s. Os espectros de massas foram posteriormente adquiridos pelo software MassLynx 4.0 (Waters).

4.7 Análise de dados de proteômica

Os dados *raw* foram analisados com o software ProteinLynx Global Server (PLGS) versão 3.0.2 (Waters) e ISOQuant v.1.7 (Distler et al. 2014, 2016). O PLGS foi processado usando um limiar de baixa energia de 150 (contagens), um limiar de energia elevado de 50 e um limite de intensidade de 750. Além disso, a análise foi feita usando os seguintes parâmetros: duas clivagens perdidas, fragmento de íon mínimo igual a 3, fragmento de íon mínimo por proteína igual a 7, peptídeo mínimo por proteína igual a 2, modificações fixas de carbamidometil e modificações variáveis de oxidação e fosforilação. A taxa de falsa descoberta (FDR) para identificação de peptídeos e proteínas foi estabelecida para um máximo de 1% com um comprimento mínimo de 6 aminoácidos. Os espectros MS/MS foram pesquisados contra o banco de dados de proteínas gerado a partir do sequenciamento do ecótipo Columbia-0 de *A. thaliana*, versão 20210307 (https://www.uniprot.org/proteomes/UP000006548).

Após análises de dados no ISOQuant, apenas as proteínas presentes ou ausentes (para proteínas únicas) em todas as três réplicas biológicas foram consideradas para análise de abundância diferencial. Os dados foram analisados usando o teste t de Student (bicaudal). Proteínas mostrando valor de *fold-change* (FC) maior que 1,5 e menor que 0,667 com corte estatisticamente significativo ($p \le 0,05$) foram consideradas como proteínas acumuladas diferencialmente (DAPs).

4.8 Análises de via e localização subcelular

Para análise de vias biológicas das DAPs foram utilizadas as categorias MAPMAN versão 3.6.0 (Thimm et al. 2004) baseadas em anotações ARAPORT11 versão 20180525. As ontologias de *A. thaliana* foram recuperadas do recurso web GOMapMan (Ramšak et al. 2014). A localização subcelular de proteínas foi prevista utilizando o banco de dados SUBA4 (Hooper et al. 2014, 2017).

4.9 Análise estatística

O delineamento inteiramente casualizado foi utilizado para todos os experimentos. Cinco réplicas biológicas foram utilizadas para medição do crescimento e peso fresco das plantas. Para pigmentos fotossintéticos e fluorescência de clorofila *a* foram utilizadas três réplicas biológicas. Para comparar dois grupos de dados (tratado x controle), os dados de promoção do crescimento, pigmentos fotossintéticos e fluorescência de clorofila *a* foram analisados pelo teste *t* não pareado de Student a 5% de probabilidade. Todas as análises estatísticas foram realizadas no software GraphPad Prism versão 8.0.

5 RESULTADOS

5.1 Efeito de VOCs produzidos por *Gluconacetobacter diazotrophicus* Pal5 sobre o crescimento de *A. thaliana*

Com o objetivo de avaliar o efeito dos VOCs produzidos por *G. diazotrophicus* Pal5 na capacidade de promover o crescimento de plantas de *A. thaliana*, ensaios de co-cultivo foram realizados. Foi utilizado o sistema de placas de Petri divididas (Placas I) que possui uma partição central para que apenas os compostos voláteis pudessem ser transmitidos entre a bactéria e as plantas (Figura 2 a). O tamanho das plantas expostas aos VOCs difere do das plantas controle (Figura 2 b). Considerando o peso fresco total, as plantas expostas aos VOCs apresentaram 314,2% mais biomassa verde que as plantas controle (Figura 2 c). Em contrapartida, a raiz principal dessas plantas foi 27,4% mais curta que as das plantas controle (Figura 2 d). Apesar disso, as plantas tratadas exibiram um desenvolvimento de raízes laterais incrementado (Figura 2 a). Assim, os dados demonstram que a produção de VOCs por *G. diazotrophicus* Pal5 induz a promoção do crescimento das plantas.

Figura 2 - Análises da promoção do crescimento em plantas de *A. thaliana* expostas aos VOCs de *Gluconacetobacter diazotrophicus* Pal5. Plantas de *A. thaliana* foram co-cultivadas em Placas I com ou sem a presença da bactéria e, então, aos 21 dias foram selecionadas para análise dos seus fenótipos de crescimento (**a**, **b**), peso fresco total (**c**) e comprimento de raiz principal (**d**). As medições foram realizadas em cinco réplicas biológicas de três ensaios independentes, com seis plantas por réplica. As barras mostram a média ± erropadrão da média. Os asteriscos indicam diferenças significativas (p<0,001 de acordo com o teste *t* de Student) entre Pal5 e o controle. Barras = 1 cm.

5.2 VOCs produzidos por *Gluconacetobacter diazotrophicus* Pal5 induziram mudanças nos proteomas da parte aérea e raiz das plantas de *A. thaliana*

Com o objetivo de avaliar as mudanças induzidas pela exposição aos VOCs produzidos por *G. diazotrophicus* Pal5 sobre os proteomas de plantas de *A. thaliana*, análises proteômicas comparativas dos tecidos de parte aérea e raiz de plantas co-cultivadas com *G. diazotrophicus* Pal5 e plantas controle, foram realizadas através da técnica de *Shotgun* via espectrometria de massas.

Foram identificadas 568 proteínas na parte aérea e 796 proteínas na raiz (Tabela Suplementar S1 e S2). Do total de proteínas identificadas na parte aérea, 560 proteínas foram identificadas nas duas condições, 5 proteínas foram identificadas apenas nas amostras expostas aos VOCs e 3 proteínas foram identificadas apenas nas amostras controle (Tabela Suplementar S1). Para a raiz, 776 proteínas foram identificadas nas duas condições, 9 proteínas foram identificadas apenas nas amostras expostas aos VOCs e 11 proteínas foram identificadas apenas nas amostras controle (Tabela Suplementar S2).

Aproximadamente 32,4% das proteínas da parte aérea (184) foram acumuladas diferencialmente (DAPs) em resposta aos VOCs de *G. diazotrophicus* Pal5. Entre as DAPs identificadas, 120 foram aumentadas e 64 reduzidas nas plantas expostas aos VOCs em comparação com as plantas controle (Figura 2 a). Na raiz, cerca de 32,9% das proteínas (262) foram acumuladas diferencialmente. Destas DAPs, 132 foram aumentadas e 130 foram reduzidas nas plantas expostas aos VOCs em comparação com o controle (Figura 3 b).

A análise do diagrama de Venn mostrou que a exposição das plantas aos VOCs de *G. diazotrophicus* Pal5 provocou alterações específicas nos perfis proteômicos da parte aérea e raiz de plantas de *A. thaliana* (Figura 3 c). No geral, 26 DAPs foram aumentadas (grupo 1) e 9 DAPs foram reduzidas em ambos os tecidos (grupo 2) (Figura Suplementar S1). Além disso, outras 5 DAPs mostraram padrão de regulação em direções opostas entre os tecidos: 4 proteínas foram aumentadas na parte aérea e reduzidas na raiz (grupo 3), e 1 proteína foi reduzida na parte aérea e aumentada na raiz (grupo 4) (Figura Suplementar S1).

Figura 3 - Os VOCs de *Gluconacetobacter diazotrophicus* Pal5 induzem mudanças nos proteomas de parte aérea e raiz de plantas de *A. thaliana.* (a) Número de proteínas identificadas e representação gráfica das DAPs de parte aérea. (b) Número de proteínas identificadas e representação gráfica das DAPs de raiz. Consulte as Tabelas Suplementares S1 e S2 para obter uma lista detalhada dos resultados de proteômica. (c) Diagrama de Venn com o número de DAPs sobrepostas e únicas nos tecidos vegetais. Proteínas aumentadas (\blacktriangle); proteínas reduzidas (\blacktriangledown).

5.3 Principais vias reguladas em plantas de *A. thaliana* expostas aos VOCs de *Gluconacetobacter diazotrophicus* Pal5

Visando estudar o papel biológico das proteínas reguladas pelos VOCs de *G. diazotrophicus* Pal5 em plantas de *A. thaliana*, as proteínas reguladas da parte aérea e raiz foram categorizadas segundo as vias MAPMAN (THIMM et al., 2004). Aproximadamente 95,11% das proteínas de parte aérea e 93,51% de raiz foram associadas a uma categoria funcional específica (Figura Suplementar S2). As principais categorias funcionais reguladas diferencialmente pelos VOCs de *G. diazotrophicus* Pal5 estão resumidas na Figura 4. Essas vias correspondem à fotossíntese, síntese de tetrapirrois, síntese de amido, parede celular, estado redox, peroxidases, glutationa-S-transferases (GST), transdução de sinal, proteínas relacionadas à patogênese (PR) e resistência (R), sinalização hormonal, metabólitos secundários, proteólise e estresse abiótico.

Figura 4 - Organização das DAPs da parte aérea e raiz de *A. thaliana* em categorias funcionais de acordo com a ontologia MAPMAN após exposição aos VOCs de *Gluconacetobacter diazotrophicus* Pal5. As proteínas significativamente aumentadas e reduzidas na parte aérea de plantas tratadas vs. controle são destacadas em azul e amarelo, respectivamente. Nas raízes, as proteínas significativamente aumentadas e reduzidas e reduzidas em plantas tratadas vs. controle são destacadas em azul claro e laranja, respectivamente. Consulte a Tabela Suplementar S3 para mais detalhes.

5.4 VOCs de *Gluconacetobacter diazotrophicus* Pal5 regulam o metabolismo da fotossíntese

Proteínas da maquinária fotossintética

A análise proteômica na parte aérea das plantas de *A. thaliana* mostrou uma extensa regulação de proteínas envolvidas no metabolismo fotossintético, após exposição aos VOCs produzidos por *G. diazotrophicus* Pal5. Para analisar mais detalhadamente o papel dessas proteínas, o critério *photosynthesis* do MAPMAN foi utilizado. Um total de 36 proteínas relacionadas à fotossíntese foram reguladas, sendo 32 aumentadas e 4 reduzidas (Figura 5).

Figura 5 - Representação esquemática das DAPs envolvidas no metabolismo da fotossíntese. O critério *photosynthesis* do MAPMAN foi utilizado para visualização das DAPs na parte aérea de plantas de *A. thaliana* expostas aos VOCs de *Gluconacetobacter diazotrophicus* Pal5. Cada caixa e/ou triângulo representa uma proteína. As proteínas aumentadas e reduzidas são destacadas em azul e amarelo, respectivamente. Consulte a Tabela Suplementar S4 para mais detalhes.

Dentre as proteínas do metabolismo fotossintético (Figura 5), o maior conjunto diferencialmente acumulado constitui proteínas dos fotossistemas II (PSII) e I (PSI). Oito proteínas do PSII foram aumentadas e uma foi reduzida. Entre as proteínas aumentadas do PSII, três proteínas formam o complexo coletor de luz: LCHB6, LCHB2 e LCHB4, e cinco proteínas formam o centro de reação: PSBA, PSBQ, PSBC, PSBS e PSBB. A proteína HCF136, que está envolvida na biogênese do PSII, foi reduzida. Para o PSI, as quatro proteínas identificadas foram aumentadas, sendo todas proteínas dos centros de reação: PSAA, PSAF, PSAH e PSAL. Além disso, uma proteína do complexo citocromo, PETB, duas proteínas transportadoras de elétrons fotossintéticos, FNR1 e FNR2, e uma proteína da ATP sintase, ATPC1 subunidade *gamma*, também foram aumentadas. A proteína PDE334, subunidade *beta* componente da ATP sintase, foi reduzida.

Na análise das proteínas relacionadas ao ciclo de Calvin, sete proteínas foram aumentadas e uma proteína reduzida. Entre as proteínas aumentadas, uma proteína participa da etapa primária de fixação de carbono, RBLC da enzima ribulose-1,5-bifosfato carboxilase/oxigenase (RuBP); três proteínas catalisam a redução de 1,3-bifosfoglicerato por NADPH: GAPA, GAPA2 e GAPB; e duas proteínas participam da etapa de regeneração de RuBP: TKT1 e TKT2. A proteína FAB5, uma aldolase responsável pela geração de frutose 1,6 bifosfato, foi a única proteína do ciclo de Calvin que apresentou redução.

No âmbito da fotorrespiração duas proteínas dos peroxissomos e três proteínas das mitocôndrias foram identificadas. Entre as proteínas dos peroxissomos, AGT foi aumentada e AOAT2 reduzida. As três proteínas das mitocôndrias, GLP1, GLP2 e SHM4, foram aumentadas.

A análise das proteínas envolvidas no metabolismo da fotossíntese também incluiu seis proteínas cujo acúmulo foi aumentado, que não foram mapeadas pelo critério *photosynthesis* do MAPMAN, mas que desempenham um papel essencial durante o processo de produção de energia e fixação de carbono. Essas proteínas participam da produção de clorofila: HEMC, LIN2, HCLM e PORC, e da síntese de amido: APL3 e ADG1.

Juntos, esses resultados revelam que os VOCs de *G. diazotrophicus* Pal5 regulam positivamente o acúmulo de proteínas envolvidas na fotossíntese em plantas de *A. thaliana*.

Teores de clorofila

Para verificar se a regulação positiva de proteínas que participam da produção de clorofila resulta no aumento da quantidade de clorofila na parte aérea de plantas, após exposição aos VOCs produzidos por *G. diazotrophicus* Pal5, as concentrações de clorofila *a*, *b* e clorofila total foram analisadas nas plantas de *A. thaliana*. As análises mostraram que as concentrações de clorofila *a*, *b* e total foram incrementadas nas plantas tratadas (Figura 6).

Figura 6 - Efeito dos VOCs de *Gluconacetobacter diazotrophicus* Pal5 na concentração de clorofila. Plantas de *A. thaliana* tiveram o teor de clorofila medidos e analisados para: **(a)** clorofila *a*, **(b)** clorofila *b* e **(c)** clorofila total. Os dados são a média \pm erro-padrão da média de três réplicas biológicas. Os asteriscos indicam diferenças significativas entre PAI5 e o tratamento controle (***p<0,001 de acordo com o teste *t* de Student).

O teor de clorofila *a* aumentou 30,9% nas plantas tratadas com os VOCs de *G. diazotrophicus* Pal5 (Figura 5 a). Para o teor de clorofila *b* o aumento foi de 81,3% (Figura 6 b). O teor de clorofila total foi 50% maior (Figura 6 c).

Juntos, esses resultados revelam que o acúmulo de proteínas da biossíntese de clorofila está em sintonia com as quantidades elevadas de clorofila na parte aérea das plantas de *A. thaliana*, quando expostas aos VOCs produzidos por *G. diazotrophicus* Pal5.

Fluorescência da clorofila a

Para verificar o efeito dos VOCs produzidos por *G. diazotrophicus* Pal5 sobre a eficiência fotossintética das plantas de *A. thaliana* foram analisados os parâmetros da fluorescência da clorofila *a* usando o fluorímetro FluorCam 800 MF. As análises mostraram que a fluorescência mínima (F_0), *quenching* fotoquímico (qP) e a taxa de transporte de elétrons fotossintéticos (ETR) foram regulados em plantas expostas aos VOCs (Figura 7).

Figura 7 - Efeito dos VOCs de *Gluconacetobacter diazotrophicus* Pal5 na eficiência fotossintética de *A. thaliana*. As plantas tiveram os parâmetros de fluorescência da clorofila *a* medidos e analisados para: **(a)** fluorescência mínima (F_0), **(b)** *quenching* fotoquímico (qP), **(c)** *quenching* não-fotoquímico (NPQ) e **(d)** taxa de transporte de elétrons fotossintéticos (ETR). Os dados são a média ± erro-padrão da média de três réplicas biológicas, com seis plantas por réplica. Os asteriscos indicam diferenças significativas entre Pal5 e o tratamento controle (* p<0,05, **p<0,01 e ***p<0,001 de acordo com o teste *t* de Student).

A menor dissipação de energia na forma de fluorescência (F₀) ocorreu nas plantas tratadas (Figura 7 a). Em média, a F₀ das plantas tratadas com os VOCs de *G. diazotrophicus* Pal5 foi 6,5% menor que o das plantas controle. O *quenching* fotoquímico (qP) revelou um uso de energia de fótons absorvida 40,3% maior nas plantas tratadas (Figura 7 b), indicando maior atividade dos centros de reação do PSII. Com o aumento da atividade dos centros de reação do PSII. Com o aumento da atividade dos centros de reação do PSII, houve também aumento do transporte de elétrons fotossintéticos (ETR) (Figura 7 d). A taxa de transporte de elétrons nas plantas tratadas foi 54,3% maior. A taxa de *quenching* não fotoquímico (NPQ) não diferiu entre as plantas tratadas e o controle (Figura 7 c).

Juntos, esses resultados indicam que a exposição de plantas aos VOCs produzidos por *G. diazotrophicus* Pal5 melhoram a eficiência fotossintética de *A. thaliana*, o que pode estar associado a promoção do crescimento vegetal.

5.5 Os mecanismos regulados na raiz pelos VOCs de *Gluconacetobacter diazotrophicus* Pal5

Parede celular

Um número importante de DAPs com função relacionada ao remodelamento da parede celular foi regulado em tecidos de raízes expostos aos VOCs de G. diazotrophicus Pal5, sendo majoritariamente aumentadas (17 aumentadas e 5 reduzidas) (Figura 8). Dentre elas estão proteínas envolvidas na formação de lignina, derivadas das vias do shikimato e dos fenilpropanoides, bem como proteínas de modificação de parede celular, com ação sobre a pectina e a hemicelulose. Uma das proteínas da via do shikimato, chamada EMB1144, foi aumentada e participa da síntese de corismato de D-eritrose 4-fosfato e fosfoenolpiruvato, um substrato para a biossíntese do aminoácido aromático fenilalanina. Em relação à via geral dos fenilpropanoides, as proteínas PAL4 e C4H, que participam da conversão de fenilalanina em ácido cinâmico e, posteriormente, para ácido p-cumárico, também foram aumentadas. Uma proteína chamada ALDH2C4, envolvida na síntese de ácido ferúlico e ácido sinápico foi reduzida. Seis peroxidases reguladas foram relacionadas à polimerização de lignina a partir da radicalização dos monolignols: PER38, PER44, PER45, PER57 e PER73

(aumentadas) e PER71 (reduzida). Além disso, duas proteínas dirigentes chamadas DIR13 e DIR14, que estão envolvidas no direcionamento da lignina formada a partir do álcool coniferílico para o local correto de deposição, também foram aumentadas.

Figura 8 - Representação esquemática das proteínas envolvidas na remodelação da parede celular. O critério *lignin* do MAPMAN foi utilizado para visualização das DAPs na raiz de plantas de *A. thaliana* tratadas com os VOCs de *Gluconacetobacter diazotrophicus* Pal5. As proteínas aumentadas e diminuídas são destacadas em triângulos nas cores azul claro e laranja, respectivamente. Proteínas identificadas na análise proteômica comparativa, mas que não mostraram regulação diferencial são mostradas como círculo na cor cinza. Consulte a Tabela Suplementar S5 para mais detalhes.

Adicionalmente, 10 proteínas relacionadas à modificação da parede celular foram reguladas. Dentre elas, foram identificadas quatro proteínas de síntese de

pectina, em que UXS5, RHM1 e KDSA2 foram aumentadas e KDSA1 foi reduzida. A única proteína de degradação de pectina identificada foi PME17 que foi aumentada. Com relação às proteínas com ação sobre a hemicelulose, duas proteínas de síntese e três proteínas de degradação foram identificadas. Entre as proteínas de síntese, MUR1 aumentou e GER2 diminuiu. Entre as proteínas de degradação, BGCL1 e XYL1 aumentaram e ASD1 diminuiu.

Em conjunto, esses resultados revelam um ajuste fino do remodelamento da parede celular da raiz de *A. thaliana* em resposta aos VOCs de *G. diazotrophicus* Pal5, associado pelo aumento da lignificação da parede celular.

Sistema antioxidante

As proteínas relacionadas ao sistema antioxidante foram principalmente reduzidas na raiz (Figura 9). Tais DAPs incluem uma superóxido dismutase citosólica (CSD1), duas proteínas envolvidas no sistema dehydroascorbato redutase (DARH1 e DARH2) dependente de glutationa, e uma proteína com atividade da glutationa peroxidase (GPX6). Além disso, as DAPs aumentadas incluem uma ascorbato peroxidase (APX1), uma glutationa redutase (AT3G24170) e uma proteína que sintetiza glutationa a partir da L-cisteína e L-glutamato (GSH1). Outras quatro proteínas que pertencem ao sistema glutationa-S-transferase foram reguladas: onde GSTF6, GSTF8 e GSTU3 foram reduzidas e AT4G19880 aumentada. Dentre as quatro proteínas do sistema tiorredoxina que foram reguladas, três foram reduzidas, a saber: tiorredoxina H5 (TRX5), peroxirredoxina-2C (PRXIIC) e 2-Cys peroxiredoxina (BAS1). A proteína dissulfeto-isomerase (PDI21) aumentou.

Em conjunto, esses resultados revelam que o sistema antioxidante da raiz de *A. thaliana* é atenuado em resposta aos VOCs de *G. diazotrophicus* Pal5.

Figura 9 - Regulação das proteínas envolvidas no sistema antioxidante. **(a)** Ciclo ascorbato-glutationa. **(b)** Proteínas de *A. thaliana* aumentadas (triângulos azulclaros) e reduzidas (triângulos laranjas) em resposta aos VOCs de *Gluconacetobacter diazotrophicus* Pal5. Consulte a Tabela Suplementar S5 para mais detalhes.

5.6 Regulação de proteínas de defesa vegetal em resposta aos VOCs produzidos por *Gluconacetobacter diazotrophicus* Pal5

Várias proteínas relacionadas às respostas de defesa foram reguladas, sendo, em sua maioria, reduzidas na raiz (Figura 10). Dentre elas, uma proteína relacionada à percepção de sinais microbianos, um provável receptor kinase inativo (AT3G02880), foi reduzida. Um conjunto de três proteínas envolvidas na sinalização foi regulado, incluindo uma pequena proteína G, chamada RAN1 (aumentada), uma calreticulina, chamada CRT1 (aumentada) e uma calmodulina, chamada CAM6 (reduzida). Além disso, oito proteínas relacionadas à patogênese (PR) foram reduzidas. Dentre tais proteínas estão: uma proteína classe PR-4, que possui um domínio semelhante à heveína (HEL), uma proteína classe PR-5, com um domínio semelhante à osmotina (OSM34), uma proteína classe PR-6, com atividade inibidora de protease de tripsina Kunitz (KTI-4), duas proteínas classe PR-10 (MLP328 e MLP329), uma proteína classe PR-11, com atividade de quitinase (CHIC), e uma proteína classe PR-16 (GLP1), com um domínio semelhante à germinas. Adicionalmente, outra proteína classe PR-16 com domínio semelhante à germinas (GLP2) foi aumentada.

Figura 10 - Regulação das proteínas envolvidas na resposta de defesa na raiz de plantas de *A. thaliana* tratadas com os VOCs de *Gluconacetobacter diazotrophicus* Pal5. As proteínas aumentadas e reduzidas são destacadas em triângulos azuis e amarelos, respectivamente. Consulte a Tabela Suplementar S5 para mais detalhes.

Assim, esses resultados revelam que as proteínas de resposta à defesa têm seu acúmulo majoritariamente reduzido em resposta aos VOCs de *G. diazotrophicus* Pal5.

5.7 Participação das vias hormonais vegetais na resposta de *A. thaliana* aos VOCs de *Gluconacetobacter diazotrophicus* Pal5

Com o objetivo de verificar a participação das vias hormonais vegetais na resposta de *A. thaliana* aos VOCs produzidos por *G. diazotrophicus* Pal5, oito genótipos mutantes para percepção/produção de hormônios (*abi4*, *aux1-7*, *etr1-3*, *ein3-1*, *jar1*, *jin1*, *eds16* e *sid2-2*) e uma linhagem transgênica com acúmulo reduzido de ácido salicílico (*nahG*) foram co-cultivados na presença dos VOCs de *G. diazotrophicus* PAl5 (Figura 11 a). O peso fresco total das plantas foi aumentado em todos os genótipos após exposição aos voláteis, porém em proporções diferenciadas entre eles (Figura 11 b). Em comparação com Col-0, os mutantes *ein3-1* e *abi4* foram os mais afetados quanto a capacidade de responder aos VOCs, com incremento de peso fresco de apenas 58,8% e 55,5%, respectivamente. Juntos, esses resultados sugerem um papel importante para as vias de sinalização de ácido abscísico e etileno na promoção do crescimento vegetal induzido por VOCs de *G. diazotrophicus* Pal5.

Figura 11 - Efeito de VOCs de *Gluconacetobacter diazotrophicus* Pal5 na promoção do crescimento de diferentes mutantes hormonais de *A. thaliana*. (a) Imagem do sistema de placas I com plantas de *A. thaliana* aos 21 dias de idade submetidas ao tratamento com VOCs bacteriano e meio de cultura (controle). As plantas de *A. thaliana* foram submetidas ao tratamento com os VOCs de *G. diazotrophicus* por 21 dias, e o peso fresco (b) foi medido. Os dados representam a média ± erro-padrão da média de três réplicas de dois experimentos independentes, com seis mudas por réplica. Os asteriscos indicam diferenças significativas em relação ao controle (***p<0.001 de acordo com o teste *t* de Student). Barra = 1 cm.

6 DISCUSSÃO

O presente trabalho analisou a resposta de plantas de *A. thaliana* aos compostos orgânicos voláteis (VOCs) produzidos pela bactéria *G. diazotrophicus* Pal5, com ênfase na morfologia, fisiologia e no proteoma das plantas. Os resultados revelaram que *G. diazotrophicus* Pal5 produz VOCs que promovem o crescimento de *A. thaliana*, levando ao aumento de biomassa vegetal e modulação de respostas proteômicas específicas na parte aérea e raiz. Além disso, as vias de sinalização de ABA e ET mostraram ser importantes componentes da resposta de crescimento da planta induzida pelos VOCs liberados por *G. diazotrophicus* Pal5.

Modelos anteriores de promoção do crescimento vegetal estimulado por *G. diazotrophicus* mostram que a colonização endofítica dos tecidos da planta hospedeira é necessária (Rangel de Souza et al. 2016; de Oliveira et al. 2019; Filgueiras et al. 2020). No entanto, o papel de VOCs desencadeando a promoção do crescimento vegetal ainda precisa ser elucidado e os mecanismos moleculares inerentes a essa resposta permanecem inexplorados. Neste estudo, um efeito positivo dos VOCs de *G. diazotrophicus* Pal5 foi observado para o ganho de peso fresco das plantas. Um estudo anterior demonstrou que os VOCs de *G. diazotrophicus* Pal5 foi observado para o ganho de peso fresco das plantas. Um estudo anterior demonstrou que os VOCs de *G. diazotrophicus* Pal5 aumentaram de forma semelhante o peso fresco de parte aérea e raiz de *A. thaliana* (Maia 2021). Zhang et al. (2007) explicaram o efeito da exposição ao VOCs bacterianos na biomassa vegetal, demonstrando que os genes estimulados estavam associados à estrutura da parede celular, permitindo maior expansão e redução na rigidez.

