DESENVOLVIMENTO DE UM ATLAS DE MARCADORES SNAPs ASSOCIADOS A QTLs VISANDO A SELEÇÃO ASSISTIDA POR MARCADORES EM *Carica papaya* L.

DIEIMES BOHRY

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO – UENF

> CAMPOS DOS GOYTACAZES - RJ FEVEREIRO - 2018

DESENVOLVIMENTO DE UM ATLAS DE MARCADORES SNAPS ASSOCIADOS A QTLs VISANDO A SELEÇÃO ASSISTIDA POR MARCADORES EM *Carica papaya* L.

DIEIMES BOHRY

"Dissertação apresentada ao Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Mestre em Genética e Melhoramento de Plantas"

Orientador: Prof^a. Helaine Christine Cancela Ramos

CAMPOS DOS GOYTACAZES - RJ FEVEREIRO - 2018

FICHA CATALOGRÁFICA

Preparada pela Biblioteca do CCH / UENF

060/2018

B677 Bohry, Dieimes.

Desenvolvimento de um atlas de marcadores SNAPs associados a QTLs visando a seleção assistida por marcadores em *Carica papaya* L. / Dieimes Bohry. – Campos dos Goytacazes, RJ, 2018.

167 f. : il. Bibliografia: 82 – 89.

Dissertação (Mestrado em Genética e Melhoramento de Plantas) – Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Ciências e Tecnologias Agropecuárias, 2018.

Orientador: Helaine Christine Cancela Ramos.

1. Mamoeiro – Melhoramento Genético. 2. SAM. 3. SNAP. 4. Anotação Gênica. I. Universidade Estadual do Norte Fluminense Darcy Ribeiro. II. Título.

CDD - 634.651

DESENVOLVIMENTO DE UM ATLAS DE MARCADORES SNAPs ASSOCIADOS A QTLs VISANDO A SELEÇÃO ASSISTIDA POR MARCADORES EM Caricapapaya L.

DIEIMES BOHRY

"Dissertação apresentada ao Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Mestre em Genética e Melhoramento de Plantas."

Aprovado em 27 de fevereiro de 2018.

Comissão Examinadora:

Prof.ª Marcia Flores da Silva Ferreira (D.Sc., Genética e Melhoramento) - UFES

Fernanda Abreu Gantana Arides

Dr^a. Fernanda Abreu Santana Arêdes (D.Sc., Genética e Melhoramento) - UENF

Prof. Messias Gonzaga Pereira (Ph.D., Plant Breeding) - UENF

Prof.ª Helaine Christine Cancela Ramos (D.Sc., Genética e Melhoramento de

Plantas) - UENF (Orientadora)

AGRADECIMENTOS

A Deus, pela vida, saúde e proteção;

Aos meus pais, Reginaldo e Claudia, por todo amor, carinho e dedicação durante esta caminhada e por toda a vida;

Aos meus irmãos, Lucas e Vinicius, pela amizade e companheirismo;

À minha namorada, Erica pela compreensão, apoio, incentivo e por me acompanhar durante esta caminhada;

À Universidade Estadual do Norte Fluminense Darcy Ribeiro e ao Programa de Pós-Graduação em Genética e Melhoramento de Plantas, pela oportunidade de qualificação;

À Faperj, pelo financiamento do projeto e da bolsa;

À professora Helaine, pela excelente orientação durante esse processo e pela oportunidade de trabalhar nesta área que sempre me despertou tanto interesse;

Aos meus conselheiros, professor Messias Gonzaga Pereira e professor Alexandre Pio Viana, pelas contribuições, sugestões e apoio no desenvolvimento deste trabalho;

Aos demais professores do Programa de Genética e Melhoramento de Plantas, por fazer parte da minha formação;

ii

Ao professor, Thiago Motta Venâncio, do setor de bioinformática da UENF e ao Dr. Pedro Henrique Santos, pelos ensinamentos que foram fundamentais para a execução desse trabalho;

À Dr^a. Fernanda Abreu e à professora Marcia Flores, por participarem da banca de defesa da dissertação;

À professora, Ana Paula Candido Gabriel Berilli do IFES — *Campus* Itapina, por ter sido minha orientadora de IC na graduação e pelos valiosos ensinamentos que impulsionaram a escolha dessa área de pesquisa;

À Dr^a. Marcela Boechat do LMGV, pela amizade e ajuda essenciais a este trabalho na parte de Biologia Molecular;

À minha equipe e amigos, Adriana, Daniel, Grazi e Rafaela, pelas discussões e contribuições;

A todos os meus familiares pelo apoio e carinho, em especial para meus avós, Miguel e Maria;

Aos meus amigos Gabriel, Luana, Samuel, Valter e a todos os amigos não aqui citados, mas que tornaram esses dois anos de estudo mais divertidos e agradáveis.

SUMÁRIO

LISTA DE TABELAS	viii
LISTA DE FIGURAS	xi
RESUMO	XV
ABSTRACT	xvii
1. INTRODUÇÃO	1
2. OBJETIVOS	4
3. REVISÃO DE LITERATURA	5
3.1. Aspectos gerais da cultura	5
3.2. Importância econômica da cultura	7
3.3. Genômica do mamoeiro	8
3.4. Melhoramento genético do mamoeiro	8
3.5. Marcadores moleculares no melhoramento	11
3.6. Polimorfismo de única base amplificado (SNAP)	13
3.7. Seleção assistida por marcadores moleculares (SAM)	16
4. MATERIAL E MÉTODOS	18
4.2. Desenvolvimento dos marcadores SNAP	20
4.3. Validação dos marcadores SNAP	22

4.3.1. Preparo dos marcadores SINAPS23
4.3.2. Extração e preparo do DNA genômico23
4.3.3. Gradiente de temperatura24
4.3.4. Validação dos SNAPs em <i>singleplex</i> e <i>multiplex</i> 25
4.3.5. Eletroforese26
4.4. Anotação de genes candidatos26
5. RESULTADOS E DISCUSSÕES28
5.1. Identificação dos SNPs associados a QTLs28
5.1.1. Características relacionadas à qualidade dos frutos
5.1.2. Características relacionadas à produtividade41
5.2. Desenvolvimento dos marcadores moleculares SNAPs53
5.3. Validação dos marcadores SNAPs61
5.4. Anotação de genes candidatos74
6. CONCLUSÕES81
REFERÊNCIAS BIBLIOGRÁFICAS82
APÊNDICES90
APÊNDICES

APÊNDICE G — SNAPs para QTLs identificados em população segregante (F ₂) de mamão para peso de frutos (PESO)109
APÊNDICE H — SNAPs para QTLs identificados em população segregante (F ₂) de mamão para número de frutos totais (NFT)111
APÊNDICE I — SNAPs para QTLs identificados em população segregante (F2) de mamão para número de frutos comerciais (NFC)115
APÊNDICE J — SNAPs para QTLs identificados em população segregante (F ₂) de mamão para número de frutos deformados (NFD)118
APÊNDICE K — SNAPs para QTLs identificados em população segregante (F ₂) de mamão para número de nós sem fruto (NNSF)119
APÊNDICE L — SNAPs para QTLs identificados em população segregante (F ₂) de mamão para diâmetro do caule (DC)122
APÊNDICE M — SNAPs para QTLs identificados em população segregante (F ₂) de mamão para altura de plantas (AP)124
APÊNDICE N — SNAPs para QTLs identificados em população segregante (F ₂) de mamão para produção (PROD)130
APÊNDICE O — Genes identificados em uma região de 434 kpb em relação ao SNP 9_366188_LG5, associado ao QTL TSS_11_8@50.0 (%Var = 15,30) identificado em população segregante F ₂ de mamão
APÊNDICE P — Genes identificados em uma região de 400 kpb em relação ao SNP 163_297115_LG4, associado ao QTL FE_4_2@350.0 (%Var = 22,28) identificado em população segregante F ₂ de mamão136
APÊNDICE Q — Genes identificados em uma região de 400 kpb em relação ao SNP 14_1604543_LG1, associado ao QTL FI_14_10@17.5 (%Var = 17,89) identificado em população segregante F ₂ de mamão137
APÊNDICE R — Genes identificados em uma região de 25,7 kpb em relação ao SNP 731_3422_Un, associado ao QTL FE_13_8@127.5 (%Var = 22,00) identificado em população segregante F_2 de mamão
APÊNDICE S — Genes identificados em uma região de 18,5 kpb em relação ao SNP 1183_495_Un, associado ao QTL ESP_2_4@112.5 (%Var = 20,03) identificado em população segregante F ₂ de mamão138

APÊNDICE X — Genes identificados em uma região de 400 kpb em relação ao SNP 79_225223_LG2, associado ao QTL NNSF_2_1@303.8 (%Var = 16,38) identificado em população segregante F_2 de mamão142

APÊNDICE AA — Genes identificados em uma região de 467,6 kpb em relação ao SNP 157_169542_LG6, associado ao QTL DC_6_4@152.5 (%Var = 17,65) identificado em população segregante F₂ de mamão144

APÊNDICE BB — Genes identificados em uma região de 292 kpb em relação ao SNP 27_92703_LG7, associado ao QTL DC_7_5@285.0 (%Var = 24,38) identificado em população segregante F₂ de mamão145

APÊNDICE CC — Genes identificados em uma região de 400 kpb em relação ao SNP 126_371146_Un, associado ao QTL AP_15_5@230.6 (%Var = 22,02) identificado em população segregante F₂ de mamão146

LISTA DE TABELAS

Tabela 1 — QTLs e SNPs utilizados para desenho e validação dos SNAPs23
Tabela 2 — Gradiente de temperatura para SNAPs24
Tabela 3 — Número de QTLs com alta significância, %Vart e número de SNPs em comum
Tabela 4 — QTLs e SNPs associados à característica teor de sólidos solúveis com respectivas %Var, LOD, significância (F), genótipo dos parentais, e SNPs comuns associados a QTLs de outras características
Tabela 5 — QTLs e SNPs associados à característica firmeza interna com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características
Tabela 6 — QTLs e SNPs associados à característica firmeza externa com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características
Tabela 7 — QTLs e SNPs associados à característica espessura da polpa com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características
Tabela 8 — QTLs e SNPs associados à característica diâmetro de fruto com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

Tabela 10 — QTLs e SNPs associados à característica peso de frutos com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características40

Tabela 11 — QTLs e SNPs associados à característica número de frutos totais com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características......41

Tabela 14 — QTLs e SNPs associados à característica número de nós sem fruto com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características......46

Tabela 19 — Sequência e parâmetros de qualidade dos SNAPs utilizado	dos para a
validação	62
Tabela 20 — Número de genes totais distribuídos por grupo de	ligação e
densidade de genes em 100 kpb	76
Tabela 21 — Número de QTLs, quantidade de genes e tamanho	da região
genômica acessada para cada característica	78

LISTA DE FIGURAS

Figura 3 — Representação do projeto de melhoramento do mamoeiro da UENF visando a implementação da seleção assistida por marcadores na cultura......19 Figura 4 — Exemplo do NCBI *Genome Browser,* Janela de 50 kpb (kilo par de bases). A linha verde na vertical (1) representa a posição do SNP 157_123015_GL6 associado ao QTL FE_8_4@154.9. A barra verde (3) Figura 6 — Classificação de 724 sequências de primers com base no Rating.....55

Figura 8 — Exemplo de *self dimer* formado pela sequência de *primer* (F:GAAAGCATCATACCCTTCGC) específica para o alelo C associado ao QTL FE_8_4@154.9. Estão apresentados dois *self dimers* com ΔG muito próximos. .56

Figura 11 — *Cross dimer* formado pelas sequências de *primer* (F:GAAAGCATCATACCCTTCGC e R:TGTGCTATTTCTCCTTCCCA) específicas para o alelo C associado ao QTL FE_8_4@154.9. Estão apresentados três *cross dimers*, onde o primeiro é mais difícil de ser quebrado em relação ao terceiro. ...57

Figura 12 — Exemplo de *primers* alelo-específicos que possuem múltiplos sítios de ligação. Foi utilizado o SNP 60_794585_LG3 associado aos QTLs NFC_7_3@347.5; NFT_9_3@350.6; e PROD_14_3@357.5.....60

 Figura 14 — Gradiente de temperatura para SNAPs COMP_7_5@107.5_[T] (46, 48 e 50 °C), COMP_7_5@107.5_[C] (50, 52 e 54 °C), TSS_11_8@50.0_[T] em nova configuração (50, 52 e 54 °C) e DF_12_5@433.5_[A] (54, 56 e 58 °C). Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo......63

Figura 19 — a) Validação *singleplex* dos SNAPs FE_8_4@154.9_[T] e FE_8_4@154.9_[C] nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F₂. b) Validação *multiplex* dos SNAPs FE_8_4@154.9_[T] e FE_8_4@154.9_[C] (FE_8_4@154.9_[M]) nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F₂ Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.......68

Figura 21 — a) Validação *singleplex* dos SNAPs $FI_14_10@17.5_[T]$ e $FI_14_10@17.5_[C]$ nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F_2 . b) Validação *multiplex* dos SNAPs $FI_14_10@17.5_[T]$ e $FI_14_10@17.5_[C]$ ($FI_14_10@17.5_[M]$) nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F_2 . Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

Figura 26 — Porcentagem de genes totais, porcentagem da região total analisada e densidade de genes a cada 100 kpb de acordo com o grupo de ligação (GL). .77

RESUMO

BOHRY, Dieimes, M. Sc., Universidade Estadual do Norte Fluminense Darcy Ribeiro, Fevereiro de 2018. Desenvolvimento de um atlas de marcadores SNAPs associados a QTLs visando a seleção assistida por marcadores em *Carica papaya* L. Orientadora: Prof^a. Helaine Christine Cancela Ramos. Conselheiros: Profs. Messias Gonzaga Pereira e Alexandre Pio Viana.