Os VOCs emitidos por diversas espécies de PGPBs são conhecidos por promoverem o crescimento das plantas, alterando a morfogênese das raízes (Jiang et al. 2019). No presente estudo, os VOCs produzidos por *G. diazotrophicus* Pal5 inibiram o crescimento da raiz principal e estimularam o desenvolvimento de raízes laterais em *A. thaliana.* Pode-se supor que as plantas respondem aos VOCs alterando a arquitetura do sistema radicular, o que pode melhorar a colonização radicular e reforçar as interações simbióticas entre as raízes e a população microbiana associada (Gutiérrez-Luna et al. 2010). Esse mecanismo de comunicação química pode mediar melhorias no desempenho das plantas em ecossistemas agrícolas, melhorando o acesso da planta à água e nutrientes (Vilches Barro et al. 2019).

Nas últimas décadas, abordagens proteômicas comparativas têm sido utilizadas para estudar os mecanismos moleculares regulados nas plantas pelos VOCs de PGPBs (Kwon et al. 2010; Vaishnav et al. 2015). No presente estudo a análise de proteômica comparativa, via LC-MS/MS, identificou 570 e 796 proteínas na parte aérea e raiz, respectivamente, em plantas de *A. thaliana* expostas aos VOCs de *G. diazotrophicus* Pal5. Entre as proteínas da parte aérea de *A. thaliana*, 120 DAPs foram aumentadas e 64 DAPs foram reduzidas em comparação com as plantas controle. Nas raízes, 132 DAPs foram aumentadas e 130 DAPs foram reduzidas, quando comparadas com o controle. Esta pesquisa é a primeira a utilizar a abordagem proteômica para entender os efeitos de VOCs de *G. diazotrophicus* Pal5 sobre uma planta.

Os dados proteômicos revelaram as principais vias biológicas reguladas na parte aérea e raízes de plantas de *A. thaliana*, em resposta aos VOCs produzidos por *G. diazotrophicus* Pal5. As análises via MAPMAN permitiram identificar vias metabólicas e processos biológicos regulados após associação com microrganismos. Na parte aérea de plantas de *A. thaliana* expostas aos VOCs de *G. diazotrophicus* Pal5, o principal grupo de proteínas aumentadas foi relacionado à fotossíntese. A fotossíntese é a base do crescimento das plantas e é um dos principais processos fisiológicos que são induzidos pelos VOCs de PGPBs (Wang et al. 2017; Tahir et al. 2017). Neste estudo, os componentes proteicos mais importantes do aparelho fotossintético foram acumulados em resposta aos VOCs de *G. diazotrophicus* Pal5. Entre eles, as proteínas dos supercomplexos PSII-LCH2, citocromo (Cyt) b_{6f}, PSI e ATP *synthase* são cruciais tanto para o processo

de captura de energia e conversão de fótons de luz quanto na redução de energia dentro dos cloroplastos (Blankenship 2014). As membranas fotossintéticas utilizam a luz para excitar elétrons em moléculas especiais de clorofila para armazenar a energia redox em NAPDH e ATP (Blankenship 2014). A síntese de ATP é promovida pela ATP synthase a partir de um gradiente de prótons gerado pelo transporte de elétrons (Junge e Nelson 2015), e os elétrons são usados pela ferredoxina (FNR) na redução de NADP, produzindo NADPH (Benz et al. 2010). Os produtos das reações de luz da fotossíntese, ATP e NADPH são usados no ciclo de Calvin para converter os esqueletos de carbono fixados em açúcares (Raines 2003).

Estudos moleculares baseados em análises de transcriptoma do efeito de VOCs da PGPB *B. subtilis* GB03 em *A. thaliana* forneceram evidências importantes sobre a influência dos voláteis bacterianos na biossíntese de clorofila (Zhang et al. 2007, 2008). Neste estudo, os resultados da proteômica identificaram um aumento na abundância de proteínas envolvidas na biossíntese de clorofila, como as subunidades de produção da protoporfirina-IX C e F, magnésio-protoporfirina IX metiltransferase e protoclorofillide oxireductase. Todas essas proteínas são importantes na síntese de clorofila a partir da conversão do ácido 5-aminolevúnico em clorofila *a* (Tanaka e Tanaka 2007). Consistente com esses achados, a quantidade de clorofila (clorofila *a*, clorofila *b* e clorofila total) também aumentou nas plantas expostas aos VOCs de *G. diazotrophicus* Pal5, sugerindo uma correlação positiva entre o aumento das proteínas de biossíntese de clorofila e a quantidade desses pigmentos fotossintéticos nas plantas, crucial para a fase de reações de luz da fotossíntese.

A colonização endofítica de *A. thaliana* por *G. diazotrophicus* Pal5 afeta positivamente a fotossíntese (Rangel de Souza et al. 2016). Os autores relataram um aumento dos níveis de fotossíntese e melhoria da eficiência de uso da água, com base em análise da troca de CO₂. Os resultados obtidos nesta pesquisa quanto à análise de fluorescência de clorofila *a* sugere que os VOCs produzidos têm efeitos benéficos sobre a fisiologia de *A. thaliana*, aumentando a eficiência fotossintética das plantas. Durante a fotossíntese, a luz que é absorvida pela clorofila *a*, associada ao centro de reação do PSII, pode ser dissipada como energia fotoquímica de excitação (qP), promovendo o transporte linear de elétrons (ETR), e não fotoquímica (qN e NPQ), que inclui a produção de calor, é reemitida como

fóton de fluorescência (Baker 2008). Uma relação direta entre fluorescência de clorofila *a* e eficiência fotossintética pode ser estabelecida (Porcar-Castell et al. 2014). Assim, os resultados revelaram que plantas expostas aos voláteis bacterianos apresentaram aumento da florescência, denotada como F_0 quando os centros de reação do PSII estão abertos, o que pode ter estimulado a taxa de ETR e favorecido a fotossíntese. Além disso, como as medições de NPQ e qN demonstraram pouco efeito sobre as plantas, essas evidências lançam luz sobre o papel dos VOCs de *G. diazotrophicus* Pal5 no aprimoramento da eficiência fotossintética em *A. thaliana*.

Neste estudo foi identificado que os VOCs de *G. diazotrophicus* Pal5 aumentaram o acúmulo de proteínas envolvidas no remodelamento da parede celular nas raízes das plantas de *A. thaliana*. As plantas são capazes de modificar a estrutura da parede de suas células não apenas para determinar a sua morfogênese e arquitetura como também para defesa contra estresses bióticos e abióticos (Anderson e Kieber 2020). Efeitos benéficos de *G. diazotrophicus* sobre a promoção do crescimento de plantas foram relatados anteriormente, descrevendo o aumento da atividade de enzimas de síntese e degradação dos componentes da parede celular de raízes (Nogueira et al. 2001; Adriano-Anaya et al. 2005; Rodriguez et al. 2019)

A parede celular vegetal é formada principalmente por polímeros de polissacarídeos como celulose, pectina e hemicelulose, mas muitas vezes inclui glicoproteínas e lignina (Zhang et al. 2021a). Este trabalho demonstrou que proteínas envolvidas no metabolismo de pectina, hemicelulose e lignina foram, em sua maioria, reguladas positivamente pelos VOCs de *G. diazotrophicus* Pal5, revelando um ajuste fino do remodelamento da parede celular das raízes de *A. thaliana*.

As espécies reativas de oxigênio (ROS) também são conhecidas por regular muitos processos de crescimento, desenvolvimento e estresse em plantas (Mittler 2017). Um papel importante de ROS na sinalização sistêmica rápida contra bactérias patogênicas invasoras tem sido caracterizado (Fichman e Mittler 2020). Em 2013, o acúmulo de ROS foi demonstrado mesmo após a inoculação de arroz com *G. diazotrophicus* Pal5 (Alquéres et al. 2013). Uma análise anterior de proteômica revelou a regulação positiva da expressão de uma enzima desintoxicante de ROS (ou seja, ascorbate peroxidase - APX) da cana-de-açúcar

durante a interação com *G. diazotrophicus* Pal5 (Lery et al. 2011). Embora as informações anteriores tenham indicado que ROS desempenha um papel importante no sucesso da colonização, os dados de proteoma mostraram que as emissões voláteis diminuíram os níveis de enzimas antioxidantes. Portanto, é possível que os VOCs de *G. diazotrophicus* Pal5 bloqueiem, parcialmente, as respostas de defesa em raízes de *A. thaliana*, facilitando um eventual processo de colonização.

Nas raízes das plantas expostas aos voláteis, proteínas de percepção de estímulo e ativação de respostas de defesa contra patógenos foram principalmente reduzidas. Similarmente à patógenos, várias PGPBs também ativam uma cascata de sinalização de defesa e imunidade vegetal (Pieterse et al. 2014; Bukhat et al. 2020). As proteínas LRR e calmodulina, que foram reduzidas nas raízes de *A. thaliana*, são proteínas de reconhecimento de patógenos e sinalização que ativam as respostas de defesa (Yang e Poovaiah 2003; Jones e Dangl 2006). Uma resposta típica da invasão de patógenos é a indução das chamadas proteínas relacionadas à patogênese (Sels et al. 2008). Vários estudos têm demonstrado que a inoculação de *A. thaliana* com PGPB levou ao acúmulo de proteínas PR (Spaepen et al. 2014; Leandro et al. 2019). Portanto, a redução da expressão de proteínas de defesa permite hipotetizar que os VOCs de *G. diazotrophicus* Pal5 podem suprimir as respostas de defesa das raízes de *A. thaliana*.

Hormônios vegetais, além de regular o crescimento e o desenvolvimento das plantas, afetam a capacidade da planta de ativar respostas de defesa (Bari e Jones 2009). O presente estudo, usando várias linhagens mutantes e uma transgênica de *A. thaliana* revelou as vias do etileno e ácido abscísico (ABA) como potenciais reguladores da resposta de promoção do crescimento desencadeada pelos VOCs de *G. diazotrophicus* Pal5. ABA e etileno regulam a dormência, crescimento vegetativo, amadurecimento de frutos, germinação de sementes, abertura/fechamento estomático, bem como estresses abióticos e biótico (Chen et al. 2020; Binder 2020). A participação do etileno já foi descrita na promoção do crescimento e na indução de defesa em *A. thaliana* em resposta aos voláteis de *B. subtilis* GB03 (Ryu et al. 2003, 2004). Posteriormente, a participação do ABA na promoção do crescimento pelos voláteis da cepa GB03 também foi relatada para *A. thaliana* (Zhang et al. 2008), sugerindo que a resposta vegetal envolve a ação combinada das duas vias hormonais. Futuros estudos sobre o papel de ABA e

etileno em tal resposta poderão trazer novas informações acerca dos mecanismos moleculares regulados durante a associação entre *G. diazotrophicus* Pal5 e plantas.

Os VOCs liberados por PGPBs podem ser classificados em numerosos grupos químicos, incluindo álcoois, hidrocarbonetos, cetonas, ácidos, éteres, ésteres, compostos contendo S e N (Park et al. 2015; Tahir et al. 2017; Dotson et al. 2020). Em *G. diazotrophicus* Pal5, Maia (2021) detectou os compostos ácido acético, dissulfeto de dimetila (DMDS) e ácido 3-metilbutanóico utilizando o sistema SPME-GC-MS. A produção de tais compostos tem sido reportada em várias espécies de PGPBs (Cavalcante e Döbereiner 1988; Bertalan et al. 2009; Chen et al. 2015; Syed-Ab-Rahman et al. 2019). Meldau et al. (2013) demonstraram que as plantas podem se beneficiar de sua interação com PGPB obtendo S através da absorção do DMDS bacteriano. Além disso, DMDS pode contribuir para o crescimento e desenvolvimento das plantas, modificando a arquitetura do sistema radicular através da sinalização de auxina (Tyagi et al. 2019). Portanto, é possível que esse volátil influencie a resposta de *A. thaliana* aos VOCs de *G. diazotrophicus* Pal5.

O presente estudo permitiu novas descobertas sobre o efeito dos VOCs emitidos por *G. diazotrophicus* Pal5 na promoção do crescimento de plantas, revelando vias moleculares reguladas durante tal processo. O efeito de VOCs na ativação do crescimento vegetal representa um promissor componente dos mecanismos indutores de crescimento/desenvolvimento presentes em *G. diazotrophicus*.

7 CONCLUSÕES

Com base nos resultados desta tese, conclui-se que:

Os VOCs produzidos por *G. diazotrophicus* Pal5 promovem o crescimento vegetal.

As vias de sinalização hormonal do ácido abscísico e etileno regulam a promoção do crescimento induzida pelos VOCs de *G. diazotrophicus* Pal5.

Os VOCs produzidos por *G. diazotrophicus* Pal5 regulam positivamente as proteínas da maquinaria fotossintética e remodelamento da parede celular, mas regulam negativamente as proteínas do sistema antioxidante e proteínas relacionadas à patogênese.

Os VOCs de *G. diazotrophicus* Pal5 melhoram a fisiologia das plantas, aumentando a eficiência fotossintética e o conteúdo de clorofila nas folhas.

8 PERSPECTIVAS

Os resultados alcançados até aqui lançam luz sobre a capacidade de *G. diazotrophicus* Pal5 promover o crescimento de plantas mediante VOCs. Porém, muitas perguntas acerca desse novo mecanismo de promoção do crescimento vegetal da bactéria precisam ser respondidas, tais como:

Os VOCs de *G. diazotrophicus* Pal5 também são eficientes em promover o crescimento de *A. thaliana* em experimentos *in planta*? Para tal, o cultivo das plantas em potes contendo substrato esterilizado é uma alternativa;

Qual dos 11 VOCs previamente identificados na cultura de *G. diazotrophicus* Pal5 desempenha um papel bioativo na promoção do crescimento vegetal? Para tal, sugere-se o co-cultivo de *A. thaliana* com os VOCs sintéticos individuais em placas I e/ou em potes contendo substrato esterilizado para averiguação;

Quais são os traços genotípicos vegetais que estão envolvidos na capacidade da planta em lucrar com a atividade de promoção do crescimento vegetal mediada pelos VOCs de *G. diazotrophicus* Pal5? Para tal, o uso de ecótipos naturais de *A. thaliana*, apoiado pela análise genômica, poderá fornecer pistas dos genes candidatos.

Os VOCs de *G. diazotrophicus* Pal5 promovem o crescimento das culturas agronomicamente importantes? Para tal, o co-cultivo de diferentes espécies com a bactéria pode validar o papel dessas substâncias na promoção do crescimento vegetal.

REFERÊNCIAS

- Adriano-Anaya, M.L., Salvador-Figueroa, M., Ocampo. J.A., García-Romera. I. (2005) Plant cell-wall degrading hydrolytic enzymes of *Gluconacetobacter diazotrophicus*. *Symbiosis* 40:151–156.
- Alquéres, S., Meneses, C., Rouws, L. et al (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by *Gluconacetobacter diazotrophicus* PAL5. *Mol Plant-Microbe Interact.* 26:937–945.
- Anderson, C.T., Kieber, J.J. (2020) Dynamic construction, perception, and remodeling of plant cell walls. *Annu Rev Plant Biol.* 71:39–69.
- Asari, S., Matzén, S., Petersen, M.A., et al (2016) Multiple effects of *Bacillus amyloliquefaciens* volatile compounds: plant growth promotion and growth inhibition of phytopathogens. *FEMS Microbiol Ecol.* 92:fiw070.
- Aziz, M., Nadipalli, R.K., Xie, X. et al (2016) Augmenting sulfur metabolism and herbivore defense in *Arabidopsis* by bacterial volatile signaling. *Front Plant Sci.* 7:1–14.
- Baerenfaller, K., Grossmann, J., Grobei, M.A. et al (2008) Genome-scale proteomics reveals *Arabidopsis thaliana* gene models and proteome dynamics. *Science.* 320:938–941.

- Baker, N.R. (2008) Chlorophyll fluorescence: a probe of photosynthesis *in vivo*. *Annu Rev Plant Biol.* 59:89–113.
- Bansal, R.K., Dahiya, R.S., Narula, N., Jain, R.K. (2005) Management of Meloidogyne incognita in cotton, using strains of the bacterium Gluconacetobacter diazotrophicus. Nematol Mediterr. 33:101–105.
- Bari, R., Jones, J.D.G. (2009) Role of plant hormones in plant defence responses. *Plant Mol Biol.* 69:473–488.
- Bastián, F., Cohen, A., Piccoli, P. et al (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by *Acetobacter diazotrophicus* and *Herbaspirillum seropedicae* in chemically-defined culture media. *Plant Growth Regul.* 24:7–11.
- Bavaresco, L.G., Osco, L.P., Araujo, A.S.F. et al (2020) Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theor Exp Plant Physiol. 32:99–108.
- Benz, J.P., Lintala, M., Soll, J. et al (2010) A new concept for ferredoxin–NADP(H) oxidoreductase binding to plant thylakoids. *Trends Plant Sci.* 15:608–613.
- Berger, S., Bell, E., Mullet, J.E. (1996) Two methyl jasmonate-insensitive mutants show altered expression of *AtVsp* in response to methyl jasmonate and wounding. *Plant Physiol.* 111:525–531.
- Bertalan, M., Albano, R., de Pádua, V. et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte *Gluconacetobacter diazotrophicus* Pal5. *BMC Genomics* 10:450.
- Bhattacharyya, D., Lee, Y.H. (2017) A cocktail of volatile compounds emitted from Alcaligenes faecalis JBCS1294 induces salt tolerance in Arabidopsis thaliana by modulating hormonal pathways and ion transporters. J Plant Physiol. 214:64–73.
- Billah, M., Khan, M., Bano, A. et al (2019) Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture. *Geomicrobiol J.* 36:904–916.

Binder, B.M. (2020) Ethylene signaling in plants. J Biol Chem. 295:7710–7725.

- Bjornson, M., Pimprikar, P., Nürnberger, T., Zipfel, C. (2021) The transcriptional landscape of *Arabidopsis thaliana* pattern-triggered immunity. *Nat Plants.* 7:579–586.
- Blankenship, R.E. (2014) *Molecular mechanisms of photosynthesis*. 2nd edn. New Jersey: Wiley-Blackwell, 312p.
- Bleecker, A.B., Estelle, M.A., Somerville, C., Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation in *Arabidopsis thaliana*. *Science* 241:1086–1089.
- Blom, D., Fabbri, C., Connor, E.C. et al (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. *Environ Microbiol.* 13:3047–3058.
- Bukhat, S., Imran, A., Javaid, S. et al (2020) Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling. *Microbiol Res.* 238:126486.
- Castulo-Rubio, D.Y., Alejandre-Ramíre, z N.A., Orozco-Mosqueda, M. del C. et al (2015) Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul. 34:611–623.
- Cavalcante, J., Vargas, C., Nogueira, E. de M. et al (2006) Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. *J Exp Bot.* 58:673–686.
- Cavalcante, V.A., Döbereiner, J. (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. *Plant Soil* 108:23–31.
- Chao, Q., Rothenberg, M., Solano, R. et al (1997) Activation of the ethylene gas response pathway in *Arabidopsis* by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. *Cell* 89:1133–1144.
- Chen, K., Li, G., Bressan, R.A. et al (2020) Abscisic acid dynamics, signaling, and functions in plants. *J Integr Plant Biol.* 62:25–54.
- Chen, Y., Gozzi, K., Chai, Y. (2015) A bacterial volatile signal for biofilm formation. *Microb Cell.* 2:406–408.
- Cheng, C., Krishnakumar, V., Chan, A.P., et al (2017) Araport11: a complete reannotation of the *Arabidopsis thaliana* reference genome. *Plant J.* 89:789–804.
- Cho, S.M., Kang, B.R., Han, S.H., et al (2008) 2R,3R-Butanediol, a bacterial volatile produced by *Pseudomonas chlororaphis* O6, is involved in induction of systemic tolerance to drought in *Arabidopsis thaliana*. *Mol Plant-Microbe Interact*. 21:1067–1075.
- Cocking, E.C., Stone, P.J., Davey, M.R. (2006) Intracellular colonization of roots of Arabidopsis and crop plants by *Gluconacetobacter diazotrophicus*. *Vitr Cell Dev Biol – Plant*. 42:74–82.
- Cordovez, V., Carrion, V.J., Etalo, D.W., et al (2015) Diversity and functions of volatile organic compounds produced by *Streptomyces* from a disease-suppressive soil. *Front Microbiol*. 6:1081.
- Damerval, C., De Vienne, D., Zivy, M., Thiellement, H. (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. *Electrophoresis* 7:52–54.
- de Oliveira, T.R.A., Gravina, G.A., da Cruz, D.P., et al (2019) The performance of bean pod lineage inoculated with *Gluconacetobacter diazotrophicus* PAL5. *Sci Hortic*. 249:65–70.
- Delaney, T.P., Uknes, S., Vernooij, B., et al (1994) A central role of salicylic acid in plant disease resistance. *Science* 266:1247–1250.
- Delaporte-Quintana, P., Grillo-Puertas, M., Lovaisa, N.C., et al (2017) Contribution of *Gluconacetobacter diazotrophicus* to phosphorus nutrition in strawberry plants. *Plant Soil* 419:335–347.
- Delaporte-Quintana, P., Lovaisa, N.C., Rapisarda, V.A., Pedraza, R.O. (2020) The plant growth promoting bacteria *Gluconacetobacter diazotrophicus* and *Azospirillum brasilense* contribute to the iron nutrition of strawberry plants

through siderophores production. *Plant Growth Regul.* 91:185–199.

- Dent, D. (2018) Non-nodular endophytic bacterial symbiosis and the nitrogen fixation of *Gluconacetobacter diazotrophicus*. In: Rigobelo, E. (ed) *Symbiosis*. 148th edn. London: InTech, p 53–61.
- Dewdney, J., Reuber, T.L., Wildermuth, M.C., et al (2000) Three unique mutants of *Arabidopsis* identify eds loci required for limiting growth of a biotrophic fungal pathogen. *Plant J.* 24:205–218.
- Distler, U., Kuharev, J., Navarro, P., et al (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. *Nat Methods* 11:167–170.
- Distler, U., Kuharev, J., Navarro, P., Tenzer, S. (2016) Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. *Nat Protoc*. 11:795–812.
- Döbereiner, J., Reis, V.M., Paula, M.A., Olivares, F.L. (1993) Endophytic diazotrophs in sugar cane, cereals and tuber plants. In: Palacios, R., Mora, J., Newton, W.E. (eds) New Horizons in Nitrogen Fixation: Current Plant Science and Biotechnology in Agriculture. 17th edn. Dordrecht: Springer, p 671–676.
- Dotson, B.R., Verschut, V., Flärdh, K., et al (2020) The *Streptomyces* volatile 3octanone alters auxin/cytokinin and growth in *Arabidopsis thaliana* via the gene family KISS ME DEADLY. *bioRxiv*.
- Effmert, U., Kalderás, J., Warnke, R., Piechulla, B. (2012) Volatile mediated interactions between bacteria and fungi in the soil. *J Chem Ecol.* 38:665–703.
- Elmore, J.M., Griffin, B.D., Walley, J.W. (2021) Advances in functional proteomics to study plant-pathogen interactions. *Curr Opin Plant Biol.* 63:102061.
- Eskin, N., Vessey, K., Tian, L. (2014) Research progress and perspectives of nitrogen fixing bacterium, *Gluconacetobacter diazotrophicus*, in monocot plants. *Int J Agron*. 2014:1–13.
- Farag, M.A., Song, G.C., Park, Y.-S., et al (2017) Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial

volatile signals. Nat Protoc. 12:1359–1377.

- Fichman, Y., Mittler, R. (2020) Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? *Plant J.* 102:887–896.
- Filgueiras, L., Silva, R., Almeida, I., et al (2020) *Gluconacetobacter diazotrophicus* mitigates drought stress in *Oryza sativa* L. *Plant Soil* 451:57–73.
- Finkelstein, R.R. (1994) Mutations at two new *Arabidopsis* ABA response loci are similar to the *abi3* mutations. *Plant J*. 5:765–771.
- Fuentes-Ramirez, L.E., Jimenez-Salgado, T., Abarca-Ocampo, I.R., Caballero-Mellado, J. (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. *Plant Soil* 154:145–150.
- Gámez-Arcas, S., Baroja-Fernández, E., García-Gómez, P., et al (2022) Action mechanisms of small microbial volatile compounds in plants. *J Exp Bot*. 73:498–510.
- García-Gómez, P., Almagro, G., Sánchez-López, Á.M., et al (2019) Volatile compounds other than CO₂ emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants. *Plant Cell Environ*. 42:1729–1746.
- Gilis, M., Kersters, K., Hoste, B., et al (1989) *Acetobacter diazotrophicus* sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. *Int J Syst Bacteriol.* 39:361–364.
- Giongo, A., Tyler, H.L., Zipperer, U.N., Triplett, E.W. (2010) Two genome sequences of the same bacterial strain, *Gluconacetobacter diazotrophicus* PAI 5, suggest a new standard in genome sequence submission. *Stand Genomic Sci.* 2:309–317.
- Glick, B.R. (2020) Introduction to Plant Growth-Promoting Bacteria. In: Glick, B.R.
 (ed) *Beneficial Plant-Growth Interaction*. 2nd edn. Cham: Springer International Publishing, p 1–28.
- Groenhagen, U., Maczka, M., Dickschat, J.S., Schulz, S. (2014) Streptopyridines, volatile pyridine alkaloids produced by *Streptomyces* sp. FORM5. *Beilstein J*

Org Chem. 10:1421–1432.

- Gutiérrez-Luna, F.M., López-Bucio, J., Altamirano-Hernández, J., et al (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in *Arabidopsis thaliana* through volatile organic compound emission. *Symbiosis* 51:75–83.
- Guzmán, P., Ecker, J.R. (1990) Exploiting the triple response of *Arabidopsis* to identify ethylene-related mutants. *Plant Cell* 2:513–523.
- Hooper, C.M., Castleden, I.R., Tanz, S.K., et al (2017) SUBA4: the interactive data analysis centre for *Arabidopsis* subcellular protein locations. *Nucleic Acids Res*. 45:D1064–D1074.
- Hooper, C.M., Tanz, S.K., Castleden, I.R., et al (2014) SUBAcon: a consensus algorithm for unifying the subcellular localization data of the *Arabidopsis* proteome. *Bioinformatics* 30:3356–3364.
- Intorne, A.C., de Oliveira, M.V.V., Lima, M.L., et al (2009) Identification and characterization of *Gluconacetobacter diazotrophicus* mutants defective in the solubilization of phosphorus and zinc. *Arch Microbiol*. 191:477–483.
- Jain, A., Singh, H.B., Das, S. (2021) Deciphering plant-microbe crosstalk through proteomics studies. *Microbiol Res.* 242:126590.
- Jiang, C.-H., Xie, Y.-S., Zhu, K., et al (2019) Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. *Plant Growth Regul.* 87:317–328.
- Jiang, H.-L., Hong, J., Jiang, Y.-T., et al (2020) Genome-wide association analysis identifies candidate genes regulating seed number per silique in *Arabidopsis thalian*a. *Plants* 9:585.
- Jimenez-Salgado, T., Fuentes-Ramirez, L.E., Tapia-Hernandez, A., et al (1997) *Coffea arabica* L., a new host plant for *Acetobacter diazotrophicus*, and isolation of other nitrogen-fixing acetobacteria. *Appl Environ Microbiol*. 63:3676–3683.
- Jones, J.D.G., Dangl, J.L. (2006) The plant immune system. *Nature* 444:323–329.

Junge, W., Nelson, N. (2015) ATP synthase. Annu Rev Biochem. 84:631–657.

- Kai, M. (2020) Diversity and distribution of volatile secondary metabolites throughout *Bacillus subtilis* isolates. *Front Microbiol*. 11:559.
- Kai, M., Piechulla, B. (2009) Plant growth promotion due to rhizobacterial volatiles an effect of CO₂? *FEBS Lett.* 583:3473–3477.
- Kersters, K., Lisdiyanti, P., Komagata, K., Swings, J. (2006) The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Dworkin, M., Falkow, S., Rosenberg, E., et al. (eds) The Prokaryotes. 3rd edn. New York: Springer New York, p.163–200
- Kesavan, P.C., Swaminathan, M.S. (2018) Modern technologies for sustainable food and nutrition security. *Curr Sci.* 115:1876.
- Kwon, Y.S., Ryu, C.-M., Lee, S., et al (2010) Proteome analysis of *Arabidopsis* seedlings exposed to bacterial volatiles. *Planta* 232:1355–1370.
- Leandro, M.R., Andrade, L.F., Vespoli, L. de S., et al (2021a) Comparative proteomics reveals essential mechanisms for osmotolerance in *Gluconacetobacter diazotrophicus*. *Res Microbiol*. 172:103785.
- Leandro, M.R., Rangel, P.L., dos Santos, T.C., et al (2019) Colonization of *Arabidopsis thaliana* by *Herbaspirillum seropedicae* promotes its growth and changes its proteomic profile. *Plant Soil* 443:429–447.
- Leandro, M.R., Vespoli, L. de S., Andrade, L.F., et al (2021b) DegP protease is essential for tolerance to salt stress in the plant growth-promoting bacterium *Gluconacetobacter diazotrophicus* PAL5. *Microbiol Res.* 243:126654.
- Ledger, T., Rojas, S., Timmermann, T., et al (2016) Volatile-mediated effects predominate in *Paraburkholderia phytofirmans* growth promotion and salt stress tolerance of *Arabidopsis thaliana*. *Front Microbiol*. 7:1–18.
- Lee, B., Farag, M.A., Park, H.B., et al (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by *Paenibacillus polymyxa*. *PLoS One* 7:e48744.

- Lee, J.-H., Wood, T.K., Lee, J. (2015) Roles of indole as an interspecies and interkingdom signaling molecule. *Trends Microbiol*. 23:707–718.
- Lee, S., Flores-Encarnación, M., Contreras-Zentella, M., et al (2004) Indole-3-acetic acid biosynthesis is deficient in *Gluconacetobacter diazotrophicus* strains with mutations in cytochrome c biogenesis genes. *J Bacteriol*. 186:5384–5391.
- Lemfack, M.C., Gohlke, B.O., Toguem, S.M.T., et al (2018) mVOC 2.0: a database of microbial volatiles. *Nucleic Acids Res* 46:D1261–D1265.
- Lery, L.M.S., Hemerly, A.S., Nogueira, E.M., et al (2011) Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium *Gluconacetobacter diazotrophicus* and sugarcane. *Mol Plant-Microbe Interact*. 24:562–576.
- Li, F., Tang, M., Tang, X., et al (2019) *Bacillus subtilis-Arabidopsis thaliana*: a model interaction system for studying the role of volatile organic compounds in the interchange between plants and bacteria. *Botany* 97:661–669.
- Li, Y., Shao, J., Xie, Y., et al (2021) Volatile compounds from beneficial rhizobacteria Bacillus spp. promote periodic lateral root development in Arabidopsis. *Plant Cell Environ*. 44:1663–1678.
- Loganathan, P., Sunita, R., Parida, A.K., Nair, S. (1999) Isolation and characterization of two genetically distant groups of *Acetobacter diazotrophicus* from a new host plant *Eleusine coracana* L. *J Appl Microbiol*. 87:167–172.
- Logeshwarn, P., Thangaraju, M., Rajasundari, K. (2009) Hydroxamate siderophores of endophytic bacteria *Gluconacetobacter diazotrophicus* isolated from sugarcane roots. *Aust J Basic Appl Sci.* 3:3564–3567.
- Logeshwarn, P., Thangaraju, M., Rajasundari, K. (2011) Antagonistic potential of *Gluconacetobacter diazotrophicus* against *Fusarium oxysporum* in sweet potato (*Ipomea batatus*). *Arch Phytopathol Plant Prot.* 44:216–223.
- Lopes, E.A.P., Silva, A.D.A. da, Mergulhão, A.C. do E.S., et al (2019) Co-inoculation of growth promoting bacterian and *Glomus clarum* in micropropagated Cassava plants. *Rev Caatinga* 32:152–166.

- Luna, M.F., Galar, M.L., Aprea, J., et al (2010) Colonization of sorghum and wheat by seed inoculation with *Gluconacetobacter diazotrophicus*. *Biotechnol Lett*. 32:1071–1076.
- Madhaiyan, M., Saravanan, V.S., Jovi, D.B.S.S., et al (2004) Occurrence of *Gluconacetobacter diazotrophicus* in tropical and subtropical plants of Western Ghats, India. *Microbiol Res.* 159:233–243.
- Maia, C.Y. (2021) Identificação de compostos orgânicos voláteis de Gluconacetobacter diazotrophicus e seu efeito na promoção do crescimento vegetal. Tese (Mestrado em Biotecnologia Vegetal) – Campos dos Goytacazes – RJ, Universidade Estadual do Norte Fluminense Darcy Ribeiro – UENF. 73 f.
- Martín-Sánchez, L., Singh, K.S., Avalos, M., et al (2019) Phylogenomic analyses and distribution of terpene synthases among Streptomyces. *Beilstein J Org Chem.* 15:1181–1193.
- Meldau, D.G., Meldau, S., Hoang, L.H., et al (2013) Dimethyl disulfide produced by the naturally associated bacterium *Bacillus* sp B55 promotes *Nicotiana attenuata* growth by enhancing sulfur nutrition. *Plant Cell* 25:2731–2747.
- Méndez-Gómez, M., Barrera-Ortiz, S., Castro-Mercado, E., et al (2021) The nature of the interaction *Azospirillum-Arabidopsis* determine the molecular and morphological changes in root and plant growth promotion. *Protoplasma* 258:179–189.
- Meredith, L.K., Tfaily, M.M. (2022) Capturing the microbial volatilome: an oft overlooked "ome", *Trends Microbiol*.

Mittler, R. (2017) ROS are good. Trends Plant Sci. 22:11–19.

- Montes-Osuna, N., Cernava, T., Gómez-Lama Cabanás, C., et al (2022) Identification of volatile organic compounds emitted by two beneficial endophytic *Pseudomonas* strains from olive roots. *Plants* 11:318.
- Moreira, J.R., Leandro, M.R., Vespoli, L. de S., et al (2022) Essential role of extracytoplasmic proteins in the resistance of *Gluconacetobacter diazotrophicus* to cadmium. *Res Microbiol*. 173:103922.

- Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. *Physiol Plant* 15:473–497.
- Muthukumarasamy, R., Cleenwerck, I., Revathi, G., et al (2005) Natural association of *Gluconacetobacter diazotrophicus* and diazotrophic *Acetobacter peroxydans* with wetland rice. *Syst Appl Microbiol*. 28:277–286.
- Muthukumarasamy, R., Revathi, G., Vadivelu, M. (2000) Antagonistic potential of N₂-fixing *Acetobacter diazotrophicus* against *Colletotrichum falcatum* Went., a causal organism of red-rot of sugarcane. *Curr Sci.* 78:1063–1065.
- Nawrath, C., Métraux, J.-P. (1999) Salicylic acid induction-deficient mutants of *Arabidopsis* express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. *Plant Cell* 11:1393–1404.
- Netzker, T., Shepherdson, E.M.F., Zambri, M.P., Elliot, M.A. (2020) Bacterial volatile compounds: functions in communication, cooperation, and competition. *Annu Rev Microbiol.* 74:409–430.
- Nieto-Peñalver, C.G., Savino, M.J., Bertini, E.V., et al (2014) Gluconic acid produced by *Gluconacetobacter diazotrophicus* Pal5 possesses antimicrobial properties. *Res Microbiol.* 165:549–558.
- Nogueira, E.M., Vinagre, F., Masuda, H.P., et al (2001) Expression of sugarcane genes induced by inoculation with *Gluconacetobacter diazotrophicus* and *Herbaspirillum rubrisubalbicans*. *Genet Mol Biol*. 24:199–206.
- O'Callaghan, K.J., Dixon, R.A., Cocking, E.C. (2001) *Arabidopsis thaliana*: a model for studies of colonization by non-pathogenic and plant-growth-promoting rhizobacteria. *Funct Plant Biol.* 28:975.
- Oliveira, M.M., Ramos, E.T.A., Drechsel, M.M., et al (2018) Gluconacin from *Gluconacetobacter diazotrophicus* PAL5 is an active bacteriocin against phytopathogenic and beneficial sugarcane bacteria. *J Appl Microbiol*. 125:1812–1826.
- Pahalvi, H.N., Rafiya, L., Rashid, S., et al (2021) Chemical fertilizers and their impact on soil health. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds)

Microbiota and Biofertilizers. Cham: Springer International Publishing, p 1–20.

- Park, Y.-S., Dutta, S., Ann, M., et al (2015) Promotion of plant growth by *Pseudomonas fluorescens* strain SS101 via novel volatile organic compounds. *Biochem Biophys Res Commun.* 461:361–365.
- Passamani, L.Z., Bertolazi, A.A., Ramos, A.C., et al (2018) Embryogenic competence acquisition in sugarcane callus is associated with differential H⁺-pump abundance and activity. *J Proteome Res.* 17:2767–2779.
- Pereira, W., Sousa, J.S., Schultz, N., Reis, V.M. (2019) Sugarcane productivity as a function of nitrogen fertilization and inoculation with diazotrophic Plant Growth-Promoting Bacteria. *Sugar Tech* 21:71–82.
- Pérez-Flores, P., Valencia-Cantero, E., Altamirano-Hernández, J., et al (2017) Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma 254:2201–2213.
- Pickett, F.B., Wilson, A.K., Estelle, M. (1990) The *aux1* mutation of *Arabidopsis* confers both auxin and ethylene resistance. *Plant Physiol*. 94:1462–1466.
- Piechulla, B., Lemfack, M.C., Kai, M. (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. *Plant Cell Environ*. 40:2042–2067.
- Pieterse, C.M.J., Zamioudis, C., Berendsen, R.L., et al (2014) Induced systemic resistance by beneficial microbes. *Annu Rev Phytopathol.* 52:347–375.
- Piñón, D., Casas, M., Blanch, M., et al (2002) *Gluconacetobacter diazotrophicus*, a sugar cane endosymbiont, produces a bacteriocin against *Xanthomonas albilineans*, a sugar cane pathogen. *Res Microbiol*. 153:345–351.
- Porcar-Castell, A., Tyystjärvi, E., Atherton, J., et al (2014) Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. *J Exp Bot*. 65:4065–4095.
- Poveda, J. (2021) Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. *Appl Soil Ecol.* 168:104118.

- Provart, N.J., Alonso, J., Assmann, S.M., et al (2016) 50 years of *Arabidopsis* research: highlights and future directions. *New Phytol.* 209:921–944.
- Raines, C.A. (2003) The Calvin cycle revisited. *Photosynth Res.* 75:1–10.
- Ramakrishna, W., Yadav, R., Li, K. (2019) Plant growth promoting bacteria in agriculture: two sides of a coin. *Appl Soil Ecol.* 138:10–18.
- Ramšak, Ž., Baebler, Š., Rotter, A., et al (2014) GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology. *Nucleic Acids Res.* 42:D1167–D1175.
- Rangel de Souza, A.L.S., de Souza, S.A., de Oliveira, M.V.V., et al (2016) Endophytic colonization of *Arabidopsis thaliana* by *Gluconacetobacter diazotrophicus* and its effect on plant growth promotion, plant physiology, and activation of plant defense. *Plant Soil* 399:257–270.
- Rath, M., Mitchell, T.R., Gold, S.E. (2018) Volatiles produced by *Bacillus mojavensis* RRC101 act as plant growth modulators and are strongly culture-dependent. *Microbiol Res.* 208:76–84.
- Reaves, M.L., Rabinowitz, J.D. (2011) Metabolomics in systems microbiology. *Curr Opin Biotechnol*. 22:17–25.
- Rodrigues, E.P., Soares, C. de P., Galvão, P.G., et al (2016) Identification of genes involved in indole-3-acetic acid biosynthesis by *Gluconacetobacter diazotrophicus* PAL5 strain using transposon mutagenesis. *Front Microbiol*. 7:1–12.
- Rodrigues Neto, J., Malavolta Júnior, V.A., Victor, O. (1986) Meio simples para o isolamento e cultivo de *Xanthomonas campestris* pv. *citri tipo B. Summa Phytopathol.* 12:1–16.
- Rodriguez, M.V., Tano, J., Ansaldi, N., et al (2019) Anatomical and biochemical changes induced by *Gluconacetobacter diazotrophicus* stand up for *Arabidopsis thaliana* seedlings from *Ralstonia solanacearum* infection. *Front Plant Sci.* 10:1–20.

Rudrappa, T., Biedrzycki, M.L., Kunjeti, S.G., et al (2010) The rhizobacterial elicitor

acetoin induces systemic resistance in *Arabidopsis thaliana*. Commun Integr Biol. 3:130–138.

- Ryu, C.-M., Farag, M.A., Hu, C.-H., et al (2003) Bacterial volatiles promote growth in *Arabidopsis*. *Proc Natl Acad Sci*. 100:4927–4932.
- Ryu, C.-M., Farag, M.A., Hu, C.-H., et al (2004) Bacterial volatiles induce systemic resistance in *Arabidopsis*. *Plant Physiol*. 134:1017–1026.
- Sarathambal, C., Thangaraju, M., Paulraj, C., Gomathy, M. (2010) Assessing the zinc solubilization ability of *Gluconacetobacter diazotrophicus* in maize rhizosphere using labelled 65Zn compounds. *Indian J Microbiol*. 50:103–109.
- Saravanan, V.S., Madhaiyan, M., Thangaraju, M. (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium *Gluconacetobacter diazotrophicus*. *Chemosphere* 66:1794–1798.
- Schmidt, R., Cordovez, V., de Boer, W., et al (2015) Volatile affairs in microbial interactions. *ISME J.* 9:2329–2335.
- Schmidt, R., Jager, V. de, Zühlke, D., et al (2017) Fungal volatile compounds induce production of the secondary metabolite Sodorifen in *Serratia plymuthica* PRI-2C. *Sci Rep.* 7:862.
- Schulz-Bohm, K., Martín-Sánchez, L., Garbeva, P. (2017) Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. *Front Microbiol.* 8:2484.
- Sebring, R.L., Duiker, S.W., Berghage, R.D., et al (2022) *Gluconacetobacter diazotrophicus* inoculation of two lettuce cultivars affects leaf and root growth under hydroponic conditions. *Appl Sci.* 12:1585.
- Sels, J., Mathys, J., De Coninck, B.M.A., et al (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. *Plant Physiol Biochem*. 46:941–950.
- Serôdio, J., Vieira, S., Cruz, S., Coelho, H. (2007) Rapid light-response curves of chlorophyll fluorescence in microalgae: relationship to steady-state light curves and non-photochemical quenching in benthic diatom-dominated assemblages. *Photosynth Res.* 90:29–43.

- Sharifi, R., Ryu, C.-M. (2016) Are bacterial volatile compounds poisonous odors to a fungal pathogen *Botrytis cinerea*, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? *Front Microbiol*. 7:1–10.
- Song, G., Ryu, C.-M. (2013) Two volatile organic compounds trigger plant selfdefense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. *Int J Mol Sci*. 14:9803–9819.
- Spaepen, S., Bossuyt, S., Engelen, K., et al (2014) Phenotypical and molecular responses of *Arabidopsis thaliana* roots as a result of inoculation with the auxinproducing bacterium *Azospirillum brasilense*. *New Phytol.* 201:850–861.
- Srebot, M.S., Tano, J., Carrau, A., et al (2021) Bacterial wilt biocontrol by the endophytic bacteria *Gluconacetobacter diazotrophicus* in Río Grande tomato cultivar. *Biol Control.* 162:104728.
- Srivastava, V., McKee, L.S., Bulone, V. (2017) Plant cell walls. In: eLS. Wiley, pp 1–17
- Staswick, P.E., Su, W., Howell, S.H. (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an *Arabidopsis thaliana* mutant. *Proc Natl Acad Sci.* 89:6837–6840.
- Syed-Ab-Rahman, S.F., Carvalhais, L.C., Chua, E.T., et al (2019) Soil bacterial diffusible and volatile organic compounds inhibit *Phytophthora capsici* and promote plant growth. *Sci Total Environ*. 692:267–280.
- Tahir, H.A.S., Gu, Q., Wu, H., et al (2017) Plant growth promotion by volatile organic compounds produced by *Bacillus subtilis* SYST2. *Front Microbiol.* 8:1–11.
- Tanaka, R., Tanaka, A. (2007) Tetrapyrrole biosynthesis in higher plants. *Annu Rev Plant Biol.* 58:321–346.
- Tapia-Hernández, A., Bustillos-Cristales, M.R., Jiménez-Salgado, T., et al (2000) Natural endophytic occurrence of *Acetobacter diazotrophicus* in pineapple plants. *Microb Ecol.* 39:49–55.
- Thimm, O., Bläsing, O., Gibon, Y., et al (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological

processes. Plant J. 37:914-939.

- Tufail, M.A., Touceda-González, M., Pertot, I., Ehlers, R.-U. (2021) Gluconacetobacter diazotrophicus Pal5 enhances plant robustness status under the combination of moderate drought and low nitrogen stress in Zea mays L. Microorganisms 9:870.
- Tyagi, S., Kim, K., Cho, M., Lee, K.J. (2019) Volatile dimethyl disulfide affects root system architecture of *Arabidopsis* via modulation of canonical auxin signaling pathways. *Environ Sustain*. 2:211–216.
- Urquiaga, S., Xavier, R.P., de Morais, R.F., et al (2012) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N₂ fixation to Brazilian sugarcane varieties. *Plant Soil* 356:5–21.
- Vaishnav, A., Kumari, S., Jain, S., et al (2015) Putative bacterial volatile-mediated growth in soybean (*Glycine max* L. Merrill) and expression of induced proteins under salt stress. *J Appl Microbiol*. 119:539–551.
- Vaishnav, A., Kumari, S., Jain, S., et al (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol. 56:1274–1288.
- Vargas, L., Santa Brígida, A.B., Mota Filho, J.P., et al (2014) Drought tolerance conferred to sugarcane by association with *Gluconacetobacter diazotrophicus*: a transcriptomic view of hormone pathways. *PLoS One* 9:e114744.
- Vasco, C., Torres, B., Jácome, E., et al (2021) Use of chemical fertilizers and pesticides in frontier areas: a case study in the Northern Ecuadorian Amazon. *Land Use Policy* 107:105490.
- Vasseur, F., Fouqueau, L., de Vienne, D., et al (2019) Nonlinear phenotypic variation uncovers the emergence of heterosis in *Arabidopsis thaliana*. *PLOS Biol*. 17:e3000214.
- Velázquez-Becerra, C., Macías-Rodríguez, L.I., López-Bucio, J., et al (2011) A volatile organic compound analysis from *Arthrobacter agilis* identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial

growth and *Medicago sativa* morphogenesis in vitro. Plant Soil 339:329–340.

- Venneman, J., Vandermeersch, L., Walgraeve, C., et al (2020) Respiratory CO₂ combined with a blend of volatiles emitted by endophytic *Serendipita* strains strongly stimulate growth of *Arabidopsis* implicating auxin and cytokinin signaling. *Front Plant Sci.* 11:1343.
- Verma, H., Jindal, M., Rather, S.A. (2021) Bacterial siderophores for enhanced plant growth. In: Malik, J.A. (ed) Handbook of research on microbial remediation and microbial biotechnology for sustainable soil. 1st edn. Hershey: IGI Global, p 314–331.
- Veselova, M.A., Plyuta, V.A., Khmel, I.A. (2019) Volatile compounds of bacterial origin: structure, biosynthesis, and biological activity. *Microbiology* 88:261–274.
- Vilches Barro, A., Stöckle, D., Thellmann, M., et al (2019) Cytoskeleton dynamics are necessary for early events of lateral root initiation in *Arabidopsis*. *Curr Biol*. 29:2443-2454.e5.
- Wang, J., Zhou, C., Xiao, X., et al (2017) Enhanced iron and delenium uptake in plants by volatile emissions of *Bacillus amyloliquefaciens* (BF06). *Appl Sci.* 7:85.
- Weisskopf, L., Schulz, S., Garbeva, P. (2021) Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. *Nat Rev Microbiol.* 19:391– 404.
- Wellburn, A.R. (1994) The spectral determination of chlorophylls *a* and *b*, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. *J Plant Physiol.* 144:307–313.
- Witzel, K., Strehmel, N., Baldermann, S., et al (2017) *Arabidopsis thaliana* root and root exudate metabolism is altered by the growth-promoting bacterium *Kosakonia radicincitans* DSM 16656T. *Plant Soil* 419:557–573.
- Woodward, A.W., Bartel, B. (2018) Biology in bloom: a primer on the *Arabidopsis thaliana* model system. *Genetics* 208:1337–1349.
- Wu, L., Li, X., Ma, L., et al (2018) Acetoin and 2,3-butanediol from Bacillus

amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. J Exp Bot. 69:5625–5635.

- Yamada, Y., Hoshino, K.I., Ishikawa, T. (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus *Gluconoacetobacter* to the generic level. *Biosci Biotechnol Biochem*. 61:1244–1251.
- Yang, T., Poovaiah, B.W. (2003) Calcium/calmodulin-mediated signal network in plants. *Trends Plant Sci.* 8:505–512.
- Zhang, B., Gao, Y., Zhang, L., Zhou, Y. (2021a) The plant cell wall: biosynthesis, construction, and functions. *J Integr Plant Biol*. 63:251–272.
- Zhang, C., Zhang, M., Yan, Z., et al (2021b) CO₂ is a key constituent of the plant growth-promoting volatiles generated by bacteria in a sealed system. *Plant Cell Rep.* 40:59–68.
- Zhang, H., Kim, M.-S., Krishnamachari, V., et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in *Arabidopsis*. *Planta* 226:839–851.
- Zhang, H., Murzello, C., Sun, Y., et al (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact. 23:1097–1104.
- Zhang, H., Xie, X., Kim, M.-S., et al (2008) Soil bacteria augment *Arabidopsis* photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. *Plant J.* 56:264–273.
- Zhao ,Y., Zhang, F., Mickan, B., et al (2021) Physiological, proteomic, and metabolomic analysis provide insights into *Bacillus* sp.-mediated salt tolerance in wheat. *Plant Cell Rep.* 41:95–118.
- Zou, C., Li, Z., Yu, D. (2010) *Bacillus megaterium* strain XTBG34 promotes plant growth by producing 2-pentylfuran. *J Microbiol.* 48:460–466.

APÊNDICE

 Tabela Suplementar 1
 Dados de proteômica comparativa de parte aérea de A. thaliana após tratamento com os VOCs de Gluconacetobacter diazotrophicus Pal5

Protein ID	Descrição	Regulação
Q8GUM2	Heat shock 70 kDa protein 9, mitochondrial	Up
O04309	Jacalin-related lectin 35	Up
O49485	D-3-phosphoglycerate dehydrogenase 1, chloroplastic	Up
P83755	Photosystem II protein D1	Up
Q56YA5	Serineglyoxylate aminotransferase	Up
Q9SHR7	Chlorophyll a-b binding protein 2.1, chloroplastic	Up
Q9SE60	Methylenetetrahydrofolate reductase 1	Up
Q9SEU8	Thioredoxin M2, chloroplastic	Up
P43286	Aquaporin PIP2-1	Up
P56765	Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic	Up
P29197	Chaperonin CPN60, mitochondrial	Up
Q9SGC1	Probable phosphoglucomutase, cytoplasmic 2	Up
P42643	14-3-3-like protein GF14 chi	Up
Q9S795	Betaine aldehyde dehydrogenase 1, chloroplastic	Up
Q9LYG3	NADP-dependent malic enzyme 2	Up
Q9SUI4	Photosystem I reaction center subunit XI, chloroplastic	Up
F4JXD5	Actin depolymerizing factor 3	Up
Q39256	Polyubiquitin 8	Up
P92947	Monodehydroascorbate reductase, chloroplastic/mitochondrial	Up
Q9LDZ0	Heat shock 70 kDa protein 10, mitochondrial	Up
Q9FJX3	Mitochondrial outer membrane protein porin 2	Up
Q9STF2	Protein PLASTID TRANSCRIPTIONALLY ACTIVE 16, chloroplastic	Up
Q07473	Chlorophyll a-b binding protein CP29.1, chloroplastic	Up
O04151	Calreticulin-1	Up
Q9CAK8	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, chloroplastic	Up
Q9FFJ2	Rubredoxin family protein	Up
Q9SZ30	Imidazole glycerol phosphate synthase hisHF, chloroplastic	Up

Protein ID	Descrição	Regulação
Q8W593	Probable lactoylglutathione lyase, chloroplastic	Up
Q9LVI8	Glutamine synthetase cytosolic isozyme 1-3	Up
Q43316	Porphobilinogen deaminase, chloroplastic	Up
C0Z361	Chaperonin 60 subunit beta 3, chloroplastic	Up
O03042	Ribulose bisphosphate carboxylase large chain	Up
P17745	Elongation factor Tu, chloroplastic	Up
O81235	Superoxide dismutase [Mn] 1, mitochondrial	Up
P25857	Glyceraldehyde-3-phosphate dehydrogenase GAPB, chloroplastic	Up
Q94AR8	3-isopropylmalate dehydratase large subunit, chloroplastic	Up
P32961	Nitrilase 1	Up
Q96255	Phosphoserine aminotransferase 1, chloroplastic	Up
Q96266	Glutathione S-transferase F8, chloroplastic	Up
O04487	Probable elongation factor 1-gamma 1	Up
Q9ZVL6	UPF0603 protein At1g54780, chloroplastic	Up
Q9S9N1	Heat shock 70 kDa protein 5	Up
Q9C7X7	Heat shock 70 kDa protein 18	Up
P55228	Glucose-1-phosphate adenylyltransferase small subunit, chloroplastic	Up
O49006	Pectinesterase/pectinesterase inhibitor 3 [Includes: Pectinesterase inhibitor 3	Up
P23686	S-adenosylmethionine synthase 1	Up
F4HQT1	Glyceraldehyde-3-phosphate dehydrogenase C2	Up
A0A1P8BDK6	ADP-ribosylation factor A1B	Up
Q9SIB9	Aconitate hydratase 3, mitochondrial	Up
O80988	Glycine dehydrogenase	Up
O49203	Nucleoside diphosphate kinase III, chloroplastic/mitochondrial	Up
Q9LIK0	Plastidial pyruvate kinase 1, chloroplastic	Up
Q9SW18	Magnesium protoporphyrin IX methyltransferase, chloroplastic	Up
Q949X7	Diaminopimelate decarboxylase 1, chloroplastic	Up
P55229	Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic	Up