O mamoeiro é uma das fruteiras mais cultivadas nas regiões tropicais e subtropicais do mundo. O Brasil é o segundo maior produtor e o terceiro maior exportador de mamão. A identificação de regiões genômicas e o desenvolvimento de marcadores moleculares associados às características de interesse para o melhoramento se torna uma boa ferramenta para auxiliar no desenvolvimento de cultivares superiores na cultura. Desta forma, a equipe de melhoramento da UENF tem trabalhado na construção de um mapa genético saturado com marcadores SNPs e análise de QTLs para as principais características quantitativas estudadas no melhoramento do mamão, visando a implementação da seleção assistida por marcadores. O presente trabalho teve como objetivo a identificação de SNPs fortemente associados a QTLs para as principais características no melhoramento do mamoeiro; desenvolvimento e validação de marcadores alelo-específicos do tipo SNAP, que são analisados via PCR, baseado nos SNPs identificados; e realizar uma anotação gênica associada aos QTLs. Os SNPs foram identificados através do software R/qtl, utilizando-se as posições dos QTLs no mapa genético. Esses marcadores foram utilizados para o desenho de SNAPs pela ferramenta PRIMER1, em que foi utilizada uma

ΧV

sequência de aproximadamente 1000 bases para o desenho dos primers. A ferramenta NetPrimer foi utilizada para avaliar a qualidade dos primers em relação à presença de estruturas secundárias intra e intermoleculares, onde as melhores combinações de primers foram escolhidas. Foram selecionados 12 SNAPs e três amostras com genótipo conhecido para a validação. As amostras foram os parentais contrastantes para os loci analisados (Sekati e JS-12) e um bulk de indivíduos segregantes da população F2 oriunda desse cruzamento. Neste sentido, para a comprovação da eficiência do SNAP em diferenciar os alelos de cada SNP, os marcadores deveriam reproduzir exatamente o genótipo dos indivíduos analisados. Foram utilizados procedimentos padrões de PCR. A anotação gênica foi realizada através da base de dados de genes do NCBI, sendo identificados todos os genes em uma região de aproximadamente 400 kpb para cada SNP. Foram identificados 186 SNPs associados a 225 QTLs, o menor número de marcadores em relação aos QTLs se deve pela presença de um marcador associado a mais de um QTL. Estes SNPs foram submetidos ao desenho de primers. Foi possível desenhar SNAPs para 181 SNPs, totalizando 362 SNAPs desenhados (sendo um SNAP específico para cada alelo do SNP). Aproximadamente, 94% das sequências de *primers* apresentaram *Rating* superior a 80%, evidenciando a boa qualidade das sequências. Foram validados 10 SNAPs em reações de PCR singleplex, onde quatro desses também foram validados em multiplex. Foram identificados 3.596 genes em uma região de 46.486,7 kpb. Os SNAPs foram eficientes em discriminar os alelos dos SNPs, mostrando diversas vantagens na sua aplicação em termos de facilidade de manuseio, custo e rapidez. A anotação gênica associada a QTLs permitirá um melhor entendimento da expressão das características estudadas. O atlas desenvolvido neste trabalho dará suporte a outros trabalhos que visem a SAM desenvolvidos pelos programas de melhoramento da UENF e de outras instituições de pesquisa.

Palavras chave: Mamoeiro; SAM; SNAP; anotação gênica.

ABSTRACT

BOHRY, Dieimes, M. Sc., Universidade Estadual do Norte Fluminense Darcy Ribeiro, February 2018. Development of an atlas of SNAP markers associated with QTLs for marker assisted selection in *Carica papaya* L. Advisor: Prof. Helaine Christine Cancela Ramos; Committee members: Profs. Messias Gonzaga Pereira and Alexandre Pio Viana

The papaya is one of the most cultivated fruit trees in the tropical and subtropical regions of the world. Brazil is the second largest producer and the third largest exporter of papaya. The identification of genomic regions and the development of molecular markers associated with characteristics of interest for breeding becomes a good tool to assist the development of superior cultivars in this crop. Therefore, the UENF breeding team has been working on the construction of a SNP saturated genetic map and QTL analysis for the main quantitative characteristics studied in the papaya breeding, aiming the implementation of marker assisted selection. The present work had the aim of identification of SNPs strongly associated with QTLs for the main traits evaluated in papaya breeding; development and validation of allele-specific SNAP markers, which are analyzed via PCR, based on the identified SNPs; and to perform a gene annotation associated with QTLs. The SNPs were identified through the R / gtl software, using the QTL positions in the genetic map. These markers were used for the design of SNAPs by the tool PRIMER1, in which a sequence of approximately 1000 bases was used for the design of the primers. The NetPrimer tool was used to evaluate the quality of the primers in relation to the presence of intra and intermolecular secondary structures, where the best combinations of primers were chosen. Twelve SNAPs and three samples with known genotype were selected for validation. The samples were the contrasting genotypes for the analyzed loci (Sekati and JS-12) and a bulk of F₂ segregating population individuals from this cross. Thus, to prove the efficiency of SNAP in discriminating the alleles of each SNP the markers should reproduce exactly the genotype of the individuals analyzed. Standard PCR procedures were used. Gene annotation was performed through the NCBI gene database, with all genes being identified in a region of approximately 400 kbp for each SNP. We identified 186 SNPs associated with 225 QTLs, the smallest number of markers in relation to QTLs is due to the presence of a marker associated with more than one QTL. These SNPs were submitted to the design of primers. It was possible to design SNAPs for 181 SNPs, totaling 362 designed SNAPs (one SNAP specific for each SNP allele). Approximately 94% of the sequences of primers presented Rating superior to 80%, evidencing the good quality of the sequences. Ten SNAPs were validated in singleplex PCR reactions, where four of these were validated in multiplex as well. 3,596 genes were identified in a region of 46,486.7 kbp. SNAPs were efficient in discriminating alleles of SNPs, showing several advantages in their application in terms of ease of handling, cost, and speed. The gene annotation associated with QTLs will allow a better understanding of the expression of the characteristics studied. The atlas developed in this work will support other works aiming the MAS developed by the breeding programs of the UENF and of other research institutions.

Key words: Papaya; MAS; SNAP; gene annotation

1.INTRODUÇÃO

O mamoeiro (*Carica papaya* L.) é uma das fruteiras mais cultivadas nas regiões tropicais e subtropicais do mundo, sendo seu fruto bastante consumido *in natura* ou industrializado por apresentar ótimas qualidades nutricionais. No entanto, a produção mundial de mamão é baseada em poucas variedades e híbridos. Essa falta de genótipos superiores para cultivo é devido à estreita base genética apresentada pela espécie, tornando limitada a expansão da cultura. Desta forma, os programas de melhoramento do mamoeiro têm centralizado esforços para ampliar a base genética dessa fruteira, no âmbito de desenvolver variedades e/ou híbridos resistentes ou tolerantes a pragas, doenças e variações ambientais, sobretudo, superiores agronomicamente (Pereira et al., 2015).

Para execução de programas de melhoramento, principalmente para espécies perenes ou semiperenes, o uso de marcadores moleculares faz-se fundamental para acelerar as etapas dos programas e obter maior precisão no processo de seleção (Collard e Mackill, 2008). Pesquisadores têm usado a seleção assistida por marcadores (SAM) para melhorar características como produtividade, qualidade de frutos e resistência a doenças que são de difícil mensuração. Além disso, a piramidação de múltiplos QTLs, oriundos de germoplasmas diversos, em materiais superiores para posteriormente introduzilos em cultivares elite também é uma estratégia interessante dependendo da característica, como reportado para as características de teor de sólidos solúveis e teor de antioxidantes em tomate (Sacco et al., 2013). Portanto, é necessário identificar e aplicar marcadores associados às características de interesse, o que pode ser viabilizado pela utilização de marcadores derivados de regiões expressas do genoma (ESTs), ou marcadores associados a QTLs (Pereira et al., 2015).

Os marcadores do tipo SNP (*single nucleotide polymorphism*) são definidos como uma variação de um único nucleotídeo que ocorre em uma posição específica do genoma e apresentam a forma mais abundante de variação genética (Brookes, 1999). A frequência média de SNPs em linhagens elite de milho é de um SNP a cada 60 pb (Ching et al., 2002). SNPs são os marcadores de escolha tanto para mapas de ligação quanto para estudos de associação (Baird et al., 2008), genômica de populações (Morris et al., 2013) e análise evolutiva (Etter et al., 2011). O marcador SNP possui caráter bi-alélico e devido à sua grande abundância, há maior probabilidade de encontrar um SNP ligado a uma característica de interesse e quando considerados em conjunto os SNPs possuem alto poder informativo.

Uma vez identificado um SNP associado à uma característica de interesse, este pode ser usado para selecionar indivíduos superiores. Para que isso se torne possível em termos de eficiência, rapidez e custo, Drenkard et al. (2000) desenvolveram uma metodologia robusta de desenho de *primers* que permite identificar os diferentes alelos de um SNP via PCR (*polymerase chain reaction*) convencional. Essa metodologia é chamada de marcador SNAP, que significa polimorfismo de única base amplificado. Kim et al. (2005) aplicando essa metodologia desenvolveram e validaram SNAPs a partir de um SNP localizado em um gene controlador da supernodulação em soja, permitindo a rápida e fácil identificação de genótipos supernodulantes em estágios iniciais de crescimento, sem a necessidade de inoculação e fenotipagem das raízes.

Pesik et al. (2017) desenvolveram e validaram marcadores SNAPs com base em SNPs localizados em genes da superfamília de fatores de transcrição WRKY em coqueiro. Os autores tiveram sucesso na validação dos SNAPs em *multiplex*, que permite a detecção dos dois alelos do SNP em uma mesma reação de PCR, reduzindo pela metade o número de reações para a genotipagem.

Devido à importância dos estudos de caracteres quantitativos para o melhoramento do mamoeiro e considerando o inexpressivo número de trabalhos

que visam a identificação de regiões cromossômicas que controlam características de interesse, a equipe de melhoramento do mamoeiro da UENF tem desenvolvido pesquisa visando a elaboração de um mapa genético com alto grau de saturação, utilizando-se para tal marcadores SNPs desenvolvidos a partir de bibliotecas RADseq (*restriction-site associated DNA sequencing*) para posterior identificação de QTLs associados às principais características avaliadas em programas de melhoramento do mamoeiro (Pereira et al., 2015).

Tendo em vista os aspectos observados, o objetivo deste trabalho foi identificar SNPs fortemente associados a QTLs, desenvolver e validar marcadores SNAPs com base nos SNPs identificados, e identificar genes associados aos QTLs para características agronomicamente importantes no melhoramento do mamoeiro, visando a implementação da seleção assistida por marcadores na cultura.

2. OBJETIVOS

Identificar marcadores moleculares SNP associados a QTLs de características importantes para o melhoramento do mamoeiro;

Desenvolver e validar marcadores alelo-específicos do tipo SNAP, com base nos SNPs identificados;

Identificar genes candidatos associados aos QTLs;

Desenvolver um atlas contendo todas as informações geradas no presente estudo, visando a implementação da SAM na cultura do mamoeiro.

3. REVISÃO DE LITERATURA

3.1. Aspectos gerais da cultura

A espécie *Carica papaya* L., o mamoeiro cultivado comercialmente, pertence à família *Caricaceae*, que está dividida em seis gêneros, com 35 espécies distribuídas da seguinte forma: *Carica* (uma espécie), *Jacaratia* (oito espécies), *Cylicomorpha* (duas espécies), *Jarilla* (três espécies), *Horovitzia* (uma espécie) e *Vasconcellea* (20 espécies) (Badillo, 2000).

O mamoeiro possui um raro sistema de determinação sexual, sendo observado três formas sexuais distintas: plantas com flores femininas, masculinas e hermafroditas. Diversas hipóteses foram propostas ao longo das últimas décadas para explicar a genética da trioicia em mamoeiro, como: a presença de um único gene com três formas alélicas; um grupo de genes intimamente ligados; um balanço gênico do cromossomo sexual sobre os autossômicos; cromossomos clássicos XY; e elementos regulatórios na via bioquímica do desenvolvimento floral. No entanto, apenas estudos ao nível molecular foram capazes de desvendar esse sistema. O mamoeiro possui cromossomos XY que determinam o sexo da planta, onde o cromossomo Y possui duas formas levemente diferentes que determinam os sexos masculino (XY) e hermafrodita (XY^h). Plantas femininas possuem os cromossomos XX (Ming et al., 2007).

Os mamoeiros cultivados, atualmente, são divididos em dois grupos heteróticos distintos: a) "Solo" que apresenta o maior número de variedades disponíveis no mercado mundial, sendo a maior parte dessas variedades do tipo linha pura (Ex.: Sunrise Solo, Improved Sunrise Solo Line 72/12, Kapoho, Waimanalo, Higgins e Baixinho de Santa Amália), permitindo assim, que os agricultores utilizem sementes colhidas no próprio pomar para constituir a próxima geração de cultivo. Os frutos obtidos de plantas hermafroditas são piriformes, possuem peso médio entre 300 a 650 gramas e polpa vermelha-alaranjada, o que os tornam mais populares no mercado externo (Dantas, 2000), além disso, recentemente tem-se explorado a variabilidade dentro do grupo heterótico "Solo", onde foram registradas as primeiras cultivares híbridas desse grupo (MAPA, 2018); b) "Formosa" constituído por híbridos caracterizados pela produção de frutos com peso médio entre 900 a 1.300 gramas e polpa avermelhada. Devido às suas características, a produção no país é destinada ao consumo interno. Os híbridos da série Tainung (Ex.: Tainung n.º 1, 2) são os mais cultivados. Estes híbridos apresentam a desvantagem do alto valor das sementes, as quais são importadas de Taiwan, por 3.000 a 4.000 dólares por quilograma. Outro híbrido é o 'UENF/CALIMAN 01' (Calimosa), produzido pela equipe de melhoramento genético da UENF em parceria com a empresa Caliman Agrícola S.A. Esse híbrido vem sendo cultivado nas diferentes regiões produtoras do Brasil, nos Estados do Rio Grande do Norte, Bahia e Espírito Santo (Pereira et al., 2015).

O germoplasma do mamoeiro apresenta ampla variação fenotípica para muitas características agronômicas importantes, tais como o tamanho e forma do fruto, cor da polpa, sabor, doçura e estatura da planta (Kim et al., 2002). A planta do mamoeiro desenvolve-se melhor em altas temperaturas, sendo a faixa ideal entre 22 a 26 °C, precipitação pluviométrica de 1.500 mm anuais e umidade relativa do ar de 60 a 85%. O mamoeiro inicia a emissão de flores com três a quatro meses de idade e a frutificação a partir do oitavo mês após o semeio, assim, a planta cultivada comercialmente tem boa produção por 16 meses, totalizando 24 meses de vida da lavoura. Dessa forma, o produtor deve renovar a lavoura a cada dois anos, tornando grande a demanda por sementes para manutenção de plantios com produção de qualidade (Ferreguetti, 2003).

3.2. Importância econômica da cultura

A fruticultura mostra-se como uma das melhores opções para a diversificação das atividades agrícolas, apresentando vantagens econômicas e sociais, tais como: o aumento da quantidade de emprego, fixação do homem no campo, melhor distribuição da renda regional, geração de produtos de alto valor comercial, além de excelentes perspectivas de mercado interno e externo (Silva et al., 2004).

O mamão é cultivado em mais de 60 países, sendo a maior parte da produção originada de economias em desenvolvimento localizadas nos trópicos. A fruta tem ganhado popularidade mundialmente, aparecendo na quarta posição (13,05 milhões de toneladas) na produção de frutas tropicais, ficando atrás apenas da banana (113,28 milhões de toneladas), manga (46,51 milhões de toneladas) e abacaxi (25,81 milhões de toneladas) (STATISTA, 2016).

O mamão é considerado uma das frutas mais importantes para o consumo, devido às suas propriedades nutricionais, sendo consumido em maior parte *in natura* ou industrializado na forma de doces em calda, doces cristalizados ou passa e geleias. É rico em antioxidantes (Ex.: carotenos, vitamina C e flavonoides), Vitamina B (Ex.: ácido fólico e pantotênico), minerais (Ex.: potássio e magnésio) e fibras. Além disso, o fruto é fonte da enzima digestiva papaína, que é usada como ingrediente na fabricação de cerveja, amaciante de carnes, produtos farmacêuticos, produtos de beleza e cosméticos (Evans e Ballen, 2012). Também pode ser extraído das folhas, dos frutos e das sementes o alcaloide carpaína, utilizado como ativador cardíaco (Dantas e Castro, 2000).

O Brasil é o terceiro no *ranking* mundial de produção de frutas, estando atrás apenas da China e Índia, respectivamente. A área produtiva no país supera os dois milhões de hectares, com produção anual de, aproximadamente, 44 milhões de toneladas e gerando mais de cinco milhões de empregos diretos (MAPA, 2018). A região Sudeste é o principal polo de produção no cenário nacional, sendo o estado de São Paulo o maior produtor de frutas. A introdução da fruticultura em outras regiões gera novos empregos e oportunidade de renda, além disso, estimula a industrialização (Reetz et al., 2015).

O país ocupa a posição de segundo maior produtor de mamão do mundo, com uma produção de 1,42 milhão de toneladas produzidas em uma área de 30.372 hectares em 2016, ficando atrás apenas da Índia (5,7 milhões de toneladas) em produção. Em 2013 o Brasil foi o terceiro maior exportador da fruta (28,56 mil toneladas), gerando em receita US\$ 41,8 milhões, sendo o México (115 mil toneladas) e a Guatemala (32,13 mil toneladas) os maiores exportadores (FAOSTAT, 2018). O mercado externo conta com a vantagem cambial, o que torna o mamão brasileiro mais competitivo frente a outros produtores internacionais (Reetz et al., 2015). Outro aspecto importante está ligado à disponibilidade de produção o ano todo, garantindo a possibilidade de fornecimento regular e contínuo (BRASIL, 2007).

Na produção nacional, o cultivo mais expressivo do mamoeiro ocorre nos estados da Bahia (718,7 mil toneladas), Espírito Santo (404,7 mil toneladas), Minas Gerais (126,8 mil toneladas) e Ceará (118,4 mil toneladas). Embora a Bahia seja o maior produtor, o Espírito Santo é o maior exportador da fruta (IBGE, 2016).

3.3. Genômica do mamoeiro

A espécie *Carica papaya* é considerada uma planta modelo para estudos genômicos devido a uma série de características: o mamoeiro possui um período juvenil curto; exibe floração e frutificação abundante; cada fruto produz muitas sementes; além disso, a eficiente propagação *in vitro* e técnicas de engenharia genética permitem o estudo de vários processos reprodutivos e vegetativos aliados à informação de sequências genômicas (Yu et al., 2009). Além disso, posiciona-se filogeneticamente próximo à *Arabidopsis thaliana*, a principal planta modelo, e está dentro de um dos principais grupos de dicotiledôneas, a ordem *Brassicales*, assim o mamoeiro poderia tornar-se uma espécie central para estudos de genômica comparativa e evolutiva dentro do grupo (Chen et al., 2007).

O mamoeiro possui um genoma relativamente pequeno (372 Mpb), sendo uma espécie diploide com nove pares de cromossomos. Cerca de 39% do genoma é composto pelas bases nitrogenadas Guanina e Citosina (GC%) (Ming et al., 2008). O genoma está disponível para estudos na base de dados de genes do Centro Nacional para Informações Biotecnológicas (NCBI), e possui cerca de 20 mil genes identificados em mamão.

3.4. Melhoramento genético do mamoeiro

No Brasil, as instituições que se destacam no melhoramento genético do mamoeiro são a Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), no Estado do Rio de Janeiro, a Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA Mandioca e Fruticultura), no Estado da Bahia e o Instituto Capixaba de Pesquisa e Extensão Rural (INCAPER), no estado do Espírito Santo.

Os objetivos dos programas de melhoramento dessas instituições têm sido realizar pesquisa para desenvolver variedades e híbridos superiores que apresentem resistência ou tolerância a pragas, doenças e variações ambientais, associados às boas características agronômicas em termos de produtividade, frutificação precoce, abundante e altura de inserção dos primeiros frutos inferior a 90 cm, alta qualidade dos frutos, alto teor de sólidos solúveis, casca fina, ausência de manchas, que atendam os mercados interno e externo, menor número de flores hermafroditas carpeloides, estéreis e pentândricas, resistência ao armazenamento e transporte, cavidade interna pequena e em forma de estrela, dentre outros. Assim, podendo aumentar o limitado número de variedades e híbridos disponíveis para cultivo no país.

O programa de melhoramento de mamoeiro da UENF, iniciado em 1996, em parceria com a Empresa Caliman Agrícola S.A., localizada em Linhares-ES, tem mostrado bons resultados ao longo de sua história. Tendo como principal objetivo desenvolver genótipos superiores capazes de contribuir substancialmente com o agronegócio do mamão no Brasil, o programa visa contribuir com a sociedade por meio da formação de pessoal (Agrônomos, Biólogos, Mestres e Doutores), gerar e divulgar o conhecimento científico na forma de artigos publicados e, principalmente, desenvolver novas cultivares de mamoeiro (Pereira et al., 2015).

Dentre os resultados obtidos por essa parceria, pode-se destacar o registro do primeiro híbrido de mamoeiro do Brasil, o 'UENF/CALIMAN01', conhecido popularmente como 'Calimosa', que foi recomendado aos agricultores em 2003 e vem sendo cultivado nas principais regiões produtoras do Brasil. Desde então, outros 20 híbridos (UENF/CALIMAN02, UENF/CALIMAN03, UENF/CALIMAN04, UENF/CALIMAN05, UENF/CALIMAN06, UENF/CALIMAN07, UENF/CALIMAN08, UENF/CALIMAN09, UC10, UC12, UC14, UC16, UC 20, UC 21, UC 22, UC 23, UC 24, UC 25, UC 27 e UC 28) foram registrados junto ao

Ministério da Agricultura, Pecuária e Abastecimento (MAPA, 2018). Tais avanços permitiram que o País, tradicional importador de sementes de mamoeiro, principalmente do híbrido 'Tainung 01', começasse potencialmente a reduzir sua dependência de importação de sementes (Pereira et al., 2015).

Para alcançar esses resultados, diversos trabalhos foram realizados pela equipe de melhoramento da UENF, no que se refere ao conhecimento do comportamento floral, modo de reprodução, predição do sexo, retrocruzamentos, heterose, capacidade combinatória, *topcross,* dialelo, resistência às doenças, utilizando tanto características morfoagronômicas como ferramentas moleculares na cultura do mamoeiro (Pereira et al., 2015).

Marin et al. (2006), avaliando os efeitos heteróticos através de cruzamentos de dialelo parcial entre genótipos do grupo 'Solo' e do grupo 'Formosa', constataram a superioridade dos híbridos em relação aos seus genitores e recomendaram as melhores combinações híbridas.