Tabela S1, Cont.		
Protein ID	Descrição	Regulação
P50883	60S ribosomal protein L12-1	Up
Q41932	Oxygen-evolving enhancer protein 3-2, chloroplastic	Up
B3H477	Fumarate hydratase	Up
Q05758	Ketol-acid reductoisomerase, chloroplastic	Up
Q9XF91	Photosystem II 22 kDa protein, chloroplastic	Up
Q9SUI7	Photosystem I reaction center subunit VI-1, chloroplastic	Up
P56778	Photosystem II CP43 reaction center protein	Up
F4I2F8	NADPH-protochlorophyllide oxidoreductase	Up
Q9LFA3	Monodehydroascorbate reductase 1, peroxisomal	Up
P21276	Superoxide dismutase [Fe] 1, chloroplastic	Up
Q56WN1	Glutamine synthetase cytosolic isozyme 1-1	Up
O04834	GTP-binding protein SAR1A	Up
Q8LER3	Probable xyloglucan endotransglucosylase/hydrolase protein 7	Up
P21240	Chaperonin 60 subunit beta 1, chloroplastic	Up
Q9FVT2	Probable elongation factor 1-gamma 2	Up
P24101	Peroxidase 33	Up
Q9LYA9	Chloroplast stem-loop binding protein of 41 kDa a, chloroplastic	Up
Q9LUT2	S-adenosylmethionine synthase 4	Up
Q9LMQ2	Chlorophyll a-b binding protein, chloroplastic	Up
P93033	Fumarate hydratase 1, mitochondrial	Up
O23254	Serine hydroxymethyltransferase 4	Up
Q9LPW0	Glyceraldehyde-3-phosphate dehydrogenase GAPA2, chloroplastic	Up
Q8W493	FerredoxinNADP reductase, leaf isozyme 2, chloroplastic	Up
P25856	Glyceraldehyde-3-phosphate dehydrogenase GAPA1, chloroplastic	Up
Q94A28	Aconitate hydratase 2, mitochondrial	Up
P17562	S-adenosylmethionine synthase 2	Up
Q05431	L-ascorbate peroxidase 1, cytosolic	Up
O80852	Glutathione S-transferase F9	Up

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
O49299	Probable phosphoglucomutase, cytoplasmic 1	Up	
Q9ZT91	Elongation factor Tu, mitochondrial	Up	
F4KCE5	Heat shock cognate protein 70-1	Up	
A8MRZ7	Eukaryotic translation initiation factor 4A1	Up	
Q8RYC2	Putative actin-5	Up	
P41916	GTP-binding nuclear protein Ran-1	Up	
F4HV96	Eif4a-2	Up	
P25858	Glyceraldehyde-3-phosphate dehydrogenase GAPC1, cytosolic	Up	
P56773	Cytochrome b6	Up	
Q9LR75	Coproporphyrinogen-III oxidase 1, chloroplastic	Up	
Q42560	Aconitate hydratase 1	Up	
A0A1P8B9N1	Formate dehydrogenase, mitochondrial	Up	
Q01908	ATP synthase gamma chain 1, chloroplastic	Up	
P38418	Lipoxygenase 2, chloroplastic	Up	
O65719	Heat shock 70 kDa protein 3	Up	
O24456	Receptor for activated C kinase 1A	Up	
Q38946	Glutamate dehydrogenase 2	Up	
Q39102	ATP-dependent zinc metalloprotease FTSH 1, chloroplastic	Up	
F4JBY2	Transketolase	Up	
Q9SHE8	Photosystem I reaction center subunit III, chloroplastic	Up	
Q94B78	Glycine dehydrogenase	Up	
O04983	Biotin carboxylase, chloroplastic	Up	
Q8L7C9	Glutathione S-transferase U20	Up	
Q9SMT7	OxalateCoA ligase	Up	
Q9FH02	ATP-dependent zinc metalloprotease FTSH 5, chloroplastic	Up	
Q9ZNZ7	Ferredoxin-dependent glutamate synthase 1, chloroplastic/mitochondrial	Up	
P56766	Photosystem I P700 chlorophyll a apoprotein A1	Up	
Q9FKW6	FerredoxinNADP reductase, leaf isozyme 1, chloroplastic	Up	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q9SRV5	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase 2	Up	
Q9SI75	Elongation factor G, chloroplastic	Up	
P56777	Photosystem II CP47 reaction center protein	Up	
O50008	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase 1	Up	
Q0WNZ5	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase 3, chloroplastic	VOCs Pal5	
Q42472	Glutamate decarboxylase 2	VOCs Pal5	
A8MQK3	Malate dehydrogenase	VOCs Pal5	
O04313	PYK10-binding protein 2	VOCs Pal5	
F4IW47	Transketolase-2, chloroplastic	VOCs Pal5	
O80858	Expressed protein	Down	
Q94BT9	Copper transport protein ATX1	Down	
A8MQR6	Methylmalonate-semialdehyde dehydrogenase	Down	
Q39041	Acid beta-fructofuranosidase 4, vacuolar	Down	
Q94A68	Uncharacterized oxidoreductase At1g06690, chloroplastic	Down	
O81439	Probable plastid-lipid-associated protein 1, chloroplastic	Down	
Q8S4Y1	Acetyl-CoA acetyltransferase, cytosolic 1	Down	
Q43387	Peroxidase 71	Down	
Q03250	Glycine-rich RNA-binding protein 7	Down	
O49629	Probable plastid-lipid-associated protein 2, chloroplastic	Down	
Q9SYG7	Aldehyde dehydrogenase family 7 member B4	Down	
Q9C8L4	Persulfide dioxygenase ETHE1 homolog, mitochondrial	Down	
Q9T076	Early nodulin-like protein 2	Down	
Q9FN03	Ultraviolet-B receptor UVR8	Down	
O82291	Probable plastid-lipid-associated protein 3, chloroplastic	Down	
Q9SWG0	IsovaleryI-CoA dehydrogenase, mitochondrial	Down	
Q39172	NADPH-dependent oxidoreductase 2-alkenal reductase	Down	
P43297	Cysteine proteinase RD21A	Down	
O65502	Protein HIGH CHLOROPHYLL FLUORESCENCE PHENOTYPE 244, chloroplastic	Down	

Tabela S1, Cont.		
Protein ID	Descrição	Regulação
Q9LV66	Uncharacterized protein At5g48480	Down
Q9FM65	Fasciclin-like arabinogalactan protein 1	Down
Q9ZUU4	RNA-binding protein CP29B, chloroplastic	Down
Q9SU63	Aldehyde dehydrogenase family 2 member B4, mitochondrial	Down
Q9SSA5	Peptidyl-prolyl cis-trans isomerase CYP38, chloroplastic	Down
P48523	Cinnamyl alcohol dehydrogenase 4	Down
Q9FJU0	Malate dehydrogenase 3, cytoplasmic	Down
Q96520	Peroxidase 12	Down
O65660	PLAT domain-containing protein 1	Down
Q9S7E9	Glutamateglyoxylate aminotransferase 2	Down
Q9S762	ATP phosphoribosyltransferase 1, chloroplastic	Down
A0A1P8BAP0	Adenosine kinase	Down
O82660	Photosystem II stability/assembly factor HCF136, chloroplastic	Down
Q9LFD5	Binding partner of ACD11 1	Down
P47998	Cysteine synthase 1	Down
Q9ZVS4	Eukaryotic aspartyl protease family protein	Down
F4JHJ0	HSP20-like chaperones superfamily protein	Down
O80448	Pyridoxal 5'-phosphate synthase subunit PDX1.1	Down
Q9ZUC1	NADPH-dependent alkenal/one oxidoreductase, chloroplastic	Down
Q8LD27	Proteasome subunit beta type-6	Down
Q9SMX3	Mitochondrial outer membrane protein porin 3	Down
Q9LSV0	Glyoxylate/succinic semialdehyde reductase 1	Down
Q9SQI8	Dihydrolipoyllysine-residue acetyltransferase component 4 of pyruvate dehydrogenase complex, chloroplastic	Down
Q8LDV3	Uncharacterized protein At4g13200, chloroplastic	Down
Q39061	RNA-binding protein CP33, chloroplastic	Down
P55034	26S proteasome non-ATPase regulatory subunit 4 homolog	Down
Q9SLA8	Enoyl-[acyl-carrier-protein] reductase [NADH], chloroplastic	Down
A0A1P8B9Q2	Aluminum induced protein with YGL and LRDR motifs	Down

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
O65581	Fructose-bisphosphate aldolase 5, cytosolic	Down	
Q8H1E2	Malate dehydrogenase [NADP], chloroplastic	Down	
P57106	Malate dehydrogenase 2, cytoplasmic	Down	
A8MQP6	Nascent polypeptide-associated complex	Down	
Q8VXZ7	Alpha-galactosidase 3	Down	
Q9ZVS5	Eukaryotic aspartyl protease family protein	Down	
Q43349	29 kDa ribonucleoprotein, chloroplastic	Down	
Q38814	Thiamine thiazole synthase, chloroplastic	Down	
Q9LX13	(3R)-hydroxymyristoyl-[acyl-carrier-protein] dehydratase	Down	
Q94JX9	Nascent polypeptide-associated complex subunit alpha-like protein 2	Down	
P25696	Bifunctional enolase 2/transcriptional activator	Down	
Q42139	AT4g32260/F10M6_100	Down	
P11574	V-type proton ATPase subunit B1	Down	
Q9LW57	Plastid-lipid-associated protein 6, chloroplastic	Down	
Q9SCK3	Chloroplastic import inner membrane translocase subunit HP30-1	Control	
Q9LZX4	Fasciclin-like arabinogalactan protein 10	Control	
P11139	Tubulin alpha-1 chain	Control	
P32962	Nitrilase 2	Unchanged	
Q94K56	GrpE protein homolog	Unchanged	
A8MRQ5	Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein	Unchanged	
Q9SZ11	Glycerophosphodiester phosphodiesterase GDPDL3	Unchanged	
Q944P7	Leucine aminopeptidase 2, chloroplastic	Unchanged	
Q8RU07	[Acyl-carrier-protein] S-malonyltransferase	Unchanged	
O64688	Pyruvate dehydrogenase E1 component subunit beta-3, chloroplastic	Unchanged	
Q8L493	D-amino-acid transaminase, chloroplastic	Unchanged	
Q9ZU25	Probable mitochondrial-processing peptidase subunit alpha-1, mitochondrial	Unchanged	
Q41188	Cold shock protein 2	Unchanged	
Q42529	Tryptophan synthase alpha chain, chloroplastic	Unchanged	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q8L940	Pyridoxal 5'-phosphate synthase subunit PDX1.3	Unchanged	
Q9SHG8	At1g17100	Unchanged	
A8MQD9	NAD(P)-binding Rossmann-fold superfamily protein	Unchanged	
Q9C5M0	Mitochondrial dicarboxylate/tricarboxylate transporter DTC	Unchanged	
P24806	Xyloglucan endotransglucosylase/hydrolase protein 24	Unchanged	
Q9LHT0	Tropinone reductase homolog At5g06060	Unchanged	
Q8L7R2	Homoserine kinase	Unchanged	
Q949P3	Damage-control phosphatase At2g17340	Unchanged	
Q9SI20	Elongation factor 1-delta 2	Unchanged	
O80504	10 kDa chaperonin 2, chloroplastic	Unchanged	
Q9M8M7	Acetylornithine aminotransferase, chloroplastic/mitochondrial	Unchanged	
A8MRW5	Oxidoreductase, zinc-binding dehydrogenase family protein	Unchanged	
O82089	Copper transport protein CCH	Unchanged	
Q9FGS0	RNA-binding protein CP31B, chloroplastic	Unchanged	
Q93XM7	Mitochondrial carnitine/acylcarnitine carrier-like protein	Unchanged	
A0A1P8AS42	Glyoxylate reductase 2	Unchanged	
Q8L4A7	Proteasome subunit alpha type-2-B	Unchanged	
P29515	Tubulin beta-7 chain	Unchanged	
P52577	Isoflavone reductase homolog P3	Unchanged	
Q9CA90	Glyoxylate/hydroxypyruvate reductase A HPR2	Unchanged	
Q94JQ4	Reactive Intermediate Deaminase A, chloroplastic	Unchanged	
P53494	Actin-4	Unchanged	
Q96329	Acyl-coenzyme A oxidase 4, peroxisomal	Unchanged	
O04202	Eukaryotic translation initiation factor 3 subunit F	Unchanged	
O65390	Aspartic proteinase A1	Unchanged	
Q9XFS9	1-deoxy-D-xylulose 5-phosphate reductoisomerase, chloroplastic	Unchanged	
Q9C8P0	Dihydrolipoyllysine-residue acetyltransferase component 5 of pyruvate dehydrogenase complex, chloroplastic	Unchanged	
Q8VYV7	3-dehydroquinate synthase, chloroplastic	Unchanged	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q9SAK4	Succinate-semialdehyde dehydrogenase, mitochondrial	Unchanged	
Q8LAS8	S-formylglutathione hydrolase	Unchanged	
Q9LR30	Glutamateglyoxylate aminotransferase 1	Unchanged	
Q9L177	Glutamyl-Trna (Gln) amidotransferase subunit A, chloroplastic/mitochondrial	Unchanged	
Q9SCY0	Phosphoglucomutase, chloroplastic	Unchanged	
Q9ASR0	Tubulin beta-3 chain	Unchanged	
A0A1P8AXD8	Tubulin/FtsZ family protein	Unchanged	
O22609	Protease Do-like 1, chloroplastic	Unchanged	
Q8W585	ATP-dependent zinc metalloprotease FTSH 8, chloroplastic	Unchanged	
P19366	ATP synthase subunit beta, chloroplastic	Unchanged	
Q9FMD5	Protein TIC 40, chloroplastic	Unchanged	
P42742	Proteasome subunit beta type-1	Unchanged	
P92963	Ras-related protein RABB1c	Unchanged	
Q43725	Cysteine synthase, mitochondrial	Unchanged	
P29513	Tubulin beta-5 chain	Unchanged	
Q9SKQ0	Peptidyl-prolyl cis-trans isomerase CYP19-2	Unchanged	
O65282	20 kDa chaperonin, chloroplastic	Unchanged	
P21238	Chaperonin 60 subunit alpha 1, chloroplastic	Unchanged	
Q93YR3	FAM10 family protein At4g22670	Unchanged	
Q9ZP05	Malate dehydrogenase 2, peroxisomal	Unchanged	
Q6ICZ8	Nascent polypeptide-associated complex subunit alpha-like protein 3	Unchanged	
Q9FFR3	6-phosphogluconate dehydrogenase, decarboxylating 3, chloroplastic	Unchanged	
P42799	Glutamate-1-semialdehyde 2,1-aminomutase 1, chloroplastic	Unchanged	
Q9ZUB3	Spermidine synthase 1	Unchanged	
Q8VZ57	Alpha/beta-Hydrolases superfamily protein	Unchanged	
Q9LIR4	Dihydroxy-acid dehydratase, chloroplastic	Unchanged	
O22160	Thylakoid lumenal 15 kDa protein 1, chloroplastic	Unchanged	
Q38799	Pyruvate dehydrogenase E1 component subunit beta-1, mitochondrial	Unchanged	

Tabela S1, Cont.		
Protein ID	Descrição	Regulação
Q949U7	Peroxiredoxin-2E, chloroplastic	Unchanged
F4HR88	Leucine-rich repeat	Unchanged
P48491	Triosephosphate isomerase, cytosolic	Unchanged
Q05728	Phosphoribosylformylglycinamidine cyclo-ligase, chloroplastic	Unchanged
Q9SAJ4	Phosphoglycerate kinase 3, cytosolic	Unchanged
Q9LIA8	UDP-glucose 6-dehydrogenase 2	Unchanged
Q42418	Profilin-2	Unchanged
P47999	Cysteine synthase, chloroplastic/chromoplastic	Unchanged
Q04836	31 kDa ribonucleoprotein, chloroplastic	Unchanged
P24636	Tubulin beta-4 chain	Unchanged
Q9SRG3	Protein disulfide isomerase-like 1-2	Unchanged
Q8H0U5	Protein TIC 62, chloroplastic	Unchanged
Q42449	Profilin-1	Unchanged
Q9SXS7	Bifunctional L-3-cyanoalanine synthase/cysteine synthase D2	Unchanged
P36212	50S ribosomal protein L12-3, chloroplastic	Unchanged
Q9C9I7	Rieske (2Fe-2S) domain-containing protein	Unchanged
Q9S6Z7	Bifunctional L-3-cyanoalanine synthase/cysteine synthase D1	Unchanged
F4IM05	Plastid-lipid associated protein PAP / fibrillin family protein	Unchanged
O23654	V-type proton ATPase catalytic subunit A	Unchanged
O23157	AT4g37300/C7A10_60	Unchanged
O48661	Spermidine synthase 2	Unchanged
O49453	Uncharacterized protein At4g28440	Unchanged
Q9XEX2	Peroxiredoxin-2B	Unchanged
Q8VYI4	Aspartate-semialdehyde dehydrogenase	Unchanged
Q9LXX5	PsbP domain-containing protein 6, chloroplastic	Unchanged
O04314	PYK10-binding protein 1	Unchanged
Q9LXQ2	At3g44100	Unchanged
Q9LE22	Probable calcium-binding protein CML27	Unchanged

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q9SX77	Succinate dehydrogenase subunit 5, mitochondrial	Unchanged	
Q9SN86	Malate dehydrogenase, chloroplastic	Unchanged	
O04310	Jacalin-related lectin 34	Unchanged	
Q9XI01	Protein disulfide isomerase-like 1-1	Unchanged	
F4I7I0	Alanine aminotransferase 1, mitochondrial	Unchanged	
Q93ZN9	LL-diaminopimelate aminotransferase, chloroplastic	Unchanged	
O82299	Putative chloroplast RNA binding protein	Unchanged	
Q9STW6	Heat shock 70 kDa protein 6, chloroplastic	Unchanged	
Q9FJ95	Sorbitol dehydrogenase	Unchanged	
Q9M158	Rhodanese-like domain-containing protein 4, chloroplastic	Unchanged	
P34066	Proteasome subunit alpha type-1-A	Unchanged	
Q8VYM4	30S ribosomal protein 2, chloroplastic	Unchanged	
Q38858	Calreticulin-2	Unchanged	
Q9S9P1	40S ribosomal protein S12-1	Unchanged	
Q56WH1	Tubulin alpha-3 chain	Unchanged	
P29514	Tubulin beta-6 chain	Unchanged	
Q96292	Actin-2	Unchanged	
A0A1P8BF93	Beta-D-xylosidase 4	Unchanged	
Q9LVJ1	Subtilisin-like protease SBT1.4	Unchanged	
Q9LHG9	Nascent polypeptide-associated complex subunit alpha-like protein 1	Unchanged	
Q9LIN0	Major latex protein, putative	Unchanged	
Q9SAU2	Ribulose-5-phosphate-3-epimerase, chloroplastic	Unchanged	
Q42522	Glutamate-1-semialdehyde 2,1-aminomutase 2, chloroplastic	Unchanged	
Q2HIR7	Acclimation of photosynthesis to environment	Unchanged	
Q56YU0	Aldehyde dehydrogenase family 2 member C4	Unchanged	
P0CJ46	Actin-1	Unchanged	
Q9S9M7	Nuclear protein	Unchanged	
O04308	Probable mitochondrial-processing peptidase subunit alpha-2, chloroplastic/mitochondrial	Unchanged	

Tabela S1, Cont.		
Protein ID	Descrição	Regulação
Q9LZ82	Protein BTR1	Unchanged
P30184	Leucine aminopeptidase 1	Unchanged
Q9SU13	Fasciclin-like arabinogalactan protein 2	Unchanged
Q944G9	Fructose-bisphosphate aldolase 2, chloroplastic	Unchanged
Q42546	SAL1 phosphatase	Unchanged
Q94K71	CBBY-like protein	Unchanged
Q42112	60S acidic ribosomal protein P0-2	Unchanged
Q9FK25	Flavone 3'-O-methyltransferase 1	Unchanged
P29511	Tubulin alpha-6 chain	Unchanged
Q9SRH5	Mitochondrial outer membrane protein porin 1	Unchanged
A0A1P8AZS7	Thioredoxin reductase	Unchanged
O80574	4-hydroxy-tetrahydrodipicolinate reductase 1, chloroplastic	Unchanged
P33207	3-oxoacyl-[acyl-carrier-protein] reductase, chloroplastic	Unchanged
F4JVC0	Cold, circadian rhythm, and RNA binding 1	Unchanged
Q9ZP06	Malate dehydrogenase 1, mitochondrial	Unchanged
Q8H103	Glucose-6-phosphate isomerase 1, chloroplastic	Unchanged
O22126	Fasciclin-like arabinogalactan protein 8	Unchanged
Q9SCX3	Elongation factor 1-beta 2	Unchanged
Q9SEH3	Ras-related protein RABD2c	Unchanged
Q9SIE7	PLAT domain-containing protein 2	Unchanged
Q1WIQ6	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase	Unchanged
Q9SKP6	Triosephosphate isomerase, chloroplastic	Unchanged
Q8GRT9	Putative acetyl-CoA carboxylase biotin-containing subunit	Unchanged
O23717	Proteasome subunit beta type-5-A	Unchanged
Q93W28	Uncharacterized protein At4g15545	Unchanged
Q8H112	PGR5-like protein 1A, chloroplastic	Unchanged
P94072	Germin-like protein subfamily 3 member 3	Unchanged
Q949S6	NAD(P)-linked oxidoreductase superfamily protein	Unchanged

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
O82399	Malate dehydrogenase 1, peroxisomal	Unchanged	
Q9S726	Probable ribose-5-phosphate isomerase 3, chloroplastic	Unchanged	
Q94AZ4	Probable calcium-binding protein CML13	Unchanged	
P37702	Myrosinase 1	Unchanged	
Q9SLF7	60S acidic ribosomal protein P2-2	Unchanged	
O04496	Aspartyl protease AED3	Unchanged	
Q93VK7	AT5g14910/F2G14_30	Unchanged	
Q9FJY6	Glucose-6-phosphate 1-epimerase	Unchanged	
Q9ZVA2	EP1-like glycoprotein 2	Unchanged	
Q9SZN1	V-type proton ATPase subunit B2	Unchanged	
P53492	Actin-7	Unchanged	
Q9SVD1	At3g52500	Unchanged	
Q9ZWT2	Cytochrome B5 isoform D	Unchanged	
Q9S7Y7	Alpha-xylosidase 1	Unchanged	
P31166	Adenine phosphoribosyltransferase 1, chloroplastic	Unchanged	
Q9M336	Uracil phosphoribosyltransferase, chloroplastic	Unchanged	
Q9SDS7	V-type proton ATPase subunit C	Unchanged	
Q9C7N4	GDSL esterase/lipase At1g29670	Unchanged	
P10896	Ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic	Unchanged	
Q9FWR4	Glutathione S-transferase DHAR1, mitochondrial	Unchanged	
Q43127	Glutamine synthetase, chloroplastic/mitochondrial	Unchanged	
P12411	Tubulin beta-1 chain	Unchanged	
O49499	Caffeoyl-CoA O-methyltransferase 1	Unchanged	
Q9SIE3	(3R)-hydroxymyristoyl-[acyl-carrier-protein] dehydratase	Unchanged	
P55826	Protoporphyrinogen oxidase 1, chloroplastic	Unchanged	
O81146	Proteasome subunit alpha type-6-A	Unchanged	
Q9XFT3	Oxygen-evolving enhancer protein 3-1, chloroplastic	Unchanged	
P57751	UTPglucose-1-phosphate uridylyltransferase 1	Unchanged	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q9S714	Photosystem I reaction center subunit IV B, chloroplastic	Unchanged	
Q93WJ8	Monodehydroascorbate reductase 2	Unchanged	
P93832	3-isopropylmalate dehydrogenase 2, chloroplastic	Unchanged	
Q9M7T0	Peroxiredoxin-2F, mitochondrial	Unchanged	
P0DKC3	Phosphoglycolate phosphatase 1A, chloroplastic	Unchanged	
P42731	Polyadenylate-binding protein 2	Unchanged	
Q9FXA2	Polyadenylate-binding protein 8	Unchanged	
A0A1P8B8W6	Ascorbate peroxidase 4	Unchanged	
P31265	Translationally-controlled tumor protein 1	Unchanged	
P29517	Tubulin beta-9 chain	Unchanged	
Q9ZU52	Fructose-bisphosphate aldolase 3, chloroplastic	Unchanged	
Q9ZWA8	Fasciclin-like arabinogalactan protein 9	Unchanged	
Q9ZVA1	EP1-like glycoprotein 1	Unchanged	
P56757	ATP synthase subunit alpha, chloroplastic	Unchanged	
Q93VP3	Eukaryotic translation initiation factor 5A-2	Unchanged	
Q9LFG2	Diaminopimelate epimerase, chloroplastic	Unchanged	
Q93VR4	MLP-like protein 423	Unchanged	
F4IX28	Peptidyl-prolyl cis-trans isomerase	Unchanged	
O64903	Nucleoside diphosphate kinase II, chloroplastic	Unchanged	
Q9FGY1	Beta-D-xylosidase 1	Unchanged	
Q9LJR2	Lectin-like protein LEC	Unchanged	
P46645	Aspartate aminotransferase, cytoplasmic isozyme 1	Unchanged	
P34790	Peptidyl-prolyl cis-trans isomerase CYP18-3	Unchanged	
Q9LD57	Phosphoglycerate kinase 1, chloroplastic	Unchanged	
P42734	Probable cinnamyl alcohol dehydrogenase 9	Unchanged	
Q9S834	ATP-dependent Clp protease proteolytic subunit 5, chloroplastic	Unchanged	
Q8LBS4	Monothiol glutaredoxin-S12, chloroplastic	Unchanged	
A0A1P8B288	Xyloglucan endotransglucosylase/hydrolase	Unchanged	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
P39207	Nucleoside diphosphate kinase 1	Unchanged	
F4I613	Uridylyltransferase-like protein	Unchanged	
Q9FFH6	Fasciclin-like arabinogalactan protein 13	Unchanged	
B9DG17	40S ribosomal protein SA	Unchanged	
Q42029	Oxygen-evolving enhancer protein 2-1, chloroplastic	Unchanged	
O22773	Thylakoid lumenal 16.5 kDa protein, chloroplastic	Unchanged	
P93819	Malate dehydrogenase 1, cytoplasmic	Unchanged	
Q9C5R8	2-Cys peroxiredoxin BAS1-like, chloroplastic	Unchanged	
Q9MA79	Fructose-1,6-bisphosphatase, cytosolic	Unchanged	
P23321	Oxygen-evolving enhancer protein 1-1, chloroplastic	Unchanged	
Q9FPF0	Protein DJ-1 homolog A	Unchanged	
A0A2P2CLF9	ATP synthase subunit alpha	Unchanged	
Q9FN48	Calcium sensing receptor, chloroplastic	Unchanged	
Q9ZW85	3-isopropylmalate dehydratase small subunit 1	Unchanged	
Q9SKI0	At2g10940/F15K19.1	Unchanged	
Q9ASS6	Photosynthetic NDH subunit of lumenal location 5, chloroplastic	Unchanged	
Q9FMT1	3-isopropylmalate dehydrogenase 1, chloroplastic	Unchanged	
A0A2H1ZE37	HARMLESS TO OZONE LAYER 1	Unchanged	
Q9SSS9	ATP synthase subunit delta, chloroplastic	Unchanged	
P46283	Sedoheptulose-1,7-bisphosphatase, chloroplastic	Unchanged	
Q9LSP5	AT3g17020/K14A17_14	Unchanged	
Q9LS02	Allene oxide cyclase 2, chloroplastic	Unchanged	
O23264	Selenium-binding protein 1	Unchanged	
Q940I2	Thioredoxin family protein	Unchanged	
P56761	Photosystem II D2 protein	Unchanged	
Q9LSQ5	NAD(P)H dehydrogenase (quinone) FQR1	Unchanged	
Q9S841	Oxygen-evolving enhancer protein 1-2, chloroplastic	Unchanged	
Q93ZC5	Allene oxide cyclase 4, chloroplastic	Unchanged	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q96291	2-Cys peroxiredoxin BAS1, chloroplastic	Unchanged	
P51407	60S acidic ribosomal protein P2-1	Unchanged	
P83483	ATP synthase subunit beta-1, mitochondrial	Unchanged	
Q9SGE0	UDP-D-apiose/UDP-D-xylose synthase 2	Unchanged	
Q42342	Cytochrome b5 isoform E	Unchanged	
Q9SJU4	Fructose-bisphosphate aldolase 1, chloroplastic	Unchanged	
Q9XFH8	Thioredoxin F1, chloroplastic	Unchanged	
Q9S7B5	Threonine synthase 1, chloroplastic	Unchanged	
A8MQY4	Carbonic anhydrase	Unchanged	
P48006	Elongation factor 1-delta 1	Unchanged	
Q93VC7	30S ribosomal protein S1, chloroplastic	Unchanged	
P25697	Phosphoribulokinase, chloroplastic	Unchanged	
Q9SF85	Adenosine kinase 1	Unchanged	
Q9LK72	Lectin-like protein At3g16530	Unchanged	
O80476	Methylesterase 2	Unchanged	
Q42406	Peptidyl-prolyl cis-trans isomerase CYP18-4	Unchanged	
Q94EG6	Uncharacterized protein At5g02240	Unchanged	
P52410	3-oxoacyl-[acyl-carrier-protein] synthase I, chloroplastic	Unchanged	
Q9CAF5	ABC transporter I family member 6, chloroplastic	Unchanged	
P82538	PsbP-like protein 1, chloroplastic	Unchanged	
P27140	Beta carbonic anhydrase 1, chloroplastic	Unchanged	
Q84WM9	Elongation factor 1-beta 1	Unchanged	
A0A1P8AQY3	Glycerophosphodiester phosphodiesterase	Unchanged	
Q9SA14	3-isopropylmalate dehydrogenase 3, chloroplastic	Unchanged	
O80934	Uncharacterized protein At2g37660, chloroplastic	Unchanged	
P25851	Fructose-1,6-bisphosphatase 1, chloroplastic	Unchanged	
Q8GWP4	At2g21530	Unchanged	
Q9SRT9	UDP-arabinopyranose mutase 1	Unchanged	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q9C6B3	Gamma carbonic anhydrase 2, mitochondrial	Unchanged	
Q93WN0	Selenium-binding protein 2	Unchanged	
Q9LTX9	Heat shock 70 kDa protein 7, chloroplastic	Unchanged	
Q9FNN1	Pyruvate kinase	Unchanged	
Q8LFC0	Isocitrate dehydrogenase [NAD] regulatory subunit 1, mitochondrial	Unchanged	
Q9SKZ3	40S ribosomal protein S12-2	Unchanged	
P56779	Cytochrome b559 subunit alpha	Unchanged	
Q8LCA1	Protein CURVATURE THYLAKOID 1B, chloroplastic	Unchanged	
O64650	40S ribosomal protein S27-1	Unchanged	
O64517	Metacaspase-4	Unchanged	
Q9LRS0	(S)-2-hydroxy-acid oxidase GLO2	Unchanged	
Q9XI55	F9L1.8 protein	Unchanged	
Q94F20	At5g25460	Unchanged	
Q9SH69	6-phosphogluconate dehydrogenase, decarboxylating 1, chloroplastic	Unchanged	
Q9C524	Probable fructokinase-6, chloroplastic	Unchanged	
Q9M9P3	UTPglucose-1-phosphate uridylyltransferase 2	Unchanged	
Q9M2U7	AT3g54400/T12E18_90	Unchanged	
A8MS37	(S)-2-hydroxy-acid oxidase	Unchanged	
A0A1P8AY15	Actin family protein	Unchanged	
F4I3L1	Phosphoglycerate kinase	Unchanged	
Q9FMU6	Mitochondrial phosphate carrier protein 3, mitochondrial	Unchanged	
Q9LJG3	GDSL esterase/lipase ESM1	Unchanged	
O22886	Uroporphyrinogen decarboxylase 2, chloroplastic	Unchanged	
Q9LQL0	Glycine cleavage system H protein 3, mitochondrial	Unchanged	
Q5XF33	Magnesium-chelatase subunit ChII-2, chloroplastic	Unchanged	
Q39142	Chlorophyll a-b binding protein, chloroplastic	Unchanged	
P54150	Peptide methionine sulfoxide reductase A4, chloroplastic	Unchanged	
Q9S831	Photosystem I reaction center subunit IV A, chloroplastic	Unchanged	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q9ZVA4	EP1-like glycoprotein 3	Unchanged	
Q9LFW1	UDP-arabinopyranose mutase 2	Unchanged	
P0CJ48	Chlorophyll a-b binding protein 2, chloroplastic	Unchanged	
P25855	Glycine cleavage system H protein 1, mitochondrial	Unchanged	
P56792	50S ribosomal protein L14, chloroplastic	Unchanged	
Q8LCE1	Glutamine synthetase cytosolic isozyme 1-2	Unchanged	
F4IVR2	Heat shock protein 60-2	Unchanged	
P42699	Plastocyanin major isoform, chloroplastic	Unchanged	
P62090	Photosystem I iron-sulfur center	Unchanged	
Q9LZ06	Glutathione S-transferase L3	Unchanged	
O80860	ATP-dependent zinc metalloprotease FTSH 2, chloroplastic	Unchanged	
P16127	Magnesium-chelatase subunit Chll-1, chloroplastic	Unchanged	
Q9C5C2	Myrosinase 2	Unchanged	
Q42403	Thioredoxin H3	Unchanged	
P81760	Thylakoid lumenal 17.4 kDa protein, chloroplastic	Unchanged	
Q9FNF2	Starch synthase 1, chloroplastic/amyloplastic	Unchanged	
P16972	Ferredoxin-2, chloroplastic	Unchanged	
Q9SY97	Photosystem I chlorophyll a/b-binding protein 3-1, chloroplastic	Unchanged	
Q8VZW6	Elongation factor P	Unchanged	
F4K5B9	Eukaryotic aspartyl protease family protein	Unchanged	
P53496	Actin-11	Unchanged	
Q9C9W5	Glycerate dehydrogenase HPR, peroxisomal	Unchanged	
Q9ZVA5	EP1-like glycoprotein 4	Unchanged	
Q9SID0	Probable fructokinase-1	Unchanged	
Q42134	Proteasome subunit alpha type-5-B	Unchanged	
Q2V2S7	NAD(P)H-quinone oxidoreductase subunit M, chloroplastic	Unchanged	
Q9MAP3	50S ribosomal protein L11, chloroplastic	Unchanged	
F4KA76	Ribulose bisphosphate carboxylase small subunit	Unchanged	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q9S757	Bifunctional L-3-cyanoalanine synthase/cysteine synthase C1, mitochondrial	Unchanged	
Q8L953	40S ribosomal protein S27-3	Unchanged	
Q96529	Adenylosuccinate synthetase, chloroplastic	Unchanged	
O82662	SuccinateCoA ligase [ADP-forming] subunit beta, mitochondrial	Unchanged	
Q9LHB9	Peroxidase 32	Unchanged	
P10795	Ribulose bisphosphate carboxylase small subunit 1A, chloroplastic	Unchanged	
Q96533	Alcohol dehydrogenase class-3	Unchanged	
Q9SGR6	AT1G76160 protein	Unchanged	
Q9SPK5	Formatetetrahydrofolate ligase	Unchanged	
Q9SIP1	Stress-response A/B barrel domain-containing protein UP3	Unchanged	
Q9SAR5	Ankyrin repeat domain-containing protein 2A	Unchanged	
P0DH95	Calmodulin-1	Unchanged	
Q9LF98	Fructose-bisphosphate aldolase 8, cytosolic	Unchanged	
Q9SXE9	At1g62480/T3P18_4	Unchanged	
P82658	Thylakoid lumenal 19 kDa protein, chloroplastic	Unchanged	
P56771	Cytochrome f	Unchanged	
Q8LB10	ATP-dependent Clp protease proteolytic subunit-related protein 4, chloroplastic	Unchanged	
Q56WD9	3-ketoacyl-CoA thiolase 2, peroxisomal	Unchanged	
Q96300	14-3-3-like protein GF14 nu	Unchanged	
Q9SFH9	Delta-aminolevulinic acid dehydratase 1, chloroplastic	Unchanged	
Q9SJQ9	Fructose-bisphosphate aldolase 6, cytosolic	Unchanged	
Q8W4H8	Inactive GDSL esterase/lipase-like protein 23	Unchanged	
Q9LXC9	Soluble inorganic pyrophosphatase 6, chloroplastic	Unchanged	
Q9LYE7	Uncharacterized protein At5g11420	Unchanged	
Q38900	Peptidyl-prolyl cis-trans isomerase CYP19-1	Unchanged	
P42644	14-3-3-like protein GF14 psi	Unchanged	
Q9ZUX0	At2g27680/F15K20.22	Unchanged	
O80585	Methylenetetrahydrofolate reductase 2	Unchanged	

Tabela S1, Cont.			
Protein ID	Descrição	Regulação	
Q41931	1-aminocyclopropane-1-carboxylate oxidase 2	Unchanged	
Q9C4Z6	Receptor for activated C kinase 1B	Unchanged	
P09468	ATP synthase epsilon chain, chloroplastic	Unchanged	
Q9FPH2	AT5g02160	Unchanged	
O81148	Proteasome subunit alpha type-4-A	Unchanged	
Q9SAA2	ATP-dependent Clp protease proteolytic subunit 6, chloroplastic	Unchanged	
P42761	Glutathione S-transferase F10	Unchanged	
Q9LT39	Leucine-rich repeat	Unchanged	
Q9SEU6	Thioredoxin M4, chloroplastic	Unchanged	
Q9SK66	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial	Unchanged	
A8MS75	Chlorophyll a-b binding protein, chloroplastic	Unchanged	
Q9S7M0	Chlorophyll a-b binding protein 3, chloroplastic	Unchanged	
P10796	Ribulose bisphosphate carboxylase small subunit 1B, chloroplastic	Unchanged	
P27521	Chlorophyll a-b binding protein 4, chloroplastic	Unchanged	
F4JTH0	Aspartate aminotransferase	Unchanged	
P56756	NAD(P)H-quinone oxidoreductase subunit K, chloroplastic	Unchanged	
Q9SA56	Photosystem I reaction center subunit II-2, chloroplastic	Unchanged	
F4HS63	p-loop containing nucleoside triphosphate hydrolases superfamily protein	Unchanged	
Q9SMU8	Peroxidase 34	Unchanged	
Q9SDM9	Nitrile-specifier protein 1	Unchanged	
A0A1P8B765	NAD(P)H dehydrogenase (quinone)	Unchanged	
Q9LJE4	Chaperonin 60 subunit beta 2, chloroplastic	Unchanged	
A0A1P8BBB5	Fructose-bisphosphate aldolase	Unchanged	
O80576	At2g44060	Unchanged	
Q9XF88	Chlorophyll a-b binding protein CP29.2, chloroplastic	Unchanged	
P56759	ATP synthase subunit b, chloroplastic	Unchanged	
Q94CE5	Gamma-aminobutyrate transaminase POP2, mitochondrial	Unchanged	
Q9ZR03	Cytochrome b6-f complex iron-sulfur subunit, chloroplastic	Unchanged	
Protein ID	Descrição	Regulação	
------------	--	-----------	
Q94CE4	Beta carbonic anhydrase 4	Unchanged	
Q9SJL8	S-adenosylmethionine synthase 3	Unchanged	
Q9SIF2	Heat shock protein 90-5, chloroplastic	Unchanged	
Q9XF89	Chlorophyll a-b binding protein CP26, chloroplastic	Unchanged	
P46010	Nitrilase 3	Unchanged	
Q9S7N7	Photosystem I reaction center subunit V, chloroplastic	Unchanged	
P21218	Protochlorophyllide reductase B, chloroplastic	Unchanged	
O48737	Thioredoxin M1, chloroplastic	Unchanged	
P0DH99	Elongation factor 1-alpha 1	Unchanged	

Tabela S1 Cont

Up = proteínas aumentadas nas plantas tratadas; Down = proteínas reduzidas nas plantas tratadas; Control = proteínas identificadas apenas nas plantas controle (Unique_Control [Down]); VOCs Pal5 = proteínas identificadas apenas nas plantas tratadas (Unique_VOCs Pal5 [Up]); Unchanged = proteínas sem acúmulo diferencial entre as plantas tratadas e controle

Tabela Suplementar 2 Dados de proteômica comparativa de raízes de *A. thaliana* após tratamento com os VOCs de *Gluconacetobacter diazotrophicus* Pal5

Protein ID	Descrição	Regulação
Q84M92	Actin-related protein 4	Up
Q9SF16	T-complex protein 1 subunit eta	Up
Q6NQL4	2-dehydro-3-deoxyphosphooctonate aldolase 2	Up
Q94AR8	3-isopropylmalate dehydratase large subunit, chloroplastic	Up
Q93ZM7	Chaperonin CPN60-like 2, mitochondrial	Up
P41376	Eukaryotic initiation factor 4A-1	Up
Q9LDZ0	Heat shock 70 kDa protein 10, mitochondrial	Up
Q96255	Phosphoserine aminotransferase 1, chloroplastic	Up
Q94AA4	ATP-dependent 6-phosphofructokinase 3	Up
Q8L9C4	Very-long-chain 3-oxoacyl-CoA reductase 1	Up
O81153	Proteasome subunit beta type-3-B	Up
F4JU04	Glutathione S-transferase family protein	Up
O22149	Probable pectinesterase/pectinesterase inhibitor 17	Up
Q05431	L-ascorbate peroxidase 1, cytosolic	Up
P29197	Chaperonin CPN60, mitochondrial	Up
A8MR12	26S proteasome regulatory subunit RPN11	Up
Q8LG77	Isocitrate dehydrogenase [NAD] catalytic subunit 6, mitochondrial	Up
F4JHS0	UDP-Glycosyltransferase superfamily protein	Up
Q94AU7	Gamma carbonic anhydrase 3, mitochondrial	Up
Q9FLW9	Plastidial pyruvate kinase 2	Up
F4JGR5	Pyrophosphatefructose 6-phosphate 1-phosphotransferase subunit beta 2	Up
Q9SYM5	UDP-4-keto-L-rhamnose-reductase RHM1	Up
P25858	Glyceraldehyde-3-phosphate dehydrogenase GAPC1, cytosolic	Up
O23254	Serine hydroxymethyltransferase 4	Up
Q9LMC9	Germin-like protein subfamily T member 2	Up
Q94CE5	Gamma-aminobutyrate transaminase POP2, mitochondrial	Up
Q9SN95	UDP-glucuronic acid decarboxylase 5	Up

Protein ID	Descrição	Regulação
Q9SHP0	Phosphoserine aminotransferase 2, chloroplastic	Up
A0A1P8B9N1	Formate dehydrogenase, mitochondrial	Up
Q8VYP7	Putative Sar1 GTP binding protein	Up
Q9SS45	Phenylalanine ammonia-lyase 4	Up
Q84M96	Probable aldo-keto reductase 2	Up
Q9SJL8	S-adenosylmethionine synthase 3	Up
Q9C6U3	Uncharacterized protein T8G24.2	Up
F4I032	Chorismate synthase	Up
Q9FWA3	6-phosphogluconate dehydrogenase, decarboxylating 2	Up
B9DFQ9	NADH-ubiquinone dehydrogenase	Up
F4HQT1	Glyceraldehyde-3-phosphate dehydrogenase C2	Up
Q9LDA4	Peroxidase 38	Up
P50883	60S ribosomal protein L12-1	Up
Q9T017	Dirigent protein 13	Up
Q9S7Y7	Alpha-xylosidase 1	Up
Q38946	Glutamate dehydrogenase 2	Up
Q84WV1	T-complex protein 1 subunit gamma	Up
Q9FLQ4	2-oxoglutarate dehydrogenase complex component E2-1	Up
Q06588	1-aminocyclopropane-1-carboxylate oxidase 4	Up
Q9LSB4	TSA1-like protein	Up
Q9S7C0	Heat shock 70 kDa protein 14	Up
Q43314	Glutamate dehydrogenase 1	Up
O80988	Glycine dehydrogenase	Up
C0Z361	Chaperonin 60 subunit beta 3, chloroplastic	Up
Q9SIB9	Aconitate hydratase 3, mitochondrial	Up
Q43729	Peroxidase 57	Up
O04151	Calreticulin-1	Up
Q39258	V-type proton ATPase subunit E1	Up

Protein ID	Descrição	Regulação
P23686	S-adenosylmethionine synthase 1	Up
Q42560	Aconitate hydratase 1	Up
O23392	HSR201-like protein	Up
Q9SEI4	26S proteasome regulatory subunit 6B homolog	Up
O04983	Biotin carboxylase, chloroplastic	Up
P93031	GDP-mannose 4,6 dehydratase 2	Up
P17562	S-adenosylmethionine synthase 2	Up
Q9C522	ATP-citrate synthase beta chain protein 1	Up
O49299	Probable phosphoglucomutase, cytoplasmic 1	Up
Q9SEI2	26S proteasome regulatory subunit 6A homolog A	Up
P46309	Glutamatecysteine ligase, chloroplastic	Up
P46643	Aspartate aminotransferase, mitochondrial	Up
P41916	GTP-binding nuclear protein Ran-1	Up
O82663	Succinate dehydrogenase [ubiquinone] flavoprotein subunit 1, mitochondrial	Up
Q9T019	Dirigent protein 14	Up
P92994	Trans-cinnamate 4-monooxygenase	Up
Q9M0A7	Gamma-glutamyl peptidase 1	Up
O23715	Proteasome subunit alpha type-3	Up
Q94A28	Aconitate hydratase 2, mitochondrial	Up
Q9FHQ6	Polyubiquitin 9	Up
Q96522	Peroxidase 45	Up
Q42290	Probable mitochondrial-processing peptidase subunit beta, mitochondrial	Up
Q9SIP7	40S ribosomal protein S3-1	Up
Q96254	Guanosine nucleotide diphosphate dissociation inhibitor 1	Up
Q39256	Polyubiquitin 8	Up
Q9M084	AspartatetRNA ligase 2, cytoplasmic	Up
A0A1P8AR36	Mannose-binding lectin superfamily protein	Up
P48641	Glutathione reductase, cytosolic	Up

Tabela S2, Cont.			
Protein ID	Descrição	Regulação	
O24653	Guanosine nucleotide diphosphate dissociation inhibitor 2	Up	
Q9LHH7	Bifunctional protein FoID 2	Up	
Q42521	Glutamate decarboxylase 1	Up	
O49326	Nitrile-specifier protein 2	Up	
P0DH99	Elongation factor 1-alpha 1	Up	
Q9SRV5	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase 2	Up	
O50008	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase 1	Up	
Q9LV21	T-complex protein 1 subunit delta	Up	
Q94F20	At5g25460	Up	
Q93V93	Peroxidase 44	Up	
P31167	ADP,ATP carrier protein 1, mitochondrial	Up	
Q9FMT1	3-isopropylmalate dehydrogenase 1, chloroplastic	Up	
P51427	40S ribosomal protein S5-2	Up	
Q9FJA6	40S ribosomal protein S3-3	Up	
Q56ZI2	Patellin-2	Up	
A0A1P8B5L9	Alanine:glyoxylate aminotransferase 2	Up	
Q9M339	40S ribosomal protein S3-2	Up	
Q9LSA3	60S ribosomal protein L30-3	Up	
Q9M9K1	Probable 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 2	Up	
Q8L7N0	T-complex protein 1 subunit zeta 2	Up	
O04499	2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1	Up	
Q9SYT0	Annexin D1	Up	
Q9ASR1	Elongation factor 2	Up	
A8MR07	Pyruvate kinase	Up	
P19456	ATPase 2, plasma membrane-type	Up	
F4JTV4	Adenosylhomocysteinase	Up	
Q9M5K2	Dihydrolipoyl dehydrogenase 2, mitochondrial	Up	
Q9XEE2	Annexin D2	Up	

Tabela S2, Cont.			
Protein ID	Descrição	Regulação	
Q9SRZ6	Cytosolic isocitrate dehydrogenase [NADP]	Up	
A0A1P8ARS7	CCT-epsilon (T-complex protein 1 subunit epsilon)	Up	
Q56WK6	Patellin-1	Up	
Q8VZ19	60S ribosomal protein L30-2	Up	
F4IL52	Protein disulfide-isomerase	Up	
P93306	NADH dehydrogenase [ubiquinone] iron-sulfur protein 2	Up	
Q8W112	Beta-D-glucan exohydrolase-like protein	Up	
F4KHS2	Subtilase 4.12	Up	
Q8H0S9	Puromycin-sensitive aminopeptidase	Up	
Q949P2	Probable cytosolic oligopeptidase A	Up	
Q9SMT7	OxalateCoA ligase	Up	
F4K007	Heat shock protein 70	Up	
A0A1P8B5D5	Serine hydroxymethyltransferase	VOCs Pal5	
O65581	Fructose-bisphosphate aldolase 5, cytosolic	VOCs Pal5	
O03986	Heat shock protein 90-4	VOCs Pal5	
Q3E7K8	Polyubiquitin 12	VOCs Pal5	
O24616	Proteasome subunit alpha type-7-B	VOCs Pal5	
A0A1P8BDG6	Malic enzyme	VOCs Pal5	
Q43873	Peroxidase 73	VOCs Pal5	
Q9M5K3	Dihydrolipoyl dehydrogenase 1, mitochondrial	VOCs Pal5	
P22954	Heat shock 70 kDa protein 2	VOCs Pal5	
Q9FZC5	Berberine bridge enzyme-like 4	Down	
Q9AST8	MD-2-related lipid-recognition protein ROSY1	Down	
O48646	Probable phospholipid hydroperoxide glutathione peroxidase 6, mitochondrial	Down	
Q9FZC4	Berberine bridge enzyme-like 3	Down	
O48723	Patatin-like protein 2	Down	
Q96291	2-Cys peroxiredoxin BAS1, chloroplastic	Down	
P24704	Superoxide dismutase [Cu-Zn] 1	Down	

Tabela S2, Cont.		
Protein ID	Descrição	Regulação
Q56YA5	Serineglyoxylate aminotransferase	Down
Q43387	Peroxidase 71	Down
Q9SRD4	Indole glucosinolate O-methyltransferase 5	Down
Q94BT9	Copper transport protein ATX1	Down
O82191	NADP-dependent malic enzyme 1	Down
P41088	Chalconeflavanone isomerase 1	Down
Q9FWR4	Glutathione S-transferase DHAR1, mitochondrial	Down
A0A1P8ASH5	Subtilase family protein	Down
Q9LHN8	Feruloyl CoA ortho-hydroxylase 1	Down
Q9ZVA2	EP1-like glycoprotein 2	Down
O81862	Class V chitinase	Down
P19366	ATP synthase subunit beta, chloroplastic	Down
Q9FF97	MD-2-related lipid recognition domain-containing protein	Down
Q39041	Acid beta-fructofuranosidase 4, vacuolar	Down
O82089	Copper transport protein CCH	Down
Q9LPU8	Indole glucosinolate O-methyltransferase 4	Down
Q8LAH7	12-oxophytodienoate reductase 1	Down
Q9LPU7	Indole glucosinolate O-methyltransferase 2	Down
Q8RXD5	Kunitz trypsin inhibitor 4	Down
A0A1P8BDR1	Fumarate hydratase	Down
Q9C5Z3	Eukaryotic translation initiation factor 3 subunit E	Down
C0Z352	Actin depolymerizing factor 2	Down
A0A1P8AMM6	Protein phosphatase 2A subunit A3	Down
Q9SG80	Alpha-L-arabinofuranosidase 1	Down
P50700	Osmotin-like protein OSM34	Down
Q96266	Glutathione S-transferase F8, chloroplastic	Down
Q94115	Adenine nucleotide alpha hydrolases-like superfamily protein	Down
Q9SZW7	GDSL esterase/lipase At4g30140	Down

Tabela S2, Cont.			
Protein ID	Descrição	Regulação	
Q9SP35	Mitochondrial import inner membrane translocase subunit TIM17-2	Down	
Q94JY3	Alpha/beta-Hydrolases superfamily protein	Down	
Q9M815	Protein PLANT CADMIUM RESISTANCE 8	Down	
Q9M2Z4	Membrane steroid-binding protein 2	Down	
Q9SWG0	IsovaleryI-CoA dehydrogenase, mitochondrial	Down	
P43082	Hevein-like preproprotein	Down	
Q9SKZ3	40S ribosomal protein S12-2	Down	
F4J5J9	Cysteine proteinases superfamily protein	Down	
F4IRX7	SOUL heme-binding family protein	Down	
O22126	Fasciclin-like arabinogalactan protein 8	Down	
Q8LDF2	2-nitropropane dioxygenase-like protein	Down	
P32962	Nitrilase 2	Down	
P42760	Glutathione S-transferase F6	Down	
O23714	Proteasome subunit beta type-2-A	Down	
Q9SKK4	Probable 2-oxoacid dependent dioxygenase	Down	
F4JM51	Phosphorylase superfamily protein	Down	
Q9ZVA4	EP1-like glycoprotein 3	Down	
Q9M214	Phosphoglycerate mutase family protein	Down	
Q39241	Thioredoxin H5	Down	
Q9MAH3	Protein DJ-1 homolog B	Down	
Q9LVJ1	Subtilisin-like protease SBT1.4	Down	
Q9LFD5	Binding partner of ACD11 1	Down	
O80858	Uncharacterized protein At2g30930	Down	
Q42342	Cytochrome b5 isoform E	Down	
B9DH36	GDP-L-fucose synthase	Down	
Q9LPU5	Indole glucosinolate O-methyltransferase 1	Down	
Q9SRZ4	Peroxiredoxin-2C	Down	
Q9FUS6	Glutathione S-transferase U13	Down	

Protein ID	Descrição	Regulação
Q56YU0	Aldehyde dehydrogenase family 2 member C4	Down
Q9FIK7	Probable acetyl-CoA acetyltransferase, cytosolic 2	Down
O65282	20 kDa chaperonin, chloroplastic	Down
Q9C8L4	Persulfide dioxygenase ETHE1 homolog, mitochondrial	Down
P48006	Elongation factor 1-delta 1	Down
Q681K2	Embryo-specific protein ATS3A	Down
Q9M1B9	Probable fructokinase-4	Down
Q9ZVF2	MLP-like protein 329	Down
Q9SVQ9	NAD (P)-binding Rossmann-fold superfamily protein	Down
Q9FRL8	Glutathione S-transferase DHAR2	Down
Q9SA78	Coatomer subunit epsilon-1	Down
P92995	Germin-like protein subfamily T member 1	Down
O49506	Peroxisomal (S)-2-hydroxy-acid oxidase GLO5	Down
Q01525	14-3-3-like protein GF14 omega	Down
Q9SI20	Elongation factor 1-delta 2	Down
Q9LSQ5	NAD (P)H dehydrogenase	Down
P48578	Serine/threonine-protein phosphatase PP2A-4 catalytic subunit	Down
O23264	Selenium-binding protein 1	Down
O80889	Alpha/beta-Hydrolases superfamily protein	Down
O64740	Protein transport protein SEC13 homolog B	Down
A0A2H1ZE37	HARMLESS TO OZONE LAYER 1	Down
Q5E924	Glyceraldehyde-3-phosphate dehydrogenase GAPCP2, chloroplastic	Down
Q9LQU4	Protein PLANT CADMIUM RESISTANCE 2	Down
Q9FFQ4	Probable flavonol synthase 5	Down
Q9XFM6	Membrane steroid-binding protein 1	Down
O64517	Metacaspase-4	Down
Q38900	Peptidyl-prolyl cis-trans isomerase CYP19-1	Down
Q9FF98	MD-2-related lipid-recognition protein 3	Down