Em outro estudo iniciado por Silva et al. (2007a), objetivou-se a conversão sexual do genótipo Cariflora, do estado dioico (população com plantas femininas e masculinas) para o ginoico-andromonoico (população com plantas femininas e hermafroditas), para incorporar esse material no processo de obtenção de linhagens endogâmicas e genótipos superiores. Foram utilizadas tanto ferramentas clássicas de melhoramento quanto marcadores moleculares, para ampliar a eficiência do processo. Foram obtidas as populações RC₁ e RC₂ oriundas do cruzamento entre Cariflora x *Sunrise* Solo 783 e, em seguida, selecionadas plantas com elevado grau de semelhança com o genitor recorrente Cariflora. Vários estudos foram desenvolvidos para o desenvolvimento, avaliação e condução de populações segregantes oriundas desse cruzamento (Silva et al., 2007b; Silva et al., 2007c; Silva et al., 2008a; Silva et al., 2008b; Ramos et al., 2011a; Ramos et al., 2011b).

Ramos (2010) avançou este estudo de conversão sexual do genótipo 'Cariflora' pela condução da população RC₃ e Ramos et al. (2012) avaliaram a distância genética entre populações derivadas de três gerações de retrocruzamentos (RC₁, RC₂ e RC₃) para selecionar os genótipos superiores, a fim de avançar as gerações. Ainda, nestas populações, foram desenvolvidas estratégias de seleção combinada para as principais características agronômicas, considerando tanto o valor fenotípico como valor genético obtido pela metodologia

dos modelos lineares mistos, via procedimento REML/BLUMP, para identificação das melhores famílias (Ramos et al., 2014).

Cortes et al. (2017) desenvolveram e validaram uma metodologia de análise e processamento de imagem digital, voltada para a fenotipagem de características morfoagronômicas em mamão. Esta metodologia tem sido aplicada na fenotipagem das novas áreas experimentais, aumentando a precisão e diminuindo o tempo de obtenção dos dados, no programa de melhoramento do mamoeiro da UENF.

3.5. Marcadores moleculares no melhoramento

Os marcadores moleculares permitem a análise de indivíduos com base em seu DNA, distinguindo indivíduos geneticamente diferentes (Borém, 2009). Esses marcadores geralmente não representam os genes envolvidos na expressão de uma determinada característica, mas atuam como marcadores das diferenças observadas (Collard et al., 2005).

A seleção de características desejáveis ao melhoramento de plantas pode ser alcançada indiretamente através dos marcadores moleculares de DNA. O desenvolvimento dessa tecnologia no melhoramento genético vegetal teve início no começo dos anos 1980, quando marcadores isoenzimas foram usados para a introgressão de características monogênicas em cultivares comerciais (Xu e Crouch, 2008).

Um dos principais usos dos marcadores de DNA em pesquisas na agricultura tem sido a construção de mapas de ligação em diversas espécies de plantas. Esses mapas têm sido utilizados para identificar regiões genômicas que contêm genes controladores de características simples (qualitativas) ou características complexas (quantitativas), utilizando o mapeamento de QTLs (Collard et al., 2005).

Diversos marcadores foram anteriormente utilizados para a construção de mapas genéticos e estudos em plantas, como os baseados em hibridação RFLP (*restriction fragment length polymorphism*) e os baseados em PCR, como RAPD (*random amplified polymorphic DNA*); SSR (*simple sequence repeats or microsatellites*); SCAR (*sequence characterized amplified region*). Por último, veio a classe dos marcadores SNP, que são baseados no sequenciamento e *chips* de DNA, e são caracterizados como a forma mais abundante de

polimorfismo presente em ambos os genomas de plantas e animais (Khlestkina e Salina, 2006). Além disso, a genotipagem de milhares de SNPs pode ser quase inteiramente automatizada, economizando o tempo e os esforços para obtenção dos dados pelos programas de melhoramento genético (Steemers e Gunderson, 2007).

Desta forma, o marcador SNP possui grande destaque na construção de mapas genéticos de ligação com alto grau de saturação. Segundo Brookes (1999), um SNP é uma posição de um único par de bases no DNA genômico, em que sequências alternativas (alelos) existem em indivíduos normais em qualquer população, onde a frequência do alelo alternativo deve ser superior a 1%. SNPs podem ser classificados pelo tipo de nucleotídeo alterado, como transições (C/T ou G/A) ou transversões (A/C, A/T, G/C, G/T).

Recentes avanços nas tecnologias de sequenciamento de DNA têm gerado várias metodologias para identificação de polimorfismos de única base (SNP) e plataformas de genotipagem a custo mais acessível, como a "genotyping by sequencing" (GBS), "complexity reduction of polymorphic sequences" (CRoPS) e RADseq (Deokar et al., 2014).

A metodologia RADseq consiste na redução da complexidade genômica pela fragmentação do DNA em milhares de fragmentos com o auxílio de enzimas de restrição, com posterior sequenciamento dos fragmentos associados ao sítio específico da enzima, pela utilização de plataformas de sequenciamento de nova geração (NGS). Essa metodologia tem permitido a identificação de milhares de marcadores SNPs, por isso ganhou mais popularidade em estudos de mapeamento genético e genética evolutiva devido à grande quantidade de marcadores necessários para se obter bons resultados, além disso, para este fim não há a necessidade de uma completa cobertura do genoma e sua aplicação se torna praticamente ilimitada na análise de genomas (Etter et al., 2011).

Isso tem facilitado a aplicação de métodos moleculares aos programas de melhoramento genético pela descoberta de novos marcadores. A eficiência dos marcadores RADseq para identificação de SNPs e desenvolvimento de mapas genéticos de alta densidade e análise de QTL em pepino (Yuan et al., 2008) e cevada (Chutimanitsakun et al., 2011) tem sido demonstrado com sucesso.

3.6. Polimorfismo de única base amplificado (SNAP)

Apesar de a genotipagem de SNPs em larga escala ter apresentado uma diminuição significativa de custos e aumento da eficiência nos últimos anos, muitas instituições de pesquisa não são providas de investimentos suficientes para a utilização rotineira dessas tecnologias. Neste sentido, Drenkard et al. (2000) desenvolveram uma metodologia robusta que permite facilmente diferenciar os dois alelos de um SNP, utilizando técnicas e reagentes convencionais de um laboratório de biologia molecular. A metodologia denominada SNAP considera a natureza bi-alélica do SNP e desenha primers específicos para cada um de seus alelos. Para tanto, as sequências genômicas adjacentes ao SNP devem ser conhecidas. A metodologia utiliza quatro sequências de primers (Figura 1) para a genotipagem de um SNP, onde um primer específico para o alelo 1 (F1) é desenhado com base na fita upstream do DNA e o seu primer complementar (R1), na fita downstream, e juntos eles formam o SNAP 1. Contrariamente, o desenho do primer específico para o alelo 2 (F2) é feito na fita downstream e o seu primer complementar (R2), na fita upstream, e juntos eles formam o SNAP 2.

Os primers alelo-específico são desenhados com sua extremidade 3' na posição exata do SNP, onde a extremidade de cada primer é correspondente ao alelo em que ele é específico e, assim, ocorre a amplificação preferencial de um alelo em relação ao outro. Para aumentar a especificidade de cada primer específico, um nucleotídeo incompatível é inserido propositalmente entre as três bases próximas ao SNP. Desta forma, o produto da reação de PCR utilizando o SNAP específico para um alelo sofrerá uma diminuição insignificante, mas a amplificação do alelo não específico será reduzida drasticamente. A seguir está representada a estratégia de PCR codominante alelo-específica (Figura 2):

Figura 2 — Representação esquemática da estratégia de PCR codominante aleloespecífica. A) *Primer* F1 forma um anelamento perfeito com o alelo 1, mas não anela corretamente com o alelo 2. Semelhantemente, o *primer* F2 forma um anelamento perfeito com o alelo 2, mas não anela corretamente com o alelo 1. B) Análise esquemática de gel de agarose mostrando o resultado esperado da amplificação de indivíduos homozigotos e heterozigotos para ambos os alelos, usando os SNAPs 1 e 2 em reações separadas (*singleplex*). C) Resultado esperado da amplificação de indivíduos homozigotos e heterozigotos para ambos os alelos, usando os SNAPs 1 e 2 na mesma reação (*multiplex*). A banda comum em todas as amostras demonstra o produto de amplificação gerado pelos *primers* R1 e R2. F1 e R1, significam *primers forward* 1 e *reverse* 1, respectivamente, e juntos formam o SNAP específico para o alelo 1. F2 e R2 significam *primers forward* 2 e *reverse* 2, respectivamente, e juntos formam o SNAP específico para o alelo 2. Bohry (2018), adaptado de Drenkard et al. (2000). Os primers R1 e R2 são os responsáveis pelos diferentes tamanhos de produto da PCR e a escolha desse tipo de primer deve levar em consideração o tamanho do produto que cada SNAP irá amplificar para ajudar na detecção dos diferentes alelos no gel.

As reações de PCR podem ser realizadas separadamente para cada SNAP, onde ocorre a detecção de apenas um alelo por reação (*singleplex*) ou em *multiplex* com a adição dos SNAPs referentes aos dois alelos do SNP em uma mesma reação, podendo detectar ambos os alelos de uma vez. Essa estratégia se torna mais interessante, pois reduz pela metade o número de reações para a genotipagem.

Neste sentido, Lestari e Koh (2013) identificaram quatro SNPs associados ao QTL que confere palatabilidade do arroz e desenvolveram marcadores SNAP que são específicos para o alelo desejado e podem ser facilmente identificados em grandes populações via PCR, permitindo a incorporação desses novos marcadores a outros marcadores anteriormente desenvolvidos para selecionar genótipos de arroz com características físico-químicas desejáveis com facilidade e baixo custo.

Kim et al. (2016) desenvolveram e validaram marcadores SNAP para oito genes associados à produtividade de linhagens de arroz, através da ferramenta *PRIMER1*. Esses genes foram caracterizados por possuir um polimorfismo de nucleotídeo funcional (FNP) que alteram a sequência de aminoácidos que eles codificam e possibilitam, assim, maior rendimento. Cada um desses genes possui duas formas alélicas, sendo uma forma representada por um alelo positivo, que possui características desejáveis e a outra forma representada pelo alelo negativo, com características menos desejadas. Os autores têm o objetivo de introduzir em linhagens elites de arroz todos os oito genes que possuem a forma alélica positiva e poder incrementar a produtividade dessas linhagens.

A ferramenta *PRIMER1*, utilizada para desenho dos SNAPs, é capaz de gerar dezenas de combinações de pares de *primers* diferentes para um único SNP *locus*. O grande número de combinações se deve, principalmente, à mudança na posição dos dois *primers reverse*, pois, a posição dos dois *primers* alelo-específicos é fixada na posição do SNP. Novas combinações de *primers* são
geradas também quando o *PRIMER1* altera o tamanho dos *primers*, alterando também a Tm destes.

3.7. Seleção assistida por marcadores moleculares (SAM)

Segundo Xu e Crouch (2008), as justificativas para o desenvolvimento e uso da SAM no melhoramento de plantas caem dentro de quatro grandes áreas que são relevantes para quase todas as culturas: a) características que são difíceis de conduzir através de seleção fenotípica convencional; b) características cuja seleção depende de ambientes específicos ou estágios de desenvolvimento que influenciam a expressão do fenótipo alvo; c) manutenção de alelos recessivos durante retrocruzamentos ou para acelerar o melhoramento através de retrocruzamento em geral: e d) piramidação de múltiplas características monogênicas (tal como resistência a pragas e doenças ou características de qualidade) ou vários QTLs para uma única características alvo com herança complexa (tal como tolerância à seca ou outras características adaptativas).

De acordo com Collard et al. (2005), os mapas genéticos de ligação são uma poderosa ferramenta na aplicação da SAM. A detecção de genes ou QTLs controladores de características de interesse é possível através da análise de ligação genética, isso permite a construção de mapas de ligação compostos de marcadores genéticos para uma população específica. Uma vez que os marcadores fortemente associados, que com segurança podem predizer uma característica, foram identificados, eles podem ser usados para selecionar indivíduos geneticamente superiores. As vantagens fundamentais da SAM sobre a seleção fenotípica convencional são as seguintes: 1) a seleção pode ser mais simples do que uma triagem fenotípica, podendo economizar tempo, recursos e esforços, a exemplo de características de qualidade, que geralmente são mais trabalhosas; 2) a seleção pode ser realizada ainda no viveiro. Isto pode ser útil para muitas características, mas especialmente para aquelas que se expressam em estágio de desenvolvimento mais avançado. Assim, genótipos de plantas indesejáveis podem ser rapidamente eliminados; 3) plantas individuais podem ser selecionadas com base no seu genótipo. Para a maioria das características, as plantas homozigóticas e heterozigóticas não podem ser distinguidos pela seleção fenotípica convencional.

Em mamão os trabalhos que visam a identificação de regiões genômicas controlando, tanto características simples como características quantitativas, ainda são escassos. Assim o desenvolvimento de novos marcadores associados às características de interesse se torna necessário.

Neste sentido, Vidal et al. (2014) desenvolveram e validaram um atlas de marcadores SSR para auxiliar os programas de SAM do mamoeiro. Este atlas compreende 160.318 SSRs, dos quais 21.231 foram localizados em regiões gênicas (Ex.: dentro de exons, junções de exons-introns ou introns). Os autores identificaram 300 genes que estão potencialmente envolvidos no amadurecimento de frutos, com cerca de 790 SSRs distribuídos entre eles. Este estudo se torna uma poderosa ferramenta para assistir e melhorar os programas de SAM no melhoramento do mamoeiro e estudos de genética de populações.

Além disso, a equipe de melhoramento do mamoeiro da UENF tem trabalhado na construção de um mapa genético com alto grau de saturação baseado em marcadores SNPs e mapeamento de QTLs para as principais características quantitativas estudadas no melhoramento da cultura (Ramos et al., 2013). Dando continuidade a este trabalho inicial foram desenvolvidos e validados marcadores SNAPs associados aos QTLs identificados. Além disso, foi realizada uma ampla anotação gênica, visando futuramente a identificação de genes candidatos. Desta forma, os resultados obtidos darão suporte para o desenvolvimento de outros trabalhos que visem o melhoramento assistido por marcadores em mamoeiro e a identificação de genes candidatos, no intuito de melhorar o entendimento da expressão das características aqui estudadas.

4. MATERIAL E MÉTODOS

O presente trabalho deu continuidade a um projeto desenvolvido pela equipe de melhoramento do mamoeiro da UENF. Este projeto consiste no mapeamento de QTL para as principais características de importância agronômica para o mamoeiro, visando a implementação da seleção assistida por marcadores na cultura e serão descritas, a seguir, todas as etapas do projeto (Figura 3): etapa 1 – foi realizado o cruzamento entre duas linhagens do Banco de Germoplasma UENF/CALIMAN, Sekati e JS-12, pertencentes ao mesmo grupo heterótico (Grupo Formosa), porém, contrastantes para caracteres agronômicos e sensoriais; etapa 2 – um indivíduo F1 foi autofecundado para dar origem a geração F₂; etapa 3 – a população F₂, constituída por 200 plantas hermafroditas foi estabelecida em área comercial da empresa Caliman Agrícola S.A. em Linhares-ES. Essa população foi fenotipada para características de produtividade e qualidade de frutos, que são estudadas no melhoramento do mamão; etapa 4 a população F₂ juntamente com os parentais foram utilizados para a construção de 202 bibliotecas genômicas através da metodologia RADseq, utilizando as enzimas de restrição Nsi I e Mse I. Após a purificação dos fragmentos de DNA foi adotada a estratégia de seguenciamento direto de fragmentos de 100 pb via plataforma HiSeq2000 (Illumina); etapa 5 – as sequências RAD geradas foram submetidas ao alinhamento de sequências seguindo o procedimento novoalign. O alinhamento gerado foi, então, processado pelos Perl-Scripts padrão (E.A.J.).

Figura 3 — Representação do projeto de melhoramento do mamoeiro da UENF, visando a implementação da seleção assistida por marcadores na cultura.

Após o processo de limpeza dos dados, um conjunto de 1.370 SNPs polimórficos e de alta qualidade foram disponibilizados para estudos de diversidade, mapeamento ou estudos de associação; etapa 6 – o conjunto de 1.370 SNPs foi, então, submetido a análise de co-segregação para construção do mapa genético de ligação utilizando o programa JoinMap. Um total de 1.235 marcadores SNPs foram agrupados em 10 grupos de ligação (GL), estando o cromossomo 1 dividido em dois subgrupos pequenos (GL9 e GL10); etapa 7 – o mapa genético juntamente com os dados genotípicos e fenotípicos da população F₂ foram utilizados para a análise de QTLs por intervalo composto através do software R, utilizando o pacote R/qtl. Essa análise foi realizada para 14 características. As etapas 8, 9, 10 e 11 foram realizadas neste trabalho e serão descritas com detalhes a seguir.

4.1. Identificação dos SNPs associados a QTLs

Para a identificação dos SNPs associados a QTLs foram utilizados dados de 14 características quantitativas que são estudadas no melhoramento do mamoeiro, sendo elas relacionadas à qualidade de frutos: Teor de sólidos solúveis (TSS), Firmeza interna ou da polpa (FI), Firmeza externa ou do fruto (FE), Espessura da polpa (ESP), Diâmetro do fruto (DF), Comprimento do fruto (COMP), Peso de frutos (PESO); e a produtividade: Altura de planta (AP), Diâmetro do caule (DC), Número de frutos comerciais (NFC), Número de frutos totais (NFT), Produção (PROD), Número de frutos deformados (NFD) e número de nós sem fruto (NNSF).

O SNP mais próximo de cada QTL foi identificado através da função: >find.marker (tss.a, 1, 113.2) pelo *software* R/qtl. Como exemplo, foi utilizado o QTL_1 identificado para teor de sólidos solúveis. O nome do QTL é 1@113.2, onde 1 significa o grupo de ligação (GL) e 113.2 a posição do QTL no mapa, e a expressão tss.a significa o nome do arquivo contendo as informações genotípicas e fenotípicas da população. Para identificar os SNPs associados aos outros QTLs procedeu-se a substituição das posições do QTL no mapa genético na função.

4.2. Desenvolvimento dos marcadores SNAP

Os pares de *primers*, citados neste trabalho como marcadores SNAP, foram desenhados seguindo a metodologia desenvolvida por Drenkard et al. (2000). Para o desenho dos SNAPs, cada SNP teve a sua localização acessada diretamente no genoma de referência do mamoeiro (Ming et al., 2008). O genoma do mamoeiro está disponível na base de dados do NCBI, podendo ser realizado o *download* do genoma por completo, por *supercontigs* ou por *contigs*. Neste trabalho, foi realizado o *download* das sequências através de *supercontigs* e *contigs*.

Para a visualização das sequências e localização da posição de cada SNP no genoma, foi utilizado o *software SnapGene® Viwer 3.3.3*. Uma vez determinada a posição do SNP, foi copiado um segmento de cerca de 1000 nucleotídeos (500 nucleotídeos para cada lado do SNP) que foi submetido ao programa *PRIMER1* para desenho de *primers* para os marcadores SNAP, disponível no *Web site* (http://primer1.soton.ac.uk/primer1.html).

Os parâmetros para desenho dos pares de *primers* foram definidos da seguinte forma: tamanho ótimo (20 bases), mínimo (18 bases) e máximo (22 bases) de *primer*, tamanho ótimo (300 bases), máximo (500 bases) e mínimo (100 bases) do produto de PCR; diferença de tamanho relativo máximo (3x) e mínimo (1,4x) entre os dois produtos de PCR; temperatura de anelamento ótima (65 °C), máxima (80 °C) e mínima (40 °C); os outros parâmetros foram definidos como padrões.

O programa *PRIMER1* é capaz de gerar dezenas de diferentes combinações de pares de *primers* para um mesmo SNP *locus*, permitindo ao pesquisador a escolha das melhores combinações. No entanto, apenas um par de *primers* para cada alelo do SNP é necessário para a genotipagem. Em vista disso, as diferentes opções de *primers* foram testadas pela ferramenta *NetPrimer* (PREMIER Biosoft, 2018) para verificar a existência de estruturas secundárias intra ou intermoleculares.

A eficiência de cada *primer* individualmente pode ser calculada pela presença de estruturas do tipo *self dimer* e *hairpin*, onde o valor é dado pelo *Rating*, que pode ser calculado pela expressão:

Rating =
$$100 + ((\Delta G (Dimer) * 1.8) + (\Delta G (Hairpin) * 1.4))$$

Outro parâmetro muito importante que determina a compatibilidade dos *primers* é a temperatura de *melting* (Tm). A fórmula utilizada pelo *NetPrimer* é baseada na teoria da termodinâmica do vizinho mais próximo, descrita por Freier et al. (1986), calculando a Tm de cada *primer* de forma muito eficiente.

Diante dos parâmetros acima citados para desenho e análise dos *primers*, as melhores combinações de *primers* foram escolhidas para cada SNP, onde foi escolhido um par de *primer* para cada alelo. Foram escolhidos os melhores pares seguindo a compatibilidade da Tm (<4 °C) entre *primers* do mesmo par; diferença do produto de PCR entre os dois alelos maior que 60 pb; *primers* com o mais alto *Rating* e, consequentemente, com *self dimer* e *hairpin* mais próximos de zero; e *cross dimer* entre os *primers* F e R mais próximos de zero.

No entanto, não foi possível seguir fielmente todos os parâmetros definidos para o desenho de sequências de *primers* para alguns SNPs. Assim,

foram adicionados índices nas planilhas dos marcadores SNAPs para indicar quando um *primer* possui uma característica fora dos parâmetros considerados desejados. Esses índices foram MSL (indicando que o *primer* alelo-específico possui mais de um sítio de ligação, podendo gerar bandas inespecíficas durante a PCR); Tml (quando a Tm dos *primers* F e R do SNAP possuem uma diferença superior a 4 °C); SBQ (significando SNAP de baixa qualidade, pois, o *primer* alelo-específico possui *Rating* inferior a 70%); CDF (presença de *cross dimer* forte, sendo inferior a -6). Além disso, não possível o desenho de SNAPs para alguns SNPs, pois, nenhum dos alelos do SNP foi compatível com o genoma de referência (AI — alelos incompatíveis) ou a sequência próxima ao SNP era muito pequena (SMP — sequência muito pequena) para desenho dos *primers*.

Foi criado um banco de dados contendo as sequências de *primers* e todos os parâmetros de qualidade dos marcadores SNAP para todos os SNPs associados às características de interesse agronômico identificadas neste estudo de desenvolvimento de marcadores moleculares.

4.3. Validação dos marcadores SNAP

Todas as análises para validação dos marcadores SNAPs foram realizadas no Setor de Marcadores de DNA do Laboratório de Melhoramento Genético Vegetal da Universidade Estadual do Norte Fluminense Darcy Ribeiro (LMGV/UENF). Para isso, foram sintetizados *primers* para 12 marcadores SNAPs correspondentes a seis SNPs *loci* (Tabela 1). Foi escolhido o SNP associado ao QTL de maior efeito para cada uma das características TSS, FI, FE, COMP, ESP e DF para a validação.

					_
Característica	QTL	SNP ID	Alelos	%Var	
TSS	11_8@50.0	9_366188_LG5	[T/G]	15,30	
FI	14_10@17.5	14_1604543_LG1	[T/C]	17,89	
FE	8_4@154.9	157_123015_LG6	[C/T]	23,22	
ESP	1_1@347.4	129_404685_LG2	[A/G]	17,36	
DF	12_5@433.5	3148_6446_Un	[A/G]	20,86	
COMP	7_5@107.5	61_1220909_LG7	[C/T]	13,35	
	Característica TSS FI FE ESP DF COMP	CaracterísticaQTLTSS11_8@50.0FI14_10@17.5FE8_4@154.9ESP1_1@347.4DF12_5@433.5COMP7_5@107.5	CaracterísticaQTLSNP IDTSS11_8@50.09_366188_LG5FI14_10@17.514_1604543_LG1FE8_4@154.9157_123015_LG6ESP1_1@347.4129_404685_LG2DF12_5@433.53148_6446_UnCOMP7_5@107.561_1220909_LG7	CaracterísticaQTLSNP IDAlelosTSS11_8@50.09_366188_LG5[T/G]FI14_10@17.514_1604543_LG1[T/C]FE8_4@154.9157_123015_LG6[C/T]ESP1_1@347.4129_404685_LG2[A/G]DF12_5@433.53148_6446_Un[A/G]COMP7_5@107.561_1220909_LG7[C/T]	CaracterísticaQTLSNP IDAlelos%VarTSS11_8@50.09_366188_LG5[T/G]15,30FI14_10@17.514_1604543_LG1[T/C]17,89FE8_4@154.9157_123015_LG6[C/T]23,22ESP1_1@347.4129_404685_LG2[A/G]17,36DF12_5@433.53148_6446_Un[A/G]20,86COMP7_5@107.561_1220909_LG7[C/T]13,35

Tabela 1 — QTLs e SNPs utilizados para desenho e validação dos SNAPs

%Var – Porcentagem da variação fenotípica explicada pelo QTL.