Tabela S2, Cont.			
Protein ID	Descrição	Regulação	
Q94K30	NAD (P)-binding Rossmann-fold superfamily protein)	Down	
Q9ZVF3	MLP-like protein 328	Down	
Q9SA88	Berberine bridge enzyme-like 11	Down	
Q8VYI3	Enoyl-CoA hydratase 2, peroxisomal	Down	
Q42029	Oxygen-evolving enhancer protein 2-1, chloroplastic	Down	
Q9M8T0	Probable inactive receptor kinase At3g02880	Down	
P28186	Ras-related protein RABE1c	Down	
Q42418	Profilin-2	Down	
O65902	Cyclase-associated protein 1	Down	
P43286	Aquaporin PIP2-1	Down	
Q9LVH6	Aldose 1-epimerase	Down	
Q94AZ4	Probable calcium-binding protein CML13	Down	
Q9SX65	1,4-dihydroxy-2-naphthoyl-CoA thioesterase 1	Down	
Q9SRH6	Hypersensitive-induced response protein 3	Down	
P29516	Tubulin beta-8 chain	Down	
Q9LR30	Glutamateglyoxylate aminotransferase 1	Down	
Q8S528	Aldehyde dehydrogenase family 2 member B7, mitochondrial	Down	
A8MQR6	Methylmalonate-semialdehyde dehydrogenase	Down	
Q9FPF0	Protein DJ-1 homolog A	Down	
Q96329	Acyl-coenzyme A oxidase 4, peroxisomal	Down	
Q9LD57	Phosphoglycerate kinase 1, chloroplastic	Down	
Q42449	Profilin-1	Down	
Q38922	Ras-related protein RABB1b	Down	
A8MRW5	Oxidoreductase, zinc-binding dehydrogenase family protein	Down	
Q9AV97	2-dehydro-3-deoxyphosphooctonate aldolase 1	Down	
Q9FN03	Ultraviolet-B receptor UVR8	Down	
Q93ZC5	Allene oxide cyclase 4, chloroplastic	Down	
Q56YW9	Tubulin beta-2 chain	Down	

Protein ID	Descrição	Regulação
Q03509	Calmodulin-6	Control
F4KA76	Ribulose bisphosphate carboxylase small subunit	Control
Q8LC99	Adenine nucleotide alpha hydrolases-like superfamily protein	Control
O80948	Jacalin-related lectin 23	Control
Q9SX54	Putative fructokinase-8	Control
Q8RX72	Leucine aminopeptidase 3, chloroplastic	Control
F4HV96	Eif4a-2	Control
Q9SUQ9	Polyketide cyclase/dehydrase and lipid transport superfamily protein	Control
Q84LS2	Plant basic secretory protein (BSP) family protein	Control
Q9LYT7	3-isopropylmalate dehydratase small subunit 3	Control
Q9SLM6	Glutathione S-transferase F3	Control
A0A1I9LR13	Neurofilament protein-like protein	Unchanged
P19171	Basic endochitinase B	Unchanged
O81235	Superoxide dismutase [Mn] 1, mitochondrial	Unchanged
Q9LXC9	Soluble inorganic pyrophosphatase 6, chloroplastic	Unchanged
P10795	Ribulose bisphosphate carboxylase small subunit 1A, chloroplastic	Unchanged
Q9SMW7	Basic transcription factor 3	Unchanged
F4IY77	Biotin/lipoyl attachment domain-containing protein	Unchanged
Q7XA63	At5g19860	Unchanged
Q9SK39	Probable steroid-binding protein 3	Unchanged
Q9LHI0	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6	Unchanged
Q9LK29	Cytochrome c1 1, heme protein, mitochondrial	Unchanged
Q9SIP1	Stress-response A/B barrel domain-containing protein UP3	Unchanged
O22842	Endochitinase At2g43610	Unchanged
P83291	NADH-cytochrome b5 reductase-like protein	Unchanged
Q8GUN2	Adenylylsulfatase HINT1	Unchanged
Q8VZ50	Probable calcium-binding protein CML14	Unchanged
Q9LMU2	Kunitz trypsin inhibitor 5	Unchanged

Tabela S2, Cont.			
Protein ID	Descrição	Regulação	
Q2V3Q0	Proteasome subunit alpha type	Unchanged	
O04904	Dihydroorotase, mitochondrial	Unchanged	
Q9SGW3	26S proteasome non-ATPase regulatory subunit 8 homolog A	Unchanged	
O22769	NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial	Unchanged	
Q9FJU0	Malate dehydrogenase 3, cytoplasmic	Unchanged	
Q9FKS5	Cytochrome c1 2, heme protein, mitochondrial	Unchanged	
A0A1P8BD74	Thioredoxin-dependent peroxiredoxin	Unchanged	
Q9SA87	Berberine bridge enzyme-like 10	Unchanged	
Q9LIN0	Major latex protein, putative	Unchanged	
Q8S9L3	N-acyl-L-amino-acid amidohydrolase	Unchanged	
O82179	Glycine cleavage system H protein 2, mitochondrial	Unchanged	
Q9LP53	Alba DNA/RNA-binding protein	Unchanged	
O22683	Cyanate hydratase	Unchanged	
Q9S841	Oxygen-evolving enhancer protein 1-2, chloroplastic	Unchanged	
Q42134	Proteasome subunit alpha type-5-B	Unchanged	
Q9LEV3	CBS domain-containing protein CBSX3, mitochondrial	Unchanged	
O49499	Caffeoyl-CoA O-methyltransferase 1	Unchanged	
P19892	Ras-related protein RABA5e	Unchanged	
Q9FZ48	Ubiquitin-conjugating enzyme E2 36	Unchanged	
Q9M2D8	Uncharacterized protein At3g61260	Unchanged	
Q9FX83	NADH dehydrogenase [ubiquinone] iron-sulfur protein 8-B, mitochondrial	Unchanged	
Q96251	ATP synthase subunit O, mitochondrial	Unchanged	
F4J447	Alpha/beta-Hydrolases superfamily protein	Unchanged	
P51407	60S acidic ribosomal protein P2-1	Unchanged	
Q9FNE2	Glutaredoxin-C2	Unchanged	
Q9S818	Naringenin,2-oxoglutarate 3-dioxygenase	Unchanged	
Q07099	Serine/threonine-protein phosphatase PP2A-1 catalytic subunit	Unchanged	
Q9LV66	Uncharacterized protein At5g48480	Unchanged	

Protein ID	Descrição	Regulação
Q949U7	Peroxiredoxin-2E, chloroplastic	Unchanged
Q9SKL6	Plant basic secretory protein (BSP) family protein)	Unchanged
Q8LAS8	S-formylglutathione hydrolase	Unchanged
O04331	Prohibitin-3, mitochondrial	Unchanged
Q96283	Ras-related protein RABA2c	Unchanged
Q9ZQX4	V-type proton ATPase subunit F	Unchanged
Q94A97	Ubiquitin-conjugating enzyme E2 35	Unchanged
Q9ZSK4	Actin-depolymerizing factor 3	Unchanged
Q94K85	Cathepsin B-like protease 3	Unchanged
Q9SRY5	Glutathione S-transferase F7	Unchanged
Q84WW2	6-phosphogluconolactonase 3, chloroplastic	Unchanged
F4J0D8	V-type proton ATPase subunit	Unchanged
Q8LEQ0	60S acidic ribosomal protein P1-3	Unchanged
Q9FMD9	Glutamine synthetase cytosolic isozyme 1-4	Unchanged
F4J109	Transducin family protein / WD-40 repeat family protein	Unchanged
Q9XEX2	Peroxiredoxin-2B	Unchanged
Q9SN35	Ras-related protein RABA1d	Unchanged
Q42522	Glutamate-1-semialdehyde 2,1-aminomutase 2, chloroplastic	Unchanged
Q56WH1	Tubulin alpha-3 chain	Unchanged
A0A178V5P5	Laccase	Unchanged
O04311	Jacalin-related lectin 33	Unchanged
Q9SZ11	Glycerophosphodiester phosphodiesterase GDPDL3	Unchanged
P46422	Glutathione S-transferase F2	Unchanged
Q9S7W4	F17A17.6 protein	Unchanged
Q9SRI1	Protein transport protein SEC13 homolog A	Unchanged
O64530	Thiosulfate/3-mercaptopyruvate sulfurtransferase 1, mitochondrial	Unchanged
Q9FFQ7	Fatty alcohol:caffeoyl-CoA acyltransferase	Unchanged
Q9SUQ8	Dirigent protein 6	Unchanged

Tabela S2, Cont.		
Protein ID	Descrição	Regulação
Q8VXZ7	Alpha-galactosidase 3	Unchanged
P48349	14-3-3-like protein GF14 lambda	Unchanged
Q9SMQ6	Ras-related protein RABA4b	Unchanged
Q38896	Cold shock domain-containing protein 4	Unchanged
O80517	Uclacyanin-2	Unchanged
O80713	Short-chain dehydrogenase reductase 3a	Unchanged
Q9M060	Eukaryotic translation initiation factor 6-2	Unchanged
A0A1I9LRA3	TRAF-like family protein	Unchanged
Q9ZUX4	Uncharacterized protein At2g27730, mitochondrial	Unchanged
Q6NQ66	L-gulonolactone oxidase 2	Unchanged
P29514	Tubulin beta-6 chain	Unchanged
O49482	Cinnamyl alcohol dehydrogenase 5	Unchanged
Q9ZW85	3-isopropylmalate dehydratase small subunit 1	Unchanged
F4JA59	Protein phosphatase 2A subunit A2	Unchanged
P29515	Tubulin beta-7 chain	Unchanged
Q56WD9	3-ketoacyl-CoA thiolase 2, peroxisomal	Unchanged
P29517	Tubulin beta-9 chain	Unchanged
P46637	Arginase 1, mitochondrial	Unchanged
Q9S9W2	Short-chain dehydrogenase/reductase SDRA	Unchanged
Q9XI05	Proteasome subunit beta type-3-A	Unchanged
Q96262	Plasma membrane-associated cation-binding protein 1	Unchanged
Q9SEH3	Ras-related protein RABD2c	Unchanged
B9DG17	40S ribosomal protein SA	Unchanged
Q9FNC9	Mitochondrial import receptor subunit TOM9-2	Unchanged
Q9SU13	Fasciclin-like arabinogalactan protein 2	Unchanged
Q9M2U7	Eukaryotic aspartyl protease family protein	Unchanged
Q94BT2	Auxin-induced in root cultures protein 12	Unchanged
Q84TF6	Adenine nucleotide alpha hydrolases-like superfamily protein	Unchanged

Tabela S2, Cont.		
Protein ID	Descrição	Regulação
F4J2Z7	Short-chain dehydrogenase reductase 4	Unchanged
Q9ZRE2	Ras-related protein RABD1	Unchanged
Q43348	Acid beta-fructofuranosidase 3, vacuolar	Unchanged
Q9SIE7	PLAT domain-containing protein 2	Unchanged
Q9FJ95	Sorbitol dehydrogenase	Unchanged
Q9SLF7	60S acidic ribosomal protein P2-2	Unchanged
P92963	Ras-related protein RABB1c	Unchanged
Q9LZG0	Adenosine kinase 2	Unchanged
P48348	14-3-3-like protein GF14 kappa	Unchanged
Q8L4A7	Proteasome subunit alpha type-2-B	Unchanged
Q9SYG7	Aldehyde dehydrogenase family 7 member B4	Unchanged
Q9SGR6	AT1G76160 protein	Unchanged
Q9LIA8	UDP-glucose 6-dehydrogenase 2	Unchanged
F4HRB4	Triacylglycerol lipase-like 1	Unchanged
Q9FPJ4	Ras-related protein RABD2b	Unchanged
Q43127	Glutamine synthetase, chloroplastic/mitochondrial	Unchanged
Q9FJ62	Glycerophosphodiester phosphodiesterase GDPDL4	Unchanged
Q8LCW9	60S acidic ribosomal protein P1-1	Unchanged
A0A1P8AW84	GDSL-like Lipase/Acylhydrolase superfamily protein	Unchanged
O81148	Proteasome subunit alpha type-4-A	Unchanged
P11139	Tubulin alpha-1 chain	Unchanged
Q9SMU8	Peroxidase 34	Unchanged
Q9CAI3	Probable cinnamyl alcohol dehydrogenase 1	Unchanged
Q8RU07	[Acyl-carrier-protein] S-malonyltransferase	Unchanged
Q84L30	Ubiquitin receptor RAD23d	Unchanged
Q9C6Z3	Pyruvate dehydrogenase E1 component subunit beta-2, chloroplastic	Unchanged
P45434	Translocon-associated protein subunit alpha	Unchanged
Q9ZVS4	Eukaryotic aspartyl protease family protein	Unchanged

Tabela S2, Cont.		
Protein ID	Descrição	Regulação
Q941A6	Succinate dehydrogenase subunit 6, mitochondrial	Unchanged
P46077	14-3-3-like protein GF14 phi	Unchanged
O81147	Proteasome subunit alpha type-6-B	Unchanged
Q9C4Z6	Receptor for activated C kinase 1B	Unchanged
Q96299	14-3-3-like protein GF14 mu	Unchanged
P05466	3-phosphoshikimate 1-carboxyvinyltransferase, chloroplastic	Unchanged
P34790	Peptidyl-prolyl cis-trans isomerase CYP18-3	Unchanged
Q03251	Glycine-rich RNA-binding protein 8	Unchanged
P53496	Actin-11	Unchanged
P21238	Chaperonin 60 subunit alpha 1, chloroplastic	Unchanged
P24636	Tubulin beta-4 chain	Unchanged
P94111	Protein STRICTOSIDINE SYNTHASE-LIKE 12	Unchanged
Q9ZUY6	UDP-D-apiose/UDP-D-xylose synthase 1	Unchanged
Q07100	Serine/threonine-protein phosphatase PP2A-3 catalytic subunit	Unchanged
Q39255	SKP1-like protein 1A	Unchanged
Q9ZPS3	Glutamate decarboxylase 4	Unchanged
Q8LD27	Proteasome subunit beta type-6	Unchanged
Q39243	Thioredoxin reductase 1, mitochondrial	Unchanged
Q9SLA8	Enoyl-[acyl-carrier-protein] reductase [NADH], chloroplastic	Unchanged
Q9SN86	Malate dehydrogenase, chloroplastic	Unchanged
Q9LS94	Ras-related protein RABG3f	Unchanged
Q9SZA3	Eukaryotic translation initiation factor 3 subunit K	Unchanged
Q9LQQ3	F24B9.13 protein	Unchanged
P56757	ATP synthase subunit alpha, chloroplastic	Unchanged
O65390	Aspartic proteinase A1	Unchanged
Q9LQC8	ADP-ribosylation factor 2-A	Unchanged
Q9SRG3	Protein disulfide isomerase-like 1-2	Unchanged
Q42529	Tryptophan synthase alpha chain, chloroplastic	Unchanged

Tabela S2, Cont		
Protein ID	Descrição	Regulação
F4I035	3-phosphoshikimate 1-carboxyvinyltransferase	Unchanged
A0A1P8B3U2	Glucan endo-1,3-beta-D-glucosidase	Unchanged
Q93ZN9	LL-diaminopimelate aminotransferase, chloroplastic	Unchanged
Q9FFE0	Putative 4-hydroxy-4-methyl-2-oxoglutarate aldolase 2	Unchanged
F4JD01	Proteasome subunit beta	Unchanged
O04310	Jacalin-related lectin 34	Unchanged
Q9LF33	UDP-glucose 6-dehydrogenase 3	Unchanged
Q9LHE5	Mitochondrial import receptor subunit TOM40-1	Unchanged
Q1H583	GDSL esterase/lipase 22	Unchanged
Q9M5J9	Polygalacturonase inhibitor 1	Unchanged
A0A1P8ANX8	Vacuolar H+-ATPase subunit E isoform 3	Unchanged
P43297	Cysteine proteinase RD21A	Unchanged
Q8H166	Thiol protease aleurain	Unchanged
Q42403	Thioredoxin H3	Unchanged
A0A1P8BGJ8	Glutamate-1-semialdehyde 2,1-aminomutase	Unchanged
O04313	PYK10-binding protein 2	Unchanged
O23207	Probable NAD (P)H dehydrogenase	Unchanged
P55034	26S proteasome non-ATPase regulatory subunit 4 homolog	Unchanged
Q9S726	Probable ribose-5-phosphate isomerase 3, chloroplastic	Unchanged
Q9LIL3	Aluminum induced protein with YGL and LRDR motifs	Unchanged
Q9LJI5	V-type proton ATPase subunit d1	Unchanged
P34066	Proteasome subunit alpha type-1-A	Unchanged
B9DHA6	Ubiquitin-60S ribosomal protein L40-1	Unchanged
Q9LSP5	Adenine nucleotide alpha hydrolases-like superfamily protein	Unchanged
Q0WW26	Coatomer subunit gamma	Unchanged
A0A2P2CLF0	Cytochrome c oxidase subunit 2	Unchanged
O04318	Nitrile-specifier protein 3	Unchanged
Q9SZY1	Nascent polypeptide-associated complex subunit alpha-like protein 4	Unchanged

Tabela S2, Cont.		
Protein ID	Descrição	Regulação
F4JC86	Ubiquitin family protein	Unchanged
Q9LJU1	Early nodulin-like protein 9	Unchanged
Q9SDM9	Nitrile-specifier protein 1	Unchanged
Q39242	Thioredoxin reductase 2	Unchanged
Q9LXQ2	MD-2-related lipid recognition domain-containing protein	Unchanged
Q9LZ82	Protein BTR1	Unchanged
P93819	Malate dehydrogenase 1, cytoplasmic	Unchanged
Q9SU63	Aldehyde dehydrogenase family 2 member B4, mitochondrial	Unchanged
O23717	Proteasome subunit beta type-5-A	Unchanged
P42644	14-3-3-like protein GF14 psi	Unchanged
P49243	3-oxoacyl-[acyl-carrier-protein] synthase III, chloroplastic	Unchanged
Q9LE22	Probable calcium-binding protein CML27	Unchanged
Q38867	Peptidyl-prolyl cis-trans isomerase CYP19-3	Unchanged
Q29Q34	NAD (P)-binding Rossmann-fold superfamily protein	Unchanged
Q9LK96	GroES-like zinc-binding alcohol dehydrogenase family protein	Unchanged
Q9FMU6	Mitochondrial phosphate carrier protein 3, mitochondrial	Unchanged
Q9M8M7	Acetylornithine aminotransferase, chloroplastic/mitochondrial	Unchanged
Q96292	Actin-2	Unchanged
Q9LIK0	Plastidial pyruvate kinase 1, chloroplastic	Unchanged
O80840	Phosphomannomutase	Unchanged
Q03250	Glycine-rich RNA-binding protein 7	Unchanged
Q9LQ04	dTDP-L-rhamnose synthase	Unchanged
O81146	Proteasome subunit alpha type-6-A	Unchanged
O04834	GTP-binding protein SAR1A	Unchanged
Q0WNZ5	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase 3, chloroplastic	Unchanged
Q944P7	Leucine aminopeptidase 2, chloroplastic	Unchanged
Q9FLH8	Probable fructokinase-7	Unchanged
Q9SCX3	Elongation factor 1-beta 2	Unchanged

Tabela S2, Cont.		
Protein ID	Descrição	Regulação
P33207	3-oxoacyl-[acyl-carrier-protein] reductase, chloroplastic	Unchanged
Q9LHG9	Nascent polypeptide-associated complex subunit alpha-like protein 1	Unchanged
Q9FZK4	Nuclear transport factor 2A	Unchanged
Q9ZWT2	Cytochrome B5 isoform D	Unchanged
Q38858	Calreticulin-2	Unchanged
O04487	Probable elongation factor 1-gamma 1	Unchanged
Q9LT78	Probable cysteine protease RD21C	Unchanged
Q9SAK4	Succinate-semialdehyde dehydrogenase, mitochondrial	Unchanged
Q9T0K7	3-hydroxyisobutyryl-CoA hydrolase-like protein 3, mitochondrial	Unchanged
Q9LSV0	Glyoxylate/succinic semialdehyde reductase 1	Unchanged
F4IMR0	EMBRYO DEFECTIVE 3147	Unchanged
Q9SDS7	V-type proton ATPase subunit C	Unchanged
Q9STX2	3-oxo-Delta (4,5)-steroid 5-beta-reductase	Unchanged
Q9ZUB3	Spermidine synthase 1	Unchanged
Q94K05	T-complex protein 1 subunit theta	Unchanged
Q9LV28	Receptor for activated C kinase 1C	Unchanged
Q9S9P1	40S ribosomal protein S12-1	Unchanged
Q96250	ATP synthase subunit gamma, mitochondrial	Unchanged
Q9SX77	Succinate dehydrogenase subunit 5, mitochondrial	Unchanged
P0CJ46	Actin-1	Unchanged
P35133	Ubiquitin-conjugating enzyme E2 10	Unchanged
P53492	Actin-7	Unchanged
Q9M7T0	Peroxiredoxin-2F, mitochondrial	Unchanged
Q9SZN1	V-type proton ATPase subunit B2	Unchanged
Q93WJ8	Monodehydroascorbate reductase 2	Unchanged
Q9XI98	Ras-related protein RABG3e	Unchanged
O04314	PYK10-binding protein 1	Unchanged
Q9SQI8	Dihydrolipoamide S-acetyltransferase component 4 of pyruvate dehydrogenase complex	Unchanged

Tabela S2, Cont		
Protein ID	Descrição	Regulação
O49453	Uncharacterized protein At4g28440	Unchanged
Q93YR3	FAM10 family protein At4g22670	Unchanged
Q9SF06	Adenine nucleotide alpha hydrolases-like superfamily protein	Unchanged
Q94BU8	Guanosine deaminase	Unchanged
P30184	Leucine aminopeptidase 1	Unchanged
Q8H107	2-oxoglutarate dehydrogenase complex component E2-2	Unchanged
F4HS76	Glycerol kinase	Unchanged
Q43725	Cysteine synthase, mitochondrial	Unchanged
P31166	Adenine phosphoribosyltransferase 1, chloroplastic	Unchanged
A7WM73	Beta-hexosaminidase 1	Unchanged
Q9FMV1	Gamma carbonic anhydrase-like 1, mitochondrial	Unchanged
B9DFR9	AT2G45960 protein	Unchanged
Q9FF53	Probable aquaporin PIP2-4	Unchanged
F41710	Alanine aminotransferase 1, mitochondrial	Unchanged
Q9XI01	Protein disulfide isomerase-like 1-1	Unchanged
Q93V56	Soluble inorganic pyrophosphatase 1	Unchanged
Q96300	14-3-3-like protein GF14 nu	Unchanged
F4JL11	Importin subunit alpha-2	Unchanged
Q8VZC3	Delta-1-pyrroline-5-carboxylate dehydrogenase 12A1, mitochondrial	Unchanged
Q9SRT9	UDP-arabinopyranose mutase 1	Unchanged
Q39222	Ras-related protein RABA1b	Unchanged
Q8S4Y1	Acetyl-CoA acetyltransferase, cytosolic 1	Unchanged
Q9FM01	UDP-glucose 6-dehydrogenase 4	Unchanged
P94014	Germin-like protein subfamily 2 member 1	Unchanged
P48523	Cinnamyl alcohol dehydrogenase 4	Unchanged
P42645	14-3-3-like protein GF14 upsilon	Unchanged
F4JTH0	Aspartate aminotransferase	Unchanged
O04309	Jacalin-related lectin 35	Unchanged

Protein ID	Descrição	Regulação
Q8L953	40S ribosomal protein S27-3	Unchanged
F4K5B9	Eukaryotic aspartyl protease family protein	Unchanged
O82399	Malate dehydrogenase 1, peroxisomal	Unchanged
Q42525	Hexokinase-1	Unchanged
Q94JQ4	Reactive Intermediate Deaminase A, chloroplastic	Unchanged
Q9ZQG8	Ferredoxin-3, chloroplastic	Unchanged
Q9CA59	NAP1-related protein 1	Unchanged
Q9STS1	Betaine aldehyde dehydrogenase 2, mitochondrial	Unchanged
O24633	Proteasome subunit beta type-2-B	Unchanged
Q9SF85	Adenosine kinase 1	Unchanged
Q9SAJ4	Phosphoglycerate kinase 3, cytosolic	Unchanged
Q05728	Phosphoribosylformylglycinamidine cyclo-ligase, chloroplastic	Unchanged
Q9C9C4	Enolase 1, chloroplastic	Unchanged
Q9M9P3	UTPglucose-1-phosphate uridylyltransferase 2	Unchanged
P32961	Nitrilase 1	Unchanged
Q9S7E9	Glutamateglyoxylate aminotransferase 2	Unchanged
F4JRV2	Superoxide dismutase	Unchanged
Q9SKP6	Triosephosphate isomerase, chloroplastic	Unchanged
Q9C891	Dirigent protein 20	Unchanged
P68209	SuccinateCoA ligase [ADP-forming] subunit alpha-1, mitochondrial	Unchanged
Q9C8P0	Dihydrolipoamide S-acetyltransferase component 5 of pyruvate dehydrogenase complex	Unchanged
Q9M328	Adenine nucleotide alpha hydrolases-like superfamily protein	Unchanged
Q9SID0	Probable fructokinase-1	Unchanged
B9DGD6	Acetyl-coenzyme A synthetase, chloroplastic/glyoxysomal	Unchanged
A0A2P2CLF9	ATP synthase subunit alpha	Unchanged
P31265	Translationally-controlled tumor protein 1	Unchanged
Q9LFW1	UDP-arabinopyranose mutase 2	Unchanged
Q9FFD2	Probable UDP-arabinopyranose mutase 5	Unchanged

Tabela S2, Cont.		
Protein ID	Descrição	Regulação
P25696	Bifunctional enolase 2/transcriptional activator	Unchanged
B3H5M0	Monodehydroascorbate reductase	Unchanged
A0A1P8B767	NAD (P)H dehydrogenase	Unchanged
Q9SXS7	Bifunctional L-3-cyanoalanine synthase/cysteine synthase D2	Unchanged
Q94CE4	Beta carbonic anhydrase 4	Unchanged
O04202	Eukaryotic translation initiation factor 3 subunit F	Unchanged
Q9LFA3	Monodehydroascorbate reductase 1, peroxisomal	Unchanged
Q8H103	Glucose-6-phosphate isomerase 1, chloroplastic	Unchanged
O80950	Jacalin-related lectin 22	Unchanged
P11574	V-type proton ATPase subunit B1	Unchanged
Q8RWN9	Dihydrolipoamide S-acetyltransferase component 2 of pyruvate dehydrogenase complex	Unchanged
O82355	Desiccation-related protein At2g46140	Unchanged
P43296	Cysteine protease RD19A	Unchanged
P39207	Nucleoside diphosphate kinase 1	Unchanged
P29511	Tubulin alpha-6 chain	Unchanged
O04204	60S acidic ribosomal protein P0-1	Unchanged
Q9S6Z7	Bifunctional L-3-cyanoalanine synthase/cysteine synthase D1	Unchanged
O23180	Patatin-like protein 5	Unchanged
P47998	Cysteine synthase 1	Unchanged
O23654	V-type proton ATPase catalytic subunit A	Unchanged
Q9FG81	Aluminum induced protein with YGL and LRDR motifs	Unchanged
Q9LXZ4	GroES-like zinc-binding alcohol dehydrogenase family protein	Unchanged
P24102	Peroxidase 22	Unchanged
Q8LPJ3	Probable alpha-mannosidase At5g13980	Unchanged
Q9FMD7	Probable inactive receptor kinase At5g16590	Unchanged
Q9SVD1	At3g52500	Unchanged
P48347	14-3-3-like protein GF14 epsilon	Unchanged
P42643	14-3-3-like protein GF14 chi	Unchanged