4.3.1. Preparo dos marcadores SNAPs

Foram sintetizados um total de 24 sequências de *primers* que foram recebidas em tubos individuais contendo apenas os oligonucleotídeos. Cada tubo foi centrifugado por 10 minutos a 14 mil rpm para garantir que não fosse perdido material possivelmente grudado na tampa do tubo. Em seguida, foi adicionada solução TE (Tris-EDTA) em cada tubo para que os *primers* atingissem o volume de 100 microlitros (µI), de acordo com o fabricante. Essa solução foi armazenada em temperatura ambiente por 24 horas para a completa solubilização dos *primers*.

Os *primers* individuais foram quantificados no aparelho espectrofotômetro NanoDrop® 2000c (*Thermo Scientific*®). Inicialmente o equipamento foi calibrado utilizando TE como padrão. Para a análise dos *primers* foi pipetado dois microlitros no pedestal do equipamento e foi realizada a leitura. O ponto de leitura do equipamento foi devidamente limpo antes de iniciar uma nova análise.

Para a diluição dos *primers* para a concentração de trabalho de cinco μ M (2,5 μ M de cada F e R *primers*) uma amostra da solução estoque, calculada pela expressão: C₁V₁=C₂V₂, foi pipetada e foi adicionada a um novo tubo. Nesta etapa os *primers forward* e *reverse* foram colocados juntos para formar o SNAP de cada alelo.

4.3.2. Extração e preparo do DNA genômico

O DNA foi extraído através do Kit-DNeasy® plant mini kit-50 (Qiagen), seguindo a metodologia descrita pelo fabricante. Foram utilizadas folhas

jovens dos parentais Sekati e JS-12. Também foi extraído o DNA de 10 indivíduos aleatoriamente escolhidos da população segregante F₂. O DNA dos indivíduos foi quantificado no aparelho espectrofotômetro *NanoDrop*® 2000c (*Thermo Scientific*®) e diluído para concentração de trabalho de cinco ng/µl. O DNA dos indivíduos da F₂ foi misturado em *bulk*.

4.3.3. Gradiente de temperatura

Foi realizado um gradiente de temperatura para identificar a temperatura de amplificação ótima para cada SNAP. Nessa etapa foi utilizado apenas o DNA do *bulk* F₂, pois, teoricamente, todos os diferentes alelos estariam presentes. Todas as temperaturas testadas estão apresentadas na Tabela 2.

Tabela 2 — Gradiente de temperatura para SNAPs

SNAPs	Ta/gradiente °C
TSS_11_8@50.0_[T]	50, 51, 52, 53, 54, 55
TSS_11_8@50.0_[G]	48, 50, 52
FI_14_10@17.5_[T]	46, 48, 50
FI_14_10@17.5_[C]	46, 48, 50
FE_8_4@154.9_[T]	51, 53, 55
FE_8_4@154.9_[C]	51, 53, 55
ESP_1_1@347.4_[A]	56, 58, 60, 62, 64
ESP_1_1@347.4_[G]	46, 48, 50
DF_12_5@433.5_[A]	54, 56, 58
DF_12_5@433.5_[G]	48, 50, 52
COMP_7_5@107.5_[C]	50, 52, 54
COMP_7_5@107.5_[T]	48, 50, 52

Ta = temperatura de anelamento.

Para a reação de PCR foram utilizados os seguintes reagentes em suas determinadas concentrações: PCR buffer 1X (NH₄)₂SO₄; 0,23 ng de cada dNTP; 1,92 mM de MgCl₂; 0,6 U de Taq DNA Polimerase (*Platus Taq* DNA Polymerase — Sinapse Inc); 0,4 μ M de *primer* (F + R); 10 ng de DNA (*bulk*); e por final a reação foi completada até 13 μ I com água ultra pura em microtubos de PCR de 200 μ L (KASVI K4-200-8).

A PCR foi realizada em termociclador modelo Veriti[™] 96-*Well* (*Applied Biosystems*[™]). O programa de PCR para o gradiente foi configurado da seguinte forma: um ciclo de desnaturação inicial a 95 °C por sete minutos; 35 ciclos de desnaturação a 95 °C por um minuto, anelamento dos *primers* a 46 a 63 °C (conforme a Ta de cada *primer*) por um minuto, e extensão do *primer* a 72 °C por um minuto; um ciclo final de extensão por sete minutos.

4.3.4. Validação dos SNAPs em singleplex e multiplex

A etapa anterior serviu como base para determinar as temperaturas ótimas de cada SNAP. Para a validação dos marcadores SNAPs, as melhores temperaturas de amplificação foram escolhidas.

Foram utilizadas duas estratégias para a validação: inicialmente todos os SNAPs foram testados em *singleplex*, onde para cada reação apenas um SNAP era utilizado. Os resultados dessa análise foram a presença de banda em um parental (parental específico) e, obrigatoriamente, a ausência de bandas no outro parental (parental não-específico) para cada SNAP. As reações utilizando o DNA do *bulk* deveriam, independente do SNAP, apresentar a banda de tamanho específico. Desta forma, os resultados obtidos deveriam reproduzir exatamente o genótipo dos indivíduos utilizados. A segunda estratégia foi a análise dos SNAPs em *multiplex*. Para isto, foram adicionados os dois SNAPs referentes aos dois alelos do mesmo SNP em cada reação.

A PCR foi realizada utilizando os seguintes reagentes em suas determinadas concentrações: PCR buffer 1X ((NH₄)₂SO₄); 0,23 ng de cada dNTP; 1,92 mM de MgCl₂; 0,6 U de *Taq* DNA Polimerase; 0,4 μM de *primer* (F + R) para *singleplex* ou 0,8 μM de *primer* (F1 e R1 + F2 e R2); 10 ng de DNA (*bulk*); e, por final, a reação foi completada até 13 μl com água ultra pura.

Em ambas as estratégias, o programa de PCR foi configurado da seguinte forma: um ciclo de desnaturação inicial a 95 °C por sete minutos; 30 ciclos de desnaturação a 95 °C por um minuto, anelamento dos *primers* a 46 a 63 °C (conforme a Ta de cada *primer*) por um minuto, e extensão do *primer* a 72 °C por um minuto; um ciclo final de extensão por sete minutos.

4.3.5. Eletroforese

Os produtos de PCR das amostras analisadas foram corados com seis µl do mix *GelRed*TM e *Blue Juice* na proporção de 1:1. Em seguida, foram aplicadas em gel a 4% (3,4% de agarose *Metaphor* e 0,6% de agarose comum) em cuba de eletroforese de 150 mL. A amperagem foi fixada em 0,4 A e o tempo de corrida variou de uma a três horas. A imagem do gel foi feita pelo sistema de foto documentação *MiniBis Pro* (*Bio-imaging Systems*). Utilizou-se o marcador *High DNA Mass Ladder* de 100 pb (Invitrogen, USA) para identificar o tamanho dos fragmentos amplificados.

4.4. Anotação de genes candidatos

A anotação gênica foi realizada para 186 SNPs associados a QTLs para características agronomicamente importantes para o melhoramento do mamoeiro. O mapa que foi utilizado para a análise de QTLs possui um tamanho de 3.442,3 cM (Centimorgan) e uma densidade de marcadores de um SNP a cada 2,8 cM. Assim, todos os genes, independentes da função, foram anotados em uma região de aproximadamente quatro cM próxima a cada SNP. Considerando o tamanho total do genoma do mamoeiro de aproximadamente 372 milhões de pares de bases (pb), a região de quatro cM do mapa genético representou, aproximadamente, 400 kpb, onde foram anotados todos os genes presentes em 200 kpb em cada lado do SNP.

Para a busca dos genes na região próxima a cada SNP foi utilizado o NCBI *Genome Browser* (Figura 4) e inicialmente foram anotados todos os IDs gênicos na região analisada. A lista com todos IDs para cada SNP foi utilizada para selecionar manualmente cada gene do mamoeiro na página disponível em: https://www.ncbi.nlm.nih.gov/gene/?term=papaya. Assim que todos os genes foram selecionados, foi gerado um arquivo de texto tabular contendo a descrição dos genes. Esse processo foi realizado para cada SNP e ao final foi desenvolvida uma planilha para cada característica contendo todos os genes identificados por característica e outra planilha contendo todos os genes para todas as características. Além disso, foi incluído nas planilhas o número de genes, o início, o fim e o tamanho da região genômica acessada em relação a cada SNP.

Figura 4 — Exemplo do NCBI *Genome Browser,* Janela de 50 kpb (kilo par de bases). A linha verde na vertical (1) representa a posição do SNP 157_123015_GL6 associado ao QTL FE_8_4@154.9. A barra verde (3) representa a sequência genômica linear. A barra preta (2) indica a presença de GAP. Alguns *loci* gênicos estão representados pelo número 4. Ao todo, podem ser observados seis *loci* gênicos nesta janela.

5. RESULTADOS E DISCUSSÕES

5.1. Identificação dos SNPs associados a QTLs

Foram identificados SNPs associados a QTLs de 14 características quantitativas importantes para o melhoramento do mamoeiro (Tabela 3). O número de QTLs por característica variou de quatro para número de frutos deformados a 31 para altura da planta. A porcentagem de variação fenotípica total explicada (%Vart) pelos QTLs para cada característica variou de 39,55% para número de frutos deformados a 99,33% para produção (Tabela 3).

Inicialmente foram construídas tabelas com informações fornecidas pela análise de QTLs. Essas informações foram a posição do QTL no mapa genético, dado pelo GL seguido pela posição em cM; a porcentagem da variação fenotípica explicada (%Var) por cada QTL, individualmente; o LOD (*Logarithm of odds*) de cada QTL; e a significância (F).

Em relação à nomeação dos QTLs, foi preservado o nome original, adicionando-se apenas uma numeração sequencial no início do nome para facilitar o manuseio e o entendimento dos dados.

Ca	racterísticas	Número de QTLs	%Var _t	SNPs comuns
	TSS	14	72,40	4
so	FI	14	84,68	1
s d	FE	14	63,00	4
lad uto	ESP	16	81,01	4
fr	DF	18	97,43	4
Qu	COMP	15	81,94	6
	PESO	12	64,92	1
	NFT	20	98,30	9
ade	NFC	16	91,56	10
ida	NFD	4	39,55	2
ıtiv	NNSF	13	72,12	2
pqr	DC 8		64,08	3
010	<u>е</u> АР 31		99,02	9
<u> </u>	PROD 30		99,33	11
	Total	225	-	70

Tabela 3 — Número de QTLs com alta significância, %Vart e número de SNPs em comum

%Vart – Porcentagem da variação fenotípica total explicada por todos QTLs identificados para cada característica.

As informações da posição do QTL foram utilizadas para identificar o marcador SNP mais próximo a cada QTL. As informações das marcas foram utilizadas para identificar o genótipo de cada uma delas e, também, a qual parental que cada alelo do SNP era específico. Essas informações foram obtidas no arquivo VCF (*variant call format*) gerado após a identificação dos SNPs na população de mapeamento (dados não publicados). Essas informações foram adicionadas às tabelas (Tabela 4-17).

Após a identificação de todos os SNPs foi observado que alguns deles estavam associados a mais de um QTL em diferentes características. Estes SNPs foram chamados de SNPs comuns, onde a característica produção mostrou o maior número (11) e as características firmeza interna e peso de frutos o mínimo (1) (Tabela 3). Isto demonstra que QTLs associados a uma determinada característica podem estar correlacionados a QTLs de outras características, como observado por Celik et al. (2017) em *Solanum pimpinellifolium*. De fato, isso já era esperado e pode ser explicado pela ação pleitrópica de alguns genes, que podem afetar múltiplas características (Hodgkin, 1998).

Em mamoeiro, várias características consideradas complexas estão fortemente correlacionadas e podem auxiliar na seleção simultânea ou indireta dessas, conforme trabalhos desenvolvidos por Silva et al. (2007); Ide (2008); Quintal (2009) e Silva et al. (2016), indicando efeitos gênicos pleiotrópicos. Segundo Carvalho et al. (2004), os coeficientes de correlação seguem uma magnitude de valores, onde valores iguais a zero, a correlação é nula, valores de zero a 0,30, é fraca, de 0,30 a 0,60, é média, de 0,60 a 0,90, é forte, e de 0,90 a 1,00 é fortíssima. Desta forma, foi adicionado às tabelas desenvolvidas uma última coluna que indica quando um SNP está associado a mais de um QTL (Tabelas 4-17).

A análise de QTLs permite a identificação de regiões cromossômicas contendo *loci* para características quantitativas, sendo possível estimar a porcentagem da variação fenotípica explicada (%Var) por cada QTL e, assim, revelar QTLs com maior variação fenotípica explicada do que outros. Esse efeito do QTL é caracterizado pela diferença nas médias fenotípicas observada entre os grupos genotípicos do QTL. Além disso, o efeito também pode ser chamado de herdabilidade devido ao QTL. Os QTLs que apresentam uma porcentagem da variação fenotípica explicada mais alta são considerados de efeito principal ou *major* QTLs. Embora não haja um valor fixo que delimite o limite entre QTLs principais e de baixo efeito (*minor* QTLs), Eduardo et al. (2012) consideram que os QTLs principais (*major*) possuem uma %Var acima de 20%. No presente estudo, foi considerado que os *majores* QTLs são os que possuem uma %Var acima de 15%.

Fan et al. (2005) discutem que apesar de os QTLs principais serem frequentemente os maiores responsáveis em determinar as características, as interações entre QTLs de baixo efeito podem possuir grande influência na expressão das características. Além disso, os efeitos dos QTLs principais e de baixo efeito estão sujeitos às condições ambientais, podendo sofrer diferenças dramáticas no fenótipo.

Foi realizada uma verificação na base de dados do Phytozome e, também, no genoma do mamoeiro disponível na base de dados do NCBI para confirmar a compatibilidade de um dos alelos do SNP com o genoma de referência, onde o outro alelo seria uma forma alternativa. Alguns SNPs não tiveram nenhuma base compatível com o genoma de referência e não foram utilizados para desenho de marcadores SNAPs. Serão descritos com detalhes os resultados obtidos para cada característica estudada a seguir.

5.1.1. Características relacionadas à qualidade dos frutos

A característica teor de sólidos solúveis (TSS) apresentou 14 QTLs (Tabela 4), que explicaram 72,4% da variação fenotípica total observada. A porcentagem da variação fenotípica individual explicada por cada QTL variou de 2,34 a 15,3% e o LOD de 3,02 a 16,38.

Tabela 4 — QTLs e SNPs associados à característica teor de sólidos solúveis com respectivas %Var, LOD, significância (F), genótipo dos parentais, e SNPs comuns associados a QTLs de outras características

	Posição do	SNP	%Var		F	P1	P2	SNP
QTE	SNP	ON	70 V UI	LOD	•		1 2	comum
1_1@113.2	1380_1407_Un	[A/G]	6,50	7,85	***	А	G	FE_3 PROD 2
2_1@421.1	6_2014486_LG2	[C/T]	10,60	12,07	***	С	Т	PROD_6
3_3@190.8	150_307482_LG3	[G/A]	11,93	13,34	***	А	Т	
4_3@381.2	43_1670432_LG3	[T/A]	3,12	3,98	**	А	G	
5_3@382.5	73_435582_LG3	[T/C]	4,37	5,45	***	С	Т	
6_4@2.5	567_34739_LG6	[T/G]	4,84	6,00	**	Т	G	
7_4@151.8	157_169542_LG6	[T/C]	2,34	3,02	**	С	Т	DC_6
8_5@17.5	46_1453648_LG7	[T/C]	11,26	12,71	***	С	Т	ESP_3 COMP_6
9_7@294.6	31503_4573_Un	[T/C]	14,50	15,68	***	С	Т	
10_7@349.2	3_282658_LG8	[G/T]	5,35	6,58	**	Т	G	
11_8@50.0	9_366188_LG5	[T/G]	15,30	16,38	***	Т	G	
12_8@252.5	184_102693_LG5	[C/A]	5,12	6,31	***	С	А	
13_8@260.5	96_370426_Un	[G/A]	2,39	3,09	**	А	G	
14_10@53.3	108_734372_Un	[C/T]	8,99	10,47	***	Т	С	

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; ***significante a $P \le 0.001$).

O GL3 apresentou o maior número de QTLs (3), seguido pelos GL5 (2), GL6 (2) e os GL2, GL7 e GL8 com um QTL cada. Foram identificados quatro

QTLs em GL desconhecidos. Os SNPs 567_34739_LG6 e 184_102693_LG5 associados aos QTLs TSS_6_4@2.5 e TSS_12_8@252.5, respectivamente, não tiveram nenhum de seus alelos compatíveis com o genoma de referência e, assim, não foram utilizados para desenho de *primers* dos marcadores SNAPs.

Foi identificado um QTL de efeito principal para teor de sólidos solúveis, sendo o QTL 11_8@50.0 (%Var = 15,30). Foram identificados quatro SNPs associados a QTLs de outras características (Tabela 4), mostrando que existe correlação genética entre as características. O SNP 1380_1407_Un associado ao QTL TSS_1_1@113.2 (%Var = 6,50) também está associado ao QTL FE_3_1@112.5 (%Var = 5,60) e ao QTL PROD_2_1@113.2 (%Var = 0,34). De acordo com Quintal (2009), as características teor de sólidos solúveis e FE possuem correlação fenotípica e genotípica consideradas altas, no entanto, negativas ($R^2 = -0.72 e -0.79$, respectivamente) e teor de sólidos solúveis, com produção a correlação genotípica, é considerada média e negativa ($R^2 = -0.54$). Neste sentido, o SNP 6_2014486_LG2 associado ao QTL TSS_2_1@421.1 (%Var = 10,60) também foi identificado para o QTL PROD_6_1@392.5 (%Var = 0,76). Segundo o mesmo autor, a característica teor de sólidos solúveis possui correlação forte e negativa com o comprimento do fruto e a espessura da polpa $(R^2 = -0.78 \text{ e} -0.85, \text{ respectivamente})$. Isso explica porque o SNP 46_1453648_LG7 associado ao QTL TSS_8_5@17.5 (%Var = 11,26) também está associado aos QTLs COMP_6_5@17.5 (%Var = 3,01) e ESP_3_5@14.8 (%Var = 7,82). Não foi possível identificar na literatura se existe correlação entre teor de sólidos solúveis e o diâmetro do caule, embora tenha sido identificado um QTL em comum entre as duas características (Tabela 4).

Segundo Quintal (2009), todas estas características correlacionadas negativamente com o teor de sólidos solúveis, podem interferir na produtividade final de um genótipo, logo, tal situação revela a um melhorista que uma atenção redobrada deve ser tomada durante a seleção de genótipos com maior produtividade e doçura.

A característica firmeza interna (FI) apresentou 14 QTLs, que explicaram 84,68% da variação fenotípica total observada (Tabela 5). A porcentagem da variação fenotípica individual dos QTLs variou de 2,71 a 17,89% e o LOD de 6,05 a 28,73. O GL2 apresentou o maior número de QTLs (3), seguido pelos GL1 e GL7 com dois QTLs cada.

Tabela 5 — QTLs e SNPs associados à característica firmeza interna com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP
	_			-				comum
1_1@75.0	12_1519363_LG2	[T/C]	4,25	9,10	***	С	Т	
2_1@105.6	77_790129_LG2	[C/T]	4,09	8,79	***	Т	С	
3_1@133.1	25_759834_LG2	[C/G]	10,22	18,97	***	С	G	
4_3@207.5	37_1312392_LG3	[C/G]	2,71	6,05	***	G	С	
5_4@210.0	59_910583_LG6	[C/G]	6,87	13,76	***	G	С	
6_5@224.9	82_44613_Un	[T/C]	4,30	9,19	***	Т	С	
7_5@260.5	7_2113087_LG7	[T/C]	9,57	18,02	***	Т	С	
8_5@301.8	27_1084946_LG7	[A/G]	4,53	9,62	***	А	G	
9_5@412.5	152_478513_LG10	[T/C]	8,62	16,58	***	Т	С	
10_6@465.0	53_157623_LG9	[G/T]	13,50	23,46	***	G	Т	AP_17
11_7@242.5	4_1693602_LG8	[G/T]	7,81	15,29	***	Т	G	
12_8@339.8	103_104445_LG5	[T/G]	12,49	22,14	***	G	Т	
13_9@70.0	286_3391_LG1	[C/T]	10,15	18,88	***	С	Т	
14_10@17.5	14_1604543_LG1	[T/C]	17,89	28,73	***	Т	С	

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; **significante a $P \le 0.001$).

Os grupos de ligação 3, 5, 6, 8, 9 e 10 apresentaram um QTL cada. Foi identificado apenas um QTL em grupo de ligação desconhecido. O QTL FI_14_10@17.5 foi o único considerado de efeito principal, explicando 17,89 da %Var. Apesar de as características firmeza interna e firmeza externa de frutos possuírem correlação fenotípica e genotípica fortíssima ($R^2 = 0,96 e 0,97$, respectivamente; Quintal, 2009), não foi identificado nenhum QTL correlacionado entre firmeza interna e firmeza externa. Apenas o SNP 53_157623_LG9 associado ao QTL FI_10_6@465.0 (%Var = 13,50) esteve associado a QTL de outra característica, o QTL AP_17_6@502.5 (%Var = 0,41).

A característica firmeza externa apresentou 14 QTLs (Tabela 6), que explicaram 63% da variação fenotípica total observada. A porcentagem da variação fenotípica explicada por cada QTL individual variou de 2,22 a 23,22% e o LOD de 3,89 a 13,6. Foram identificados três QTLs no GL8 e nos GL2, GL4 e GL3 dois QTLs cada. Foram identificados cinco QTLs em grupo de ligação desconhecido (Tabela 6).

Tabela 6 — QTLs e SNPs associados à característica firmeza externa com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1_1@27.5	80_351371_LG2	[C/T]	12,93	7,58	***	Т	С	
2_1@52.5	12_113370_LG2	[T/C]	6,97	12,24	***	С	Т	
3_1@112.5	1380_1407_Un	[A/G]	3,19	5,60	**	А	G	TSS_1 PROD_2
4_2@350.0	163_297115_LG4	[C/T]	22,28	7,83	***	С	Т	PESO_3
5_2@427.5	169_458549_LG4	[C/T]	4,66	8,18	***	С	Т	
6_2@567.6	521_82654_Un	[T/A]	3,82	6,71	**	А	Т	
7_4@122.5	84_743981_LG6	[T/C]	5,51	9,68	***	С	Т	
8_4@154.9	157_123015_LG6	[C/T]	23,22	13,60	***	С	Т	
9_4@325.0	1603_15926_Un	[G/A]	2,22	3,89	*	А	G	
10_7@72.5	166_320487_LG8	[C/T]	6,80	11,94	***	Т	С	
11_7@305.0	3_2220266_LG8	[T/C]	9,65	5,65	***	С	Т	
12_7@332.5	3_1242097_LG8	[C/T]	2,66	4,67	*	Т	С	
13_8@127.5	731_3422_Un	[C/T]	22,00	12,89	***	С	Т	PROD_27
14_8@360.0	195_376088_Un	[T/C]	2,33	4,09	*	С	Т	ESP_13 NFT_16

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; **significante a $P \le 0.001$).