Tabela S2, Cont.			
Protein ID	Descrição	Regulação	
P31168	Dehydrin COR47	Unchanged	
Q9ZU25	Probable mitochondrial-processing peptidase subunit alpha-1, mitochondrial	Unchanged	
A0A1P8BG38	Glucose-6-phosphate isomerase	Unchanged	
F4JHJ0	HSP20-like chaperones superfamily protein	Unchanged	
Q9LVI8	Glutamine synthetase cytosolic isozyme 1-3	Unchanged	
Q9S795	Betaine aldehyde dehydrogenase 1, chloroplastic	Unchanged	
Q1JPL7	Pectinesterase/pectinesterase inhibitor 18	Unchanged	
P48491	Triosephosphate isomerase, cytosolic	Unchanged	
P42761	Glutathione S-transferase F10	Unchanged	
Q9SRH5	Mitochondrial outer membrane protein porin 1	Unchanged	
P46645	Aspartate aminotransferase, cytoplasmic isozyme 1	Unchanged	
Q9SIU0	NAD-dependent malic enzyme 1, mitochondrial	Unchanged	
Q8VYI4	Aspartate-semialdehyde dehydrogenase	Unchanged	
Q96533	Alcohol dehydrogenase class-3	Unchanged	
F4J7G5	MD-2-related lipid recognition domain-containing protein / ML domain-containing protein	Unchanged	
P0DH97	Calmodulin-2	Unchanged	
Q42406	Peptidyl-prolyl cis-trans isomerase CYP18-4	Unchanged	
Q9SJ81	Fasciclin-like arabinogalactan protein 7	Unchanged	
O23712	Proteasome subunit alpha type-1-B	Unchanged	
Q9FM65	Fasciclin-like arabinogalactan protein 1	Unchanged	
Q9SLV3	F19C14.11 protein (TRAF-like family protein)	Unchanged	
Q8W4H8	Inactive GDSL esterase/lipase-like protein 23	Unchanged	
Q96529	Adenylosuccinate synthetase, chloroplastic	Unchanged	
Q9FXA2	Polyadenylate-binding protein 8	Unchanged	
Q9STW6	Heat shock 70 kDa protein 6, chloroplastic	Unchanged	
Q9S757	Bifunctional L-3-cyanoalanine synthase/cysteine synthase C1, mitochondrial	Unchanged	
Q9ZU52	Fructose-bisphosphate aldolase 3, chloroplastic	Unchanged	
Q9LKA3	Malate dehydrogenase 2, mitochondrial	Unchanged	

Tabela S2, Cont.		
Protein ID	Descrição	Regulação
Q9SAJ6	Glyceraldehyde-3-phosphate dehydrogenase GAPCP1, chloroplastic	Unchanged
P93832	3-isopropylmalate dehydrogenase 2, chloroplastic	Unchanged
Q9LIR4	Dihydroxy-acid dehydratase, chloroplastic	Unchanged
Q9SR73	40S ribosomal protein S28-1	Unchanged
P0DH95	Calmodulin-1	Unchanged
Q9ZP06	Malate dehydrogenase 1, mitochondrial	Unchanged
O64650	40S ribosomal protein S27-1	Unchanged
Q9LJE4	Chaperonin 60 subunit beta 2, chloroplastic	Unchanged
F4I3L1	Phosphoglycerate kinase	Unchanged
Q9C5M0	Mitochondrial dicarboxylate/tricarboxylate transporter DTC	Unchanged
Q96252	ATP synthase subunit delta', mitochondrial	Unchanged
Q8LCE1	Glutamine synthetase cytosolic isozyme 1-2	Unchanged
Q9LYR4	Transaldolase	Unchanged
Q9SA14	3-isopropylmalate dehydrogenase 3, chloroplastic	Unchanged
Q9FMH8	Probable cysteine protease RD21B	Unchanged
O23016	Probable voltage-gated potassium channel subunit beta	Unchanged
Q9SGC1	Probable phosphoglucomutase, cytoplasmic 2	Unchanged
O80852	Glutathione S-transferase F9	Unchanged
Q9SK66	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial	Unchanged
Q9FF55	Protein disulfide isomerase-like 1-4	Unchanged
Q9ZW35	Proliferating cell nuclear antigen 2	Unchanged
Q9FVT2	Probable elongation factor 1-gamma 2	Unchanged
Q8GRX1	Myrosinase 4	Unchanged
Q93VP3	Eukaryotic translation initiation factor 5A-2	Unchanged
Q42112	60S acidic ribosomal protein P0-2	Unchanged
Q9SMX3	Mitochondrial outer membrane protein porin 3	Unchanged
Q8W4M5	Pyrophosphatefructose 6-phosphate 1-phosphotransferase subunit beta 1	Unchanged
Q38799	Pyruvate dehydrogenase E1 component subunit beta-1, mitochondrial	Unchanged

Tabela S2, Cont.			
Protein ID	Descrição	Regulação	
P93033	Fumarate hydratase 1, mitochondrial	Unchanged	
Q8GUM2	Heat shock 70 kDa protein 9, mitochondrial	Unchanged	
Q9SR36	Glutathione S-transferase U8	Unchanged	
O65660	PLAT domain-containing protein 1	Unchanged	
Q8VYV7	3-dehydroquinate synthase, chloroplastic	Unchanged	
Q7DLR9	Proteasome subunit beta type-4	Unchanged	
Q9SLK0	Peroxisomal isocitrate dehydrogenase [NADP]	Unchanged	
O23179	Patatin-like protein 1	Unchanged	
P46644	Aspartate aminotransferase 3, chloroplastic	Unchanged	
Q42534	Pectinesterase 2	Unchanged	
Q08733	Aquaporin PIP1-3	Unchanged	
O49203	Nucleoside diphosphate kinase III, chloroplastic/mitochondrial	Unchanged	
P57751	UTPglucose-1-phosphate uridylyltransferase 1	Unchanged	
Q41931	1-aminocyclopropane-1-carboxylate oxidase 2	Unchanged	
P47999	Cysteine synthase, chloroplastic/chromoplastic	Unchanged	
Q96321	Importin subunit alpha-1	Unchanged	
O65896	Cytidine deaminase 1	Unchanged	
Q9LTX9	Heat shock 70 kDa protein 7, chloroplastic	Unchanged	
Q9LS01	Allene oxide cyclase 3, chloroplastic	Unchanged	
P20115	Citrate synthase 4, mitochondrial	Unchanged	
O65378	1-aminocyclopropane-1-carboxylate oxidase 3	Unchanged	
Q42546	SAL1 phosphatase	Unchanged	
Q9C5D7	Probable caffeoyl-CoA O-methyltransferase At4g26220	Unchanged	
Q9SE60	Methylenetetrahydrofolate reductase 1	Unchanged	
Q93V74	Cyclase-like protein 1	Unchanged	
Q9LNE4	Probable fructokinase-3	Unchanged	
O65202	Peroxisomal acyl-coenzyme A oxidase 1	Unchanged	
Q9ZVS5	Eukaryotic aspartyl protease family protein	Unchanged	

Tabela S2, Cont.			
Protein ID	Descrição	Regulação	
A0A1I9LR83	ADP-ribosylation factor-like A1C	Unchanged	
Q9FJX3	Mitochondrial outer membrane protein porin 2	Unchanged	
Q8RYC2	Putative actin-5	Unchanged	
Q9ZVA5	EP1-like glycoprotein 4	Unchanged	
Q3ECS3	Myrosinase 5	Unchanged	
O82662	SuccinateCoA ligase [ADP-forming] subunit beta, mitochondrial	Unchanged	
Q9C6B3	Gamma carbonic anhydrase 2, mitochondrial	Unchanged	
B3H6K6	NAD (P)-binding Rossmann-fold superfamily protein	Unchanged	
P46010	Nitrilase 3	Unchanged	
Q8L7K9	NAD-dependent malic enzyme 2, mitochondrial	Unchanged	
O24456	Receptor for activated C kinase 1A	Unchanged	
P83483	ATP synthase subunit beta-1, mitochondrial	Unchanged	
O04848	Probable histone H2AXa	Unchanged	
Q9S7B5	Threonine synthase 1, chloroplastic	Unchanged	
O49006	Pectinesterase/pectinesterase inhibitor 3	Unchanged	
Q01474	GTP-binding protein SAR1B	Unchanged	
Q9SPK5	Formatetetrahydrofolate ligase	Unchanged	
O49485	D-3-phosphoglycerate dehydrogenase 1, chloroplastic	Unchanged	
Q9FK25	Flavone 3'-O-methyltransferase 1	Unchanged	
Q56WN1	Glutamine synthetase cytosolic isozyme 1-1	Unchanged	
Q9LHB9	Peroxidase 32	Unchanged	
O48661	Spermidine synthase 2	Unchanged	
Q9SH69	6-phosphogluconate dehydrogenase, decarboxylating 1, chloroplastic	Unchanged	
Q8L7R2	Homoserine kinase	Unchanged	
F4KGQ0	Fructose-bisphosphate aldolase 4, cytosolic	Unchanged	
Q949Y3	Bifunctional purple acid phosphatase 26 [Includes: Acid phosphatase	Unchanged	
O80576	Late embryogenesis abundant protein, group 2	Unchanged	
F4IVR2	Heat shock protein 60-2	Unchanged	

Protein ID	Descrição	Regulação
Q9FZ27	Germin-like protein subfamily 2 member 2	Unchanged
Q6ICZ8	Nascent polypeptide-associated complex subunit alpha-like protein 3	Unchanged
O23044	Peroxidase 3	Unchanged
O80912	Peroxidase 23	Unchanged
Q9C7X7	Heat shock 70 kDa protein 18	Unchanged
Q42472	Glutamate decarboxylase 2	Unchanged
A0A1P8B9R5	GroES-like zinc-binding alcohol dehydrogenase family protein	Unchanged
Q9SGE0	UDP-D-apiose/UDP-D-xylose synthase 2	Unchanged
Q8LFC0	Isocitrate dehydrogenase [NAD] regulatory subunit 1, mitochondrial	Unchanged
Q9FM97	Pyruvate kinase	Unchanged
Q9CA90	Glyoxylate/hydroxypyruvate reductase A HPR2	Unchanged
004308	Probable mitochondrial-processing peptidase subunit alpha-2, chloroplastic/mitochondrial	Unchanged
P52410	3-oxoacyl-[acyl-carrier-protein] synthase I, chloroplastic	Unchanged
Q9ZRW8	Glutathione S-transferase U19	Unchanged
F4I576	Monodehydroascorbate reductase 6	Unchanged
O80585	Methylenetetrahydrofolate reductase 2	Unchanged
Q9SUT2	Peroxidase 39	Unchanged
P43287	Aquaporin PIP2-2	Unchanged
P57106	Malate dehydrogenase 2, cytoplasmic	Unchanged
Q9LSY7	Peroxidase 30	Unchanged
F4JB06	Ribosomal protein S5/Elongation factor G/III/V family protein	Unchanged
Q9LYG3	NADP-dependent malic enzyme 2	Unchanged
Q9LZ23	ACT domain-containing protein ACR12	Unchanged
Q9SJQ9	Fructose-bisphosphate aldolase 6, cytosolic	Unchanged
B3H778	Citrullineaspartate ligase	Unchanged
P93032	Isocitrate dehydrogenase [NAD] regulatory subunit 2, mitochondrial	Unchanged
Q9ZT91	Elongation factor Tu, mitochondrial	Unchanged
Q9FNN1	Pyruvate kinase	Unchanged

Tabela S2, Cont.				
Protein ID	Descrição	Regulação		
P14671	Tryptophan synthase beta chain 1, chloroplastic	Unchanged		
O04486	Ras-related protein RABA2a	Unchanged		
Q05758	Ketol-acid reductoisomerase, chloroplastic	Unchanged		
P93004	Aquaporin PIP2-7	Unchanged		
P42763	Dehydrin ERD14	Unchanged		
P29513	Tubulin beta-5 chain	Unchanged		
Q9LUT2	S-adenosylmethionine synthase 4	Unchanged		
Q9SYP2	Pyrophosphatefructose 6-phosphate 1-phosphotransferase subunit alpha 1	Unchanged		
P53494	Actin-4	Unchanged		
O04316	Nitrile-specifier protein 4	Unchanged		
Q9LF98	Fructose-bisphosphate aldolase 8, cytosolic	Unchanged		
Q9FFP6	Pyruvate kinase	Unchanged		
F4IW47	Transketolase-2, chloroplastic	Unchanged		
Q9FFR3	6-phosphogluconate dehydrogenase, decarboxylating 3, chloroplastic	Unchanged		
Q945K7	Isocitrate dehydrogenase [NAD] catalytic subunit 5, mitochondrial	Unchanged		
P54873	Hydroxymethylglutaryl-CoA synthase	Unchanged		
Q24JN5	Prolyl 4-hydroxylase 5	Unchanged		
O64688	Pyruvate dehydrogenase E1 component subunit beta-3, chloroplastic	Unchanged		
Q96518	Peroxidase 16	Unchanged		
Q9C907	Glycerophosphodiester phosphodiesterase GDPD5	Unchanged		
Q9FX94	Probable carboxylesterase 5	Unchanged		
F4JBY2	Transketolase	Unchanged		
P42731	Polyadenylate-binding protein 2	Unchanged		
Q96511	Peroxidase 69	Unchanged		
Q84WM9	Elongation factor 1-beta 1	Unchanged		
Q9SYI5	ToIB protein-like protein	Unchanged		
P12411	Tubulin beta-1 chain	Unchanged		
F4JM86	Catalase	Unchanged		

Tabela S2, Cont.				
Protein ID	Descrição	Regulação		
P21240	Chaperonin 60 subunit beta 1, chloroplastic	Unchanged		
Q9FGX1	ATP-citrate synthase beta chain protein 2	Unchanged		
O65398	Lactoylglutathione lyase GLX1	Unchanged		
Q9LDN9	Peroxidase 37	Unchanged		
Q9SJQ0	Pyruvate kinase	Unchanged		
Q9FZA2	Non-classical arabinogalactan protein 31	Unchanged		
Q42586	Uridine 5'-monophosphate synthase	Unchanged		
Q9LVI9	Dihydropyrimidine dehydrogenase	Unchanged		
Q9SSK7	MLP-like protein 34	Unchanged		
Q9SR37	Beta-glucosidase 23	Unchanged		
Q43735	Peroxidase 27	Unchanged		
Q9LKR3	Heat shock 70 kDa protein BIP1	Unchanged		
Q9S9N1	Heat shock 70 kDa protein 5	Unchanged		
O23095	60S acidic ribosomal protein P1-2	Unchanged		
Q9C5W6	14-3-3-like protein GF14 iota	Unchanged		
O65719	Heat shock 70 kDa protein 3	Unchanged		
P28188	Ras-related protein RABD2a	Unchanged		
Q9M0D1	Xyloglucan endotransglucosylase/hydrolase protein 19	Unchanged		
Q94JS0	Cytochrome b-c1 complex subunit Rieske-1, mitochondrial	Unchanged		
Q9ZW84	3-isopropylmalate dehydratase small subunit 2	Unchanged		
Q9C8Y9	Beta-glucosidase 22	Unchanged		
Q8LPJ5	Isocitrate dehydrogenase [NADP], chloroplastic/mitochondrial	Unchanged		
F4IQ05	Peroxidase	Unchanged		
Q93Z83	TRAF-like family protein	Unchanged		
Q9C525	Beta-glucosidase 21	Unchanged		
F4KCE5	Heat shock cognate protein 70-1	Unchanged		
Q9SGH6	Alpha-dioxygenase 1	Unchanged		
Q93VG5	40S ribosomal protein S8-1	Unchanged		

Tabela S2, Cont.				
Protein ID	Descrição	Regulação		
F4J3P1	Ribosomal protein L14p/L23e family protein	Unchanged		
P55737	Heat shock protein 90-2	Unchanged		
Q9SUR0	Polyketide cyclase/dehydrase and lipid transport superfamily protein	Unchanged		
Q9LK36	Adenosylhomocysteinase 2	Unchanged		
O81493	F9D12.8 protein (TRAF-like family protein)	Unchanged		
A0A1I9LT16	Ribosomal protein L18	Unchanged		
P49209	60S ribosomal protein L9-1	Unchanged		
P42795	60S ribosomal protein L11-1	Unchanged		
Q8H1Y0	Pyruvate dehydrogenase E1 component subunit alpha-2, mitochondrial	Unchanged		
Q9CAX6	40S ribosomal protein S14-2	Unchanged		
Q940P8	T-complex protein 1 subunit beta	Unchanged		
F4HUL6	Catalase 3	Unchanged		
P0DI10	Peroxidase 1	Unchanged		

Up = proteínas aumentadas nas plantas tratadas; Down = proteínas reduzidas nas plantas tratadas; Control = proteínas identificadas apenas nas plantas controle (Unique_Control [Down]); VOCs Pal5 = proteínas identificadas apenas nas plantas tratadas (Unique_VOCs Pal5 [Up]); Un changed = proteínas sem acúmulo diferencial entre as plantas tratadas e controle

Figura Suplementar S1 Heatmap da análise proteômica para 40 proteínas reguladas na parte aérea e raiz de plantas de *A. thaliana* após exposição aos VOCs de *Gluconacetobacter diazotrophicus* Pal5. Os valores de *Fold-change* foram transformados em $-Log_2$ Fold-change e são mostrados na escala. Os grupos indicam o padrão de regulação das proteínas nos tecidos da planta inoculada. Group 1 = proteínas aumentadas na parte aérea e na raiz; Group 2 = proteínas reduzidas na parte aérea e na raiz; Group 3 = proteínas aumentadas na parte aérea, mas reduzidas na raiz; Group 4 = proteína reduzida na parte aérea, mas aumentada na raiz.

Figura Suplementar S2 Classificação de DAPs da parte aérea e raiz com base nas categorias MAPMAN. C&V = Co-factor and vitamin metabolism; MET/ATP synthesis = mitochondrial electron transport/ATP synthesis; OPP = Oxidative pentose phosphate pathway; TCA = Tricarboxylic acid cycle

 Tabela Suplementar S3 Categorias MAPMAN identificadas na parte aérea e raiz de plantas expostas aos VOCs de G. diazotrophicus

 Pal5

				Shoot	Root
Acesso	Descrição	Descrição Protein ID Local		I Log₂ FC	
1. Photosynth	nesis				
AT1G15820	Chlorophyll a-b binding protein (LHCB6)	Q9LMQ2	Plastid	2,02	-
AT2G05100	Chlorophyll a-b binding protein 2.1 (LHCB2)	Q9SHR7	Plastid	0,66	-
AT5G01530	Chlorophyll a-b binding protein CP29.1 (LHCB4)	Q07473	Plastid	0,90	-
AT1G44575	Photosystem II 22 kDa protein (PSBS)	Q9XF91	Plastid	1,56	-
AT4G05180	Oxygen-evolving enhancer protein 3-2 (PSBQ)	Q41932	Plastid	1,49	-
ATCG00020	Photosystem II protein D1 (PSBA)	P83755	Plastid	0,65	-
ATCG00280	Photosystem II CP43 reaction center protein (PSBC)	P56778	Plastid	1,60	-
ATCG00680	Photosystem II CP47 reaction center protein (PSBB)	P56777	Plastid	4,64	-
AT1G06680	Oxygen-evolving enhancer protein 2-1 (PSBP1)	Q42029	Plastid	-	-0,69
AT5G23120	Photosystem II stability/assembly factor (HCF136)	O82660	Plastid	-0,85	-
AT1G31330	Photosystem I reaction center subunit III (PSAF)	Q9SHE8	Plastid	2,96	-
AT3G16140	Photosystem I reaction center subunit VI-1 (PSAH)	Q9SUI7	Plastid	1,58	-
AT4G12800	Photosystem I reaction center subunit XI (PSAL)	Q9SUI4	Plastid	0,83	-
ATCG00350	Photosystem I P700 chlorophyll a apoprotein A1 (PSAA)	P56766	Plastid	4,06	-
ATCG00720	Cytochrome b6 (PETB)	P56773	Plastid	2,48	-
AT4G04640	ATP synthase gamma chain 1 (ATPC1)	Q01908	Plastid	2,64	-
AT4G32260	ATP synthase beta chain subunit II (PDE334)	Q42139	Plastid	-0,59	-
ATCG00480	ATP synthase beta subunit (atpB)	P19366	Plastid	-	-1,28
AT1G20020	FerredoxinNADP reductase, leaf isozyme 2 (FNR2)	Q8W493	Plastid	2,15	-
AT5G66190	FerredoxinNADP reductase, leaf isozyme 1 (FNR1)	Q9FKW6	Plastid	4,15	-
AT1G70580	Glutamate-glyoxylate aminotransferase 2 (AOAT2)	Q9S7E9	Peroxisome	0,54	-
AT2G13360	Serine-glyoxylate aminotransferase (AGT) ^a	Q56YA5	Peroxisome	1,57	-1,56
AT4G13930	Serine hydroxymethyltransferase 4 (SHM4)	O23254	Mitochondrion	2,06	-
AT4G18360	Glycolate oxidase 3 (GLO5)	O49506	Peroxisome	-	-0,79

Tabela S3,	Cont.				
Acesso	Descrição	Protein ID	Local	Shoot	Root
AT2G26080	Glycine dehydrogenase (decarboxylating) 2 (GLDP2) ^b	O80988	Mitochondrion	1,38	1,03
AT4G33010	Glycine dehydrogenase (decarboxylating) 1 (GLDP1)	Q94B78	Mitochondrion	2,99	-
ATCG00490	Ribulose bisphosphate carboxylase large chain (RBCL)	O03042	Plastid	1,04	-
AT1G12900	Glyceraldehyde-3-phosphate dehydrogenase (GAPA2)	Q9LPW0	Plastid	2,14	-
AT1G42970	Glyceraldehyde-3-phosphate dehydrogenase (GAPB)	P25857	Plastid	1,09	-
AT3G26650	Glyceraldehyde-3-phosphate dehydrogenase (GAPA)	P25856	Plastid	2,16	-
AT4G26530	Fructose-bisphosphate aldolase 5 (FAB5) ^c	O65581	Plastid	-0,69	VOCs Pal5
AT2G45290	Transketolase-2, chloroplastic (TKT2)	F4IW47	Plastid	VOCs Pal5	-
AT3G60750	Transketolase-1, chloroplastic (TKT1)	F4JBY2	Plastid	2,95	-
AT3G12780	Phosphoglycerate kinase 1, chloroplastic (PGK1)	Q9LD57	Plastid	-	-0,62
2. Tetrapyrro	le				
AT5G08280	Porphobilinogen deaminase (HEMC)	Q43316	Plastid	1,03	-
AT1G03475	Coproporphyrinogen-III oxidase 1 (LIN2)	Q9LR75	Plastid	2,54	-
AT4G25080	Magnesium protoporphyrin IX methyltransferase (CHLM)	Q9SW18	Plastid	1,42	-
AT1G03630	Protochlorophyllide reductase C (PORC)	F4I2F8	Plastid	1,60	-
3. Starch syr	thesis				
AT5G19220	Glucose-1-phosphate adenylyltransferase large subunit 1 (APL1)	P55229	Plastid	1,46	-
AT5G48300	Glucose-1-phosphate adenylyltransferase small subunit (ADG1)	P55228	Plastid	1,30	-
4. Cell wall					
AT3G46440	UDP-glucuronic acid decarboxylase 5 (UXS5)	Q9SN95	Cytosol	-	0,78
AT3G51160	GDP-mannose 4,6 dehydratase 2 (MUR1)	P93031	Cytosol	-	1,15
AT1G17890	GDP-L-fucose synthase (GER2)	B9DH36	Cytosol	-	-0,86
AT1G78570	Trifunctional UDP-glucose 4,6-dehydratase (RHM1)	Q9SYM5	Cytosol	-	0,75
AT1G16340	2-dehydro-3-deoxyphosphooctonate aldolase 2 (KDSA2)	Q6NQL4	Extracellular	-	0,59
AT1G79500	2-dehydro-3-deoxyphosphooctonate aldolase 1 (KDSA1)	Q9AV97	Cytosol	-	-0,61
AT2G45470	Fasciclin-like arabinogalactan protein 8 (FLA8)	O22126	Plasma membrane	-	-0,95
AT3G60900	Fasciclin-like arabinogalactan protein 10 (FLA10)	Q9LZX4	Plasma membrane	Control	-
AT5G55730	Fasciclin-like arabinogalactan protein 1 (FLA1)	Q9FM65	Plasma membrane	-1,01	-

Tabela S3, Cont.					
Acesso	Descrição	Protein ID	Local	Shoot	Root
AT4G37800	Probable xyloglucan endotransglucosylase/hydrolase protein 7 (XTH7)	Q8LER3	Extracellular	1,73	-
AT3G14310	Pectinesterase/pectinesterase inhibitor 3 (PME3)	O49006	Extracellular	1,31	-
AT5G20950	Glycosyl hydrolase family protein	Q8W112	Extracellular	-	2,38
AT3G10740	Alpha-L-arabinofuranosidase 1 (ASD1)	Q9SG80	Extracellular	-	-1,09
AT2G45220	Probable pectinesterase/pectinesterase inhibitor 17 (PME17)	O22149	Extracellular	-	0,68
5. Redox stat	e				
AT1G45145	Thioredoxin H5 (TRX5)	Q39241	Cytosol	-	-0,90
AT2G47470	Protein disulfide-isomerase like 2-1 (PDI21)	F4IL52	End. reticulum	-	2,30
AT4G03520	Thioredoxin M2, chloroplastic (TRXM2)	Q9SEU8	Plastid	0,76	-
AT3G48890	Membrane steroid-binding protein 2 (MSBP2)	Q9M2Z4	End. reticulum	-	-1,03
AT5G52240	Membrane steroid-binding protein 1 (MSBP1)	Q9XFM6	End. reticulum	-	-0,75
AT5G53560	Cytochrome b5 isoform E (CYTB5-E)	Q42342	End. reticulum	-	-0,87
AT1G07890	L-ascorbate peroxidase 1 (APX1) ^d	Q05431	Cytosol	2,21	0,70
AT1G63940	Monodehydroascorbate reductase (MDAR5)	P92947	Plastid	0,85	
AT3G52880	Monodehydroascorbate reductase 1 (MDAR1)	Q9LFA3	Peroxisome	1,65	
AT1G19570	Glutathione S-transferase (DHAR1)	Q9FWR4	Peroxisome	-	-1,45
AT1G75270	Glutathione S-transferase (DHAR2)	Q9FRL8	Cytosol	-	-0,81
AT3G24170	Glutathione reductase (GR)	P48641	Peroxisome	-	1,53
AT4G11600	Phospholipid hydroperoxide glutathione peroxidase 6 (GPX6)	O48646	Mitochondrion	-	-1,92
AT4G23100	Glutamate-cysteine ligase (GSH1)	P46309	Plastid	-	1,24
AT1G65970	Peroxiredoxin-2C (PRX2C)	Q9SRZ4	Cytosol	-	-0,85
AT3G11630	2-Cys peroxiredoxin (BAS1)	Q96291	Plastid	-	-1,64
AT1G08830	Superoxide dismutase [Cu-Zn] 1 (CSD1)	P24704	Cytosol	-	-1,63
AT3G10920	Superoxide dismutase [Mn] 1 (MSD1)	O81235	Mitochondrion	1,07	-
AT4G25100	Superoxide dismutase [Fe] 1 (FSD1)	P21276	Plastid	1,66	-
6. Peroxidase	es				
AT1G71695	Peroxidase 12 (PER12)	Q96520	Extracellular	-0,92	-
AT3G49110	Peroxidase 33 (PER33)	P24101	Extracellular	1,81	-