Os QTLs FE_4_2@350.0, FE_8_4@154.9 e FE_13_8@127.5 explicando 22,28, 23,22 e 22,0% da variação fenotípica observada foram considerados QTLs de efeito principal para a característica firmeza externa de frutos. Foi constatado que o SNP 1380 1407 Un associado ao QTL (%Var = 3,19) também FE 3 1@112.5 está associado aos QTLs TSS_1_1@113.2 (%Var = 6,50) e PROD_2_1@113.2 (%Var = 0,34). A firmeza externa é correlacionada negativamente com o teor de sólidos solúveis e positivamente com а produção de frutos (Quintal, 2009). 0 SNP 163_297115_LG4 associado ao QTL de efeito principal FE_4_2@350.0 (%Var = 22,28) também está associado ao QTL PESO_3_2@346.0 (%Var = 4,62). Segundo Quintal (2009), a correlação genotípica entre firmeza externa e peso de frutos é média (R^2 = 0,58). A característica firmeza externa apresentou um segundo QTL correlacionado com a produção, sendo o SNP 731_3422_Un que está associado ao QTL de efeito principal FE_13_8@127.5 (%Var = 22,0) e ao QTL PROD_27_8@127.5 (%Var = 0,87). Além disso, foi identificado que o SNP 195_376088_Un associado ao QTL FE_14_8@360.0 (%Var = 2,33) também está associado aos QTLs ESP_13_8@347.5 (%Var = 5,04) e NFT_16_8@342.5 (%Var = 1,81). A firmeza externa de frutos possui correlação genotípica forte com a espessura da polpa ($R^2 = 0,72$) e média, porém, negativa com o número de frutos totais ($R^2 = -0,50$) (Quintal, 2009).

A característica espessura da polpa (ESP) apresentou 16 QTLs (Tabela 7), que explicaram 81,01% da variação fenotípica total observada. A variação fenotípica explicada por cada QTL individual variou de 1,37 a 20,03% e o LOD de 2,59 a 26,74. Os grupos de ligação 7, 8 e 9 apresentaram dois QTLs cada, enquanto os grupos de ligação 1, 2 e 3 apresentaram apenas um QTL cada. Foram identificados sete QTLs em grupo de ligação desconhecido (Tabela 7).

Tabela 7 — QTLs e SNPs associados à característica espessura da polpa com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1_1@347.4	129_404685_LG2	[A/G]	17,36	24,12	Α	G	***	
2_4@112.5	1183_495_Un	[C/A]	20,03	26,74	А	С	***	PROD_16
3_5@14.8	46_1453648_LG7	[T/C]	7,82	12,81	С	Т	***	TSS_8 COM_6
4_5@79.0	1287_9981_Un	[T/G]	11,12	17,12	Т	G	***	
5_5@171.1	61_369004_LG7	[A/G]	3,36	6,05	А	G	***	
6_5@262.5	46171_471_Un	[A/G]	1,91	3,56	А	G	**	
7_5@295.4	530_13431_Un	[C/T]	6,07	10,29	С	Т	***	
8_6@57.5	139_478290_LG9	[C/T]	10,87	16,80	С	Т	***	
9_6@386.3	19_1324850_LG9	[C/T]	6,68	11,19	С	Т	***	
10_7@117.5	17_537051_LG8	[A/C]	3,58	6,41	С	Α	***	
11_7@340.0	3_754190_LG8	[C/T]	1,37	2,59	С	Т	*	
12_8@153.4	9_2470312_LG5	[T/C]	6,32	10,67	С	Т	***	
13_8@347.5	195_376088_Un	[T/C]	5,04	8,75	С	Т	***	FE_14 NFT 16
14_9@0.0	64_778855_LG1	[T/C]	6,00	10,19	Т	С	***	DF_18
15_10@67.5	3022_1150_Un	[T/C]	11,76	17,90	С	Т	***	
16_10@87.5	170_320831_Un	[T/C]	1,54	2,90	С	Т	*	

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; ***significante a $P \le 0.001$).

Essa característica apresentou dois QTLs de efeito principal, sendo eles os QTLs ESP_1_1@347.4 e ESP_2_4@112.5, explicando 17,36 e 20,03% da %Var, respectivamente. O SNP 1183_495_Un associado ao QTL ESP_2_4@112.5 também foi identificado para o QTL PROD_16_4@105.0 (%Var = 0,35). Segundo Quintal (2009), essas duas características possuem correlação genotípica forte ($R^2 = 0,69$) e fenotípica média ($R^2 = 0,47$). Foi observado que o SNP 46_1453648_LG7 está associado aos QTLs ESP_3_5@14.8 (%Var = 7,82), TSS_8_5@17.5 (%Var = 11,26) e COMP_6_5@17.5 (%Var = 3,01). A espessura da polpa possui correlação genotípica forte e positiva com o comprimento do fruto ($R^2 = 0,82$) e correlação forte, mas negativa, com o teor de sólidos solúveis ($R^2 = -0,85$) (Quintal, 2009).

A espessura da polpa de frutos de mamão possui correlação genotípica forte com a firmeza externa ($R^2 = 0.72$), onde foi observado que o SNP 195_376088_Un está associado aos QTLs ESP_13_8@347.5 (%Var = 5.04) e FE_14_8@360.0 (%Var = 2.33). Esse mesmo SNP também está associado ao QTL NFT_16_8@342.5 (%Var = 1.81), no entanto, a correlação entre espessura da polpa e número de frutos totais é considerada fraca (Quintal, 2009). Este mesmo autor constatou que a correlação genotípica entre a espessura da polpa e o diâmetro do fruto é altíssima ($R^2 = 0.91$), assim, pode-se observar que o SNP 64_778855_LG1 tem associação com os QTLs ESP_14_9@0.0 (%Var = 6.0) e DF_18_10@5.0 (%Var = 13.84).

A característica diâmetro de fruto (DF) apresentou 18 QTLs (Tabela 8), que explicaram 97,43% da variação fenotípica total observada. A porcentagem da variação fenotípica individual dos QTLs variou de 0,41 a 20,86% e o LOD de 5,54 a 82,13. Os grupos de ligação 1, 2, 3, 5, 6 e 9 apresentaram dois QTLs cada, enquanto que os grupos de ligação 7, 8 e 10 apresentaram apenas um QTL cada. Foram identificados três QTLs em grupo de ligação desconhecido. O SNP 7_457029_LG7 associado ao QTL DF_10_5@283.0 não teve nenhum alelo compatível com o genoma de referência e, assim, não foi utilizado para o desenho de *primers* (Tabela 8).

Tabela 8 — QTLs e SNPs associados à característica diâmetro de fruto com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1_1@146.0	296_98549_LG2	[A/G]	1,60	17,98	***	А	G	
2_1@211.7	1749_9182_Un	[G/A]	2,14	22,52	***	G	Α	
3_1@295.5	6_3167356_LG2	[C/T]	6,65	47,49	***	С	Т	
4_2@281.1	258_27643_Un	[A/G]	1,96	21,07	***	А	G	
5_2@552.5	17_1911513_LG8	[C/T]	0,55	7,26	***	Т	С	
6_3@241.6	20_480105_LG3	[A/T]	3,66	32,91	***	А	Т	
7_3@331.6	426_10821_LG3	[C/T]	11,31	62,69	***	Т	С	
8_4@185.5	44_753691_LG6	[G/C]	2,94	28,37	***	С	G	
9_4@208.0	165_169795_LG6	[T/C]	3,76	33,52	***	С	Т	
10_5@283.0	7_457029_LG7	[A/G]	14,90	71,24	***	А	G	
11_5@357.5	152_255842_LG10	[C/A]	0,41	5,54	**	С	Α	
12_5@433.5	3148_6446_Un	[A/G]	20,86	82,13	***	А	G	COMP_9
13_6@432.8	53_1092396_LG9	[G/C]	12,24	65,09	***	G	С	PROD_23
14_6@443.7	53_491984_LG9	[G/A]	9,02	55,99	***	G	А	
15_8@111.4	9_332853_LG5	[G/A]	3,95	34,61	***	G	А	
16_8@292.5	10_2655097_LG5	[A/G]	11,52	63,25	***	G	А	
17_9@12.5	286_11712_LG1	[C/T]	9,51	57,55	***	С	Т	AP_27 COMP 13
18_10@5.0	64_778855_LG1	[T/C]	13,84	68,90	***	Т	С	ESP_14

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; **significante a $P \le 0.001$).

Conforme Quintal (2009), a correlação genotípica entre o diâmetro e o comprimento do fruto é forte. Desta forma, foi observada a associação do SNP 3148_6446_Un com os QTLs DF_12_5@433.5 (%Var = 20,86) е COMP_9_5@433.5 (%Var = 7,97); e do SNP 286_11712_LG1 com os QTLs DF_17_9@12.5 (%Var = 9,51) e COMP_13_9@15.0 (%Var = 7,16), indicando a forte associação entre essas duas características. A correlação genotípica entre o diâmetro do fruto e a produção de frutos é forte (R² = 0,65), explicando a presença de um QTL em comum entre as características, onde o SNP 53_1092396_LG9 está associado aos QTLs DF_13_6@432.8 (%Var = 12,24) e PROD_23_6@432.5 (%Var = 0,35). Por outro lado, Silva et al. (2007), estudando uma população de retrocruzamento obtida do cruzamento entre uma linhagem do grupo heterótico solo e o genótipo dioico Cariflora, observou baixa correlação entre diâmetro de fruto e produção. O SNP 64_778855_LG1 associado ao QTL

DF_18_10@5.0 (%Var = 13,84) também está associado ao QTL ESP_14_9@0.0 (%Var = 6,0). A correlação genotípica entre o diâmetro do fruto e a espessura da polpa é considerada fortíssima ($R^2 = 0.91$) (Quintal, 2009).

Blas et al. (2012) identificaram dois QTLs associados ao diâmetro de frutos de mamão, sendo um QTL no GL2 (%Var = 17,0) e o outro no GL3 (%Var = 18,2). Conforme a Tabela 8 pode-se observar que dos 18 QTLs para o diâmetro de fruto, dois QTLs estiveram localizados no GL2 e outros dois no GL3, no entanto, não foi possível determinar se os QTLs identificados por Blas et al. (2012) são os mesmos deste estudo.

A característica comprimento do fruto (COMP) apresentou 15 QTLs (Tabela 9), que explicaram 81,94% da variação fenotípica total observada. A variação fenotípica individual dos QTLs variou de 1,9 a 13,35 e o LOD de 3,47 a 14,29.

Tabela 9 — QTLs e SNPs associados à característica comprimento do fruto com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP
1 1@232.0	20 1104400 1 62		1 00	6.00	**	т	G	coman
1_1@232.0	29_1104499_LG2		1,90 6.05	7 1 1	***	Ċ	Å	
2_1@230.7	29_1010030_LGZ		0,95	1,44	***	G	A	PROD_5
3_1@337.5	20343_5085_LG2		3,17	10,20	4.4.4.		G	
4_1@345.6	129_433326_LG2	[G/1]	7,24	7,75	***	G	I	
5_2@252.3	5_1385482_LG4	[G/T]	9,36	10,03	***	G	Т	
6 5@17.5	46 1453648 I G7	[T/C]	3.01	9.67	***	С	т	TSS_8
		[.,]					_	ESP_3
7_5@107.5	61_1220909_LG7	[C/T]	13,35	14,29	***	С	Т	
8_5@190.0	28_2458136_Un	[C/T]	5,64	6,04	***	С	Т	
9_5@433.5	3148_6446_Un	[A/G]	7,97	8,53	***	А	G	DF_12
10_6@112.5	65_485044_Un	[G/A]	6,24	6,68	***	G	А	NNSF_6
11_6@263.3	2_1101645_LG9	[A/G]	10,84	11,60	***	Α	G	
12_7@353.2	2_192678_LG8	[A/C]	8,82	9,44	***	С	А	
13_9@15.0	286_11712_LG1	[C/T]	7,16	7,66	***	С	Т	DF_17 AP_27
14_9@140.0	24415_38221_Un	[G/A]	7,52	8,06	***	А	G	NFC_15 PROD_29
15_10@51.3	796_17418_Un	[A/G]	3,25	3,47	**	G	А	

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; **significante a $P \le 0.001$).

Foram identificados quatro QTLs no GL2, dois QTLs no GL7. Os grupos de ligação 1, 4, 8 e 9 apresentaram apenas um QTL cada. Foram identificados cinco QTLs em grupo de ligação desconhecido (Tabela 9).

Segundo Quintal (2009), o comprimento do fruto possui correlação genotípica alta ($R^2 = 0.78$) com a produção. Foram identificados dois QTLs em comum entre essas características, onde o SNP 29_1010038_LG2 está associado aos QTLs COMP_2_1@238.7 (%Var = 6,95) e PROD_5_1@238.7 (%Var = 1,08); e o SNP 24415_38221_Un está associado aos QTLs COMP_14_9@140.0 (%Var = 7,52), PROD_29_9@138.6 (%Var = 11,05) e NFC_15_9@138.6 (%Var = 11,64). A característica comprimento de fruto possui correlação genotípica alta ($R^2 = 0.82$) com a espessura da polpa e alta ($R^2 = -