Tapela 33, CON	Та	bela	S3.	Con
----------------	----	------	-----	-----

Tabela S3, Cont.							
Acesso	Descrição	Protein ID	Local	Shoot	Root		
AT4G08780	Peroxidase 38 (PER38)	Q9LDA4	Extracellular	-	0,92		
AT4G26010	Peroxidase 44 (PER44)	Q93V93	Extracellular	-	1,72		
AT4G30170	Peroxidase 45 (PER45)	Q96522	Extracellular	-	1,44		
AT5G17820	Peroxidase 57 (PER57)	Q43729	Extracellular	-	1,09		
AT5G64120	Peroxidase 71 (PER71) ^e	Q43387	Extracellular	-1,38	-1,56		
AT5G67400	Peroxidase 73 (PER73)	Q43873	Extracellular	-	VOCs Pal5		
7. Glutathion	e S-transferases						
AT1G02930	Glutathione S-transferase F6 (GSTF6)	P42760	Cytoplasm	-	-0,93		
AT1G27130	Glutathione S-transferase U13 (GSTU13)	Q9FUS6	Cytoplasm	-	-0,84		
AT1G78370	Glutathione S-transferase U20 (GSTU20)	Q8L7C9	Peroxisome	3,40	-		
AT2G02930	Glutathione S-transferase F3 (GSTF3)	Q9SLM6	End. reticulum	-	Control		
AT2G30860	Glutathione S-transferase F9 (GSTF9)	O80852	Cytosol	2,22	-		
AT2G47730	Glutathione S-transferase F8 (GSTF8) ^f	Q96266	Plastid	1,14	-1,08		
AT4G19880	Glutathione S-transferase family protein	F4JU04	Plastid	-	0,65		
8. Signaling							
AT3G02880	Probable inactive receptor kinase	Q9M8T0	Cell membrane		-0,69		
AT1G12310	Probable calcium-binding protein (CML13)	Q94AZ4	Cytosol	-	-0,67		
AT1G56340	Calreticulin-1 (CRT1) ^g	O04151	End. reticulum	0,91	1,09		
AT4G02080	GTP-binding protein (SAR1A)	O04834	Plasma membrane	1,73	-		
AT5G21274	Calmodulin-6	Q03509	Cell membrane	-	Control		
AT2G44100	Guanosine nucleotide diphosphate dissociation inhibitor 1(GDI1)	Q96254	Cytosol	-	1,50		
AT3G46060	Ras-related protein (RABE1c)	P28186	Plasma membrane	-	-0,68		
AT3G59920	Guanosine nucleotide diphosphate dissociation inhibitor 2 (GDI2)	O24653	Cytosol	-	1,53		
AT3G62560	Putative Sar1 GTP binding protein	Q8VYP7	End. reticulum		0,80		
AT4G20360	Elongation factor Tu (TUFA)	P17745	Plastid	1,07	-		
AT4G35860	Ras-related protein (RABB1b)	Q38922	Cell membrane	-	-0,62		
AT5G20010	GTP-binding nuclear protein Ran-1 (RAN1) ^h	P41916	Cytosol	2,44	1,29		
AT1G78300	14-3-3-like protein GF14 (GRF2)	Q01525	Cytosol	-	-0,78		
Tabela S3, Cont.							
------------------	--	------------	----------------	-------	-------	--	--
Acesso	Descrição	Protein ID	Local	Shoot	Root		
AT4G09000	14-3-3-like protein GF14 (GRF1)	P42643	Cytosol	0,82	-		
9. Resistant-	and Pathogenesis Related-Proteins						
AT4G11190	Dirigent protein 13 (DIR13)	Q9T017	Extracellular	-	0,92		
AT4G11210	Dirigent protein 14 (DIR14)	Q9T019	Extracellular	-	1,34		
AT3G04720	Hevein-like preproprotein (HEL)	2627,88	Extracellular	-	-1,00		
AT4G11650	Osmotin-like protein (OSM34)	8834,83	Extracellular	-	-1,09		
AT1G73260	Kunitz trypsin inhibitor 4 (KTI4)	14551,02	Extracellular	-	-1,14		
AT2G01520	MLP-like protein 328 (MLP328)	15327,86	Cytosol	-	-0,72		
AT2G01530	MLP-like protein 329 (MLP329)	11732,85	Cytosol	-	-0,82		
AT4G19810	Class V chitinase (CHIC)	41299,18	Extracellular	-	-1,29		
AT1G18970	Germin-like protein subfamily T member 1 (GLP1)	777,53	Extracellular	-	-0,80		
AT5G17330	Germin-like protein subfamily T member 2 (GLP2)	6342,15	Extracellular	-	0,76		
10. Hormone	signaling						
AT3G45140	Lipoxygenase 2, chloroplastic (LOX2)	P38418	Plastid	2,66	-		
AT1G60680	Probable aldo-keto reductase 2 (AGD2)	Q84M96	Cytosol	-	0,83		
AT2G25450	Probable 2-oxoacid dependent dioxygenase (GSL-OH)	Q9SKK4	Golgi	-	-0,92		
AT3G13610	FeruloyI CoA ortho-hydroxylase 1 (F6'H1)	Q9LHN8	Peroxisome	-	-1,36		
AT1G05010	1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4)	Q06588	Golgi	-	0,98		
AT1G13280	Allene oxide cyclase 4 (AOC4)	Q93ZC5	Plastid	-	-0,6		
AT1G76680	12-oxophytodienoate reductase 1 (OPR1)	Q8LAH7	Cytosol	-	-1,21		
11. Seconda	y metabolites						
AT1G63970	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (ISPF)	Q9CAK8	Plastid	0,91	-		
AT1G74920	Betaine aldehyde dehydrogenase 1 (ALDH10A8)	Q9S795	Cytosol	0,83	-		
AT1G48850	Chorismate synthase (EMB1144)	F4I032	Plastid	-	0,85		
AT4G15390	HSR201-like protein	O23392	Cytosol	-	1,11		
AT3G10340	Phenylalanine ammonia-lyase 4 (PAL4)	Q9SS45	Cytosol	-	0,81		
AT2G30490	Trans-cinnamate 4-monooxygenase (C4H)	P92994	End. reticulum	-	1,34		
AT3G19450	Cinnamyl alcohol dehydrogenase 4 (CAD4)	P48523	Cytosol	-0,93	-		

Tabela S3,	Cont.				
Acesso	Descrição	Protein ID	Local	Shoot	Root
AT3G55120	Chalcone-flavanone isomerase 1 (CHI1)	P41088	End. reticulum	-	-1,47
AT5G63600	Probable flavonol synthase 5 (FLS5)	Q9FFQ4	Cytosol	-	-0,75
AT5G47720	Probable acetyl-CoA acetyltransferase	Q9FIK7	Peroxisome	-	-0,84
AT5G48230	Acetyl-CoA acetyltransferase (AAT1)	Q8S4Y1	Peroxisome	-1,43	-
AT3G58990	3-isopropylmalate dehydratase small subunit 3 (SSU3)	Q9LYT7	Plastid	-	Control
AT2G33070	Nitrile-specifier protein 2 (NSP2)	O49326	Cytosol	-	1,62
AT3G44300	Nitrilase 2 (NIT2)	P32962	Cytosol	-	-0,94
AT3G44310	Nitrilase 1 (NIT1)	P32961	Cytosol	1,10	-
12. Proteolys	is				
AT1G63770	Puromycin-sensitive aminopeptidase (MPA1)	Q8H0S9	Plastid	-	2,50
AT1G79340	Metacaspase-4 (AMC4)	O64517	Cytosol	-	-0,74
AT4G30910	Leucine aminopeptidase 3 (LAP3)	Q8RX72	Plastid	-	Control
AT5G10540	Probable cytosolic oligopeptidase A (CYOP)	Q949P2	Cytosol	-	2,62
AT1G32940	Subtilisin-like protease (SBT3.5)	A0A1P8ASH5	Extracellular	-	-1,40
AT3G14067	Subtilisin-like protease (SBT1.4)	Q9LVJ1	Extracellular	-	-0,89
AT5G59090	Subtilisin-like protease (SBT4.12)	F4KHS2	Extracellular	-	2,47
AT1G47128	Cysteine proteinase (RD21A)	P43297	Extracellular	-1,03	-
AT3G45310	Thiol protease aleurain-like	F4J5J9	Extracellular	-	-0,98
AT1G03220	Eukaryotic aspartyl protease family protein	Q9ZVS4	Extracellular	-0,81	
AT1G03230	Eukaryotic aspartyl protease family protein	Q9ZVS5	Extracellular	-0,64	
AT1G50250	ATP-dependent zinc metalloprotease (FTSH1)	Q39102	Plastid	2,78	
AT5G42270	ATP-dependent zinc metalloprotease (FTSH5)	Q9FH02	Plastid	3,75	
AT1G55060	Polyubiquitin 12 (UBQ12)	Q3E7K8	Cytosol	-	VOCs Pal5
AT3G09790	Polyubiquitin 8 (UBQ8) ⁱ	Q39256	Cytosol	0,84	1,50
AT5G37640	Polyubiquitin 9 (UBQ9)	Q9FHQ6	Nucleus	-	1,43
AT1G77440	Proteasome subunit beta type-3-B (PBC2)	O81153	Nucleus	-	0,65
AT2G27020	Proteasome subunit alpha type-3 (PAG1)	O23715	Nucleus	-	1,36
AT3G05530	26S proteasome regulatory subunit 6A homolog A (RPT5A)	Q9SEI2	Nucleus	-	1,22

Tabela S3,	Cont				
Acesso	Descrição	Protein ID	Local	Shoot	Root
AT3G22630	Proteasome subunit beta type-2-A (PBD1)	O23714	Nucleus	-	-0,93
AT4G31300	Proteasome subunit beta type-6 (PBA1)	Q8LD27	Cytosol	-0,77	-
AT4G38630	26S proteasome non-ATPase regulatory subunit 4 homolog (RPN10)	P55034	Cytosol	-0,71	-
AT5G23540	26S proteasome non-ATPase regulatory subunit 14 homolog (RPN11)	A8MR12	Nucleus	-	0,70
AT5G58290	26S proteasome regulatory subunit 6B homolog (RPT3)	Q9SEI4	Nucleus	-	1,14
AT5G66140	Proteasome subunit alpha type-7-B (PAD2)	O24616	Nucleus	-	VOCs Pal5
13. Abiotic st	ress				
AT1G16030	Heat shock 70 kDa protein 5 (HSP70-5)	Q9S9N1	Cytosol	1,28	-
AT1G56410	Heat shock 70 kDa protein 18 (HSP70-18)	Q9C7X7	Plastid	1,30	-
AT1G79930	Heat shock 70 kDa protein 14 (HSP70-14)	Q9S7C0	Cytosol	-	1,00
AT3G09440	Heat shock 70 kDa protein 3 (HSP70-3)	O65719	Cytosol	2,69	-
AT4G02450	Co-chaperone protein (P23-1)	F4JHJ0	Cytosol	-0,81	-
AT4G37910	Heat shock 70 kDa protein 9 (HSP70-9)	Q8GUM2	Mitochondrion	0,61	-
AT5G02490	Heat shock 70 kDa protein 2 (HSP70-2)	P22954	Cytosol	-	VOCs Pal5
AT5G02500	Heat shock cognate protein 70-1 (HSP70-1)	F4KCE5	Cytosol	2,25	-
AT5G09590	Heat shock 70 kDa protein 10 (HSP70-10) ^j	Q9LDZ0	Mitochondrion	0,85	0,63
AT5G42020	Heat shock 70 kDa protein (BIP2)	Q39043	End. reticulim	-	2,85
AT5G56000	Heat shock protein 90-4 (HSP90-4)	O03986	Cytosol	-	VOCs Pal5
AT5G63860	Ultraviolet-B receptor (UVR8) ^k	Q9FN03	Cytosol	-1,11	-0,61

End. reticulum = endoplasmic reticulum; Control = Proteínas identificadas apenas nas plantas controle (Unique_Control [Down]); VOCs Pal5 = proteínas identificadas apenas nas plantas tratadas (Unique_VOCs Pal5 [Up]); FC = Fold change

Tabela Suplementar S4 Caracterização das proteínas de fotossíntese identificadas na análise MAPMAN das plantas expostas aos VOCs de *G. diazotrophicus* Pal5

Araport	Descrição	Protein ID	Local	Log₂ FC
1. Photosynthes	sis			
Photosystem II	- Antenna proteins			
AT1G15820	Chlorophyll a-b binding protein (LHCB6)	Q9LMQ2	Plastid	2,02
AT2G05100	Chlorophyll a-b binding protein 2.1 (LHCB2)	Q9SHR7	Plastid	0,66
AT5G01530	Chlorophyll a-b binding protein CP29.1 (LHCB4)	Q07473	Plastid	0,90
Photosystem II	- Reaction center			
AT1G44575	Photosystem II 22 kDa protein (PSBS)	Q9XF91	Plastid	1,56
AT4G05180	Oxygen-evolving enhancer protein 3-2 (PSBQ)	Q41932	Plastid	1,49
ATCG00020	Photosystem II protein D1 (PSBA)	P83755	Plastid	0,65
ATCG00280	Photosystem II CP43 reaction center protein (PSBC)	P56778	Plastid	1,60
ATCG00680	Photosystem II CP47 reaction center protein (PSBB)	P56777	Plastid	4,64
Photosystem II	- Biogenesis			
AT5G23120	Photosystem II stability/assembly factor (HCF136)	O82660	Plastid	-0,85
Photosystem I -	Reaction center			
AT1G31330	Photosystem I reaction center subunit III (PSAF)	Q9SHE8	Plastid	2,96
AT3G16140	Photosystem I reaction center subunit VI-1 (PSAH)	Q9SUI7	Plastid	1,58
AT4G12800	Photosystem I reaction center subunit XI (PSAL)	Q9SUI4	Plastid	0,83
ATCG00350	Photosystem I P700 chlorophyll a apoprotein A1 (PSAA)	P56766	Plastid	4,06
Cytochrome				
ATCG00720	Cytochrome b6 (PETB)	P56773	Plastid	2,48
ATP synthase				
AT4G04640	ATP synthase gamma chain 1 (ATPC1)	Q01908	Plastid	2,64
AT4G32260	ATP synthase beta chain subunit II (PDE334)	Q42139	Plastid	-0,59
Electron carrier				
AT1G20020	FerredoxinNADP reductase, leaf isozyme 2 (FNR2)	Q8W493	Plastid	2,15
AT5G66190	FerredoxinNADP reductase, leaf isozyme 1 (FNR1)	Q9FKW6	Plastid	4,15

	Т	abe	la	S4 ,	Cont.
--	---	-----	----	-------------	-------

Descrição	Protein ID	Local	Log₂ FC
1			
Glutamate-glyoxylate aminotransferase 2 (AOAT2)	Q9S7E9	Peroxisome	-0,90
Serine-glyoxylate aminotransferase (AGT)	Q56YA5	Peroxisome	0,65
Serine hydroxymethyltransferase 4 (SHM4)	O23254	Mitochondrion	2,06
Glycine dehydrogenase (decarboxylating) 2 (GLDP2)	O80988	Mitochondrion	1,38
Glycine dehydrogenase (decarboxylating) 1 (GLDP1)	Q94B78	Mitochondrion	2,99
Ribulose bisphosphate carboxylase large chain (RBCL)	O03042	Plastid	1,04
Glyceraldehyde-3-phosphate dehydrogenase (GAPA2)	Q9LPW0	Plastid	2,14
Glyceraldehyde-3-phosphate dehydrogenase (GAPB)	P25857	Plastid	1,09
Glyceraldehyde-3-phosphate dehydrogenase (GAPA)	P25856	Plastid	2,16
Fructose-bisphosphate aldolase 5 (FAB5)	O65581	Plastid	-0,69
Transketolase-2, chloroplastic (TKT2)	F4IW47	Plastid	VOCs Pal5
Transketolase-1, chloroplastic (TKT1)	F4JBY2	Plastid	2,95
Porphobilinogen deaminase (HEMC)	Q43316	Plastid	1,03
Coproporphyrinogen-III oxidase 1 (LIN2)	Q9LR75	Plastid	2,54
Magnesium protoporphyrin IX methyltransferase (CHLM)	Q9SW18	Plastid	1,42
Protochlorophyllide reductase C (PORC)	F4I2F8	Plastid	1,60
ydrates			
Glucose-1-phosphate adenylyltransferase large subunit 1 (APL1)	P55229	Plastid	1,46
Glucose-1-phosphate adenylyltransferase small subunit (ADG1)	P55228	Plastid	1,30
	Descrição ⁷ Glutamate-glyoxylate aminotransferase 2 (AOAT2) Serine-glyoxylate aminotransferase 4 (SHM4) Glycine dehydrogenase (decarboxylating) 2 (GLDP2) Glycine dehydrogenase (decarboxylating) 1 (GLDP1) Glycine dehydrogenase (decarboxylating) 1 (GLDP1) Ribulose bisphosphate carboxylase large chain (RBCL) Glyceraldehyde-3-phosphate dehydrogenase (GAPA2) Glyceraldehyde-3-phosphate dehydrogenase (GAPB) Glyceraldehyde-3-phosphate dehydrogenase (GAPA) Fructose-bisphosphate aldolase 5 (FAB5) Transketolase-2, chloroplastic (TKT2) Transketolase-1, chloroplastic (TKT1) Porphobilinogen deaminase (HEMC) Coproporphyrinogen-III oxidase 1 (LIN2) Magnesium protoporphyrin IX methyltransferase (CHLM) Protochlorophyllide reductase C (PORC) ydrates Glucose-1-phosphate adenylyltransferase large subunit 1 (APL1) Glucose-1-phosphate adenylyltransferase small subunit (ADG1)	DescriçãoProtein IDGlutamate-glyoxylate aminotransferase 2 (AOAT2)Q9S7E9Serine-glyoxylate aminotransferase (AGT)Q56YA5Serine hydroxymethyltransferase 4 (SHM4)O23254Glycine dehydrogenase (decarboxylating) 2 (GLDP2)O80988Glycine dehydrogenase (decarboxylating) 1 (GLDP1)Q94B78Ribulose bisphosphate carboxylase large chain (RBCL)O03042Glyceraldehyde-3-phosphate dehydrogenase (GAPA2)Q9LPW0Glyceraldehyde-3-phosphate dehydrogenase (GAPA)P25857Glyceraldehyde-3-phosphate dehydrogenase (GAPA)P25856Fructose-bisphosphate aldolase 5 (FAB5)O65581Transketolase-2, chloroplastic (TKT2)F4IW47Transketolase-1, chloroplastic (TKT1)F4JBY2Porphobilinogen deaminase (HEMC)Q43316Coproporphyrinogen-III oxidase 1 (LIN2)Q9LR75Magnesium protoporphyrin IX methyltransferase (CHLM)Q9SW18Protochlorophyllide reductase C (PORC)F4I2F8ydratesGlucose-1-phosphate adenylyltransferase large subunit 1 (APL1)P55229Glucose-1-phosphate adenylyltransferase small subunit (ADG1)P55228	DescriçãoProtein IDLocalGlutamate-glyoxylate aminotransferase 2 (AOAT2)Q9S7E9PeroxisomeSerine-glyoxylate aminotransferase (AGT)Q56YA5PeroxisomeSerine-glyoxylate aminotransferase 4 (SHM4)O23254MitochondrionGlycine dehydrogenase (decarboxylating) 2 (GLDP2)O80988MitochondrionGlycine dehydrogenase (decarboxylating) 1 (GLDP1)Q94B78MitochondrionRibulose bisphosphate carboxylase large chain (RBCL)O03042PlastidGlyceraldehyde-3-phosphate dehydrogenase (GAPA2)Q9LPW0PlastidGlyceraldehyde-3-phosphate dehydrogenase (GAPA)P25857PlastidGlyceraldehyde-3-phosphate dehydrogenase (GAPA)P25856PlastidFructose-bisphosphate aldolase 5 (FAB5)O65581PlastidTransketolase-2, chloroplastic (TKT2)F4IW47PlastidPorphobilinogen deaminase (HEMC)Q43316PlastidCoproporphyrinogen-III oxidase 1 (LIN2)Q9LR75PlastidMagnesium protoporphyrin IX methyltransferase (CHLM)Q9SW18PlastidProtochlorophylide reductase C (PORC)F412F8PlastidydratesGlucose-1-phosphate adenylyltransferase large subunit 1 (APL1)P55229PlastidGlucose-1-phosphate adenylyltransferase small subunit (ADG1)P55228Plastid

Control = Proteínas identificadas apenas nas plantas controle (Unique_Control [Down]); VOCs Pal5 = proteínas identificadas apenas nas plantas tratadas (Unique_VOCs Pal5 [Up]); FC = Fold change

Tabela Suplementar S5 Caracterização das proteínas de resposta ao estresse biótico identificadas na análise MAPMAN de raiz de plantas expostas aos VOCs de *G. diazotrophicus* Pal5

Araport	Descrição	Protein ID	Local	Log ₂ FC
1. Cell wall ren	nodelation			
Shikimate path	nway			
AT1G48850	Chorismate synthase (EMB1144)	F4I032	Plastid	0,85
Phenylpropano	pids pathway			
AT3G10340	Phenylalanine ammonia-lyase 4 (PAL4)	Q9SS45	Cytosol	0,81
AT2G30490	Trans-cinnamate 4-monooxygenase (C4H)	P92994	Endoplasmic reticulum	1,34
AT3G24503	Aldehyde dehydrogenase family 2 member C4 (ALDH2C4)	Q56YU0	Cytosol	-0,84
AT4G08780	Peroxidase 38 (PER38)	Q9LDA4	Extracellular	0,92
AT4G26010	Peroxidase 44 (PER44)	Q93V93	Extracellular	1,72
AT4G30170	Peroxidase 45 (PER45)	Q96522	Extracellular	1,44
AT5G17820	Peroxidase 57 (PER57)	Q43729	Extracellular	1,09
AT5G64120	Peroxidase 71 (PER71)	Q43387	Extracellular	-1,56
AT5G67400	Peroxidase 73 (PER73)	Q43873	Extracellular	VOCs Pal5
Dirigent proteil	กร			
AT4G11190	Dirigent protein 13 (DIR13)	Q9T017	Extracellular	0,92
AT4G11210	Dirigent protein 14 (DIR14)	Q9T019	Extracellular	1,34
Precursor synt	thesis			
AT3G46440	UDP-glucuronic acid decarboxylase 5 (UXS5)	Q9SN95	Cytosol	0,78
AT3G51160	GDP-mannose 4,6 dehydratase 2 (MUR1)	P93031	Cytosol	1,15
AT1G17890	GDP-L-fucose synthase (GER2)	B9DH36	Cytosol	-0,86
AT1G78570	Trifunctional UDP-glucose 4,6-dehydratase (RHM1)	Q9SYM5	Cytosol	0,75
AT1G16340	2-dehydro-3-deoxyphosphooctonate aldolase 2 (KDSA2)	Q6NQL4	Extracellular	0,59
AT1G79500	2-dehydro-3-deoxyphosphooctonate aldolase 1 (KDSA1)	Q9AV97	Cytosol	-0,61
Degradation				
AT5G20950	Beta-D-glucan exohydrolase-like protein (BGLC1)	Q8W112	Extracellular	2,38
AT1G68560	Alpha-xylosidase 1 (XYL1)	Q9S7Y7	Extracellular	0,93

Tabela S5, (Cont.			
Araport	Descrição	Protein ID	Local	Log ₂ FC
AT3G10740	Alpha-L-arabinofuranosidase 1 (ASD1)	Q9SG80	Extracellular	-1,09
AT2G45220	Probable pectinesterase/pectinesterase inhibitor 17 (PME17)	O22149	Extracellular	0,68
2. Detoxificati	on			
SOD				
AT1G08830	Superoxide dismutase [Cu-Zn] 1 (CSD1)	P24704	Cytosol	-1,63
APX				
AT1G07890 <i>DHAR</i>	L-ascorbate peroxidase 1 (APX1)	Q05431	Cytosol	0,70
AT1G19570	Glutathione S-transferase (DHAR1)	Q9FWR4	Peroxisome	-1,45
AT1G75270 <i>GR</i>	Glutathione S-transferase (DHAR2)	Q9FRL8	Cytosol	-0,81
AT3G24170 <i>GSH</i>	Glutathione reductase (GR)	P48641	Peroxisome	1,53
AT4G23100 <i>GPX</i>	Glutamate-cysteine ligase (GSH1)	P46309	Plastid	1,24
AT4G11600 <i>GST</i>	Phospholipid hydroperoxide glutathione peroxidase 6 (GPX6)	O48646	Mitochondrion	-1,92
AT2G02930	Glutathione S-transferase F3 (GSTF3)	Q9SLM6	Endoplasmic reticulum	Control
AT1G02930	Glutathione S-transferase F6 (GSTF6)	P42760	Cytosol	-0,93
AT2G47730	Glutathione S-transferase F8 (GSTF8)	Q96266	Plastid	-1,08
AT1G27130	Glutathione S-transferase U13 (GSTU13)	Q9FUS6	Plasma membrane	-0,84
AT4G19880 <i>TRX</i>	Glutathione S-transferase family protein	F4JU04	Plastid	0,65
AT1G45145	Thioredoxin H5 (TRX5)	Q39241	Cytosol	-0,90
AT2G47470	Protein disulfide-isomerase like 2-1 (PDI21)	F4IL52	Endoplasmic reticulum	2,30
AT1G65970	Peroxiredoxin-2C (PRX2C)	Q9SRZ4	Cytosol	-0,85
AT3G11630	2-Cys peroxiredoxin (BAS1)	Q96291	Plastid	-1,64

Tabela	S5 ,	Cont.
--------	-------------	-------

Araport	Descrição	Protein ID	Local	Log₂ FC
3. Defense res	ponses			
Receptor kinas	se			
AT3G02880	Probable inactive receptor kinase	Q9M8T0	Cell membrane	-0,69
Signaling				
AT5G20010	GTP-binding nuclear protein (RAN1)	P41916	Cytoplasm	1,29
AT1G56340	Calreticulin-1 (CRT1)	O04151	Endoplasmic reticulum	1,09
AT5G21274	Calmodulin-6	Q03509	Cell membrane	Control
Pathogenesis	related (PR) protein			
AT3G04720	Hevein-like preproprotein (HEL)	P43082	Extracellular	-1,00
AT4G11650	Osmotin-like protein (OSM34)	P50700	Extracellular	-1,09
AT1G73260	Kunitz trypsin inhibitor 4 (KTI4)	Q8RXD5	Extracellular	-1,14
AT2G01520	MLP-like protein 328 (MLP328)	Q9ZVF3	Cytosol	-0,72
AT2G01530	MLP-like protein 329 (MLP329)	Q9ZVF2	Cytosol	-0,82
AT4G19810	Class V chitinase (CHIC)	O81862	Extracellular	-1,29
AT1G18970	Germin-like protein subfamily T member 1 (GLP1)	P92995	Extracellular	-0,80
AT5G17330	Germin-like protein subfamily T member 2 (GLP2)	Q9LMC9	Extracellular	0,76

Control = Proteínas identificadas apenas nas plantas controle (Unique_Control [Down]); VOCs Pal5 = proteínas identificadas apenas nas plantas tratadas (Unique_VOCs Pal5 [Up]); FC = Fold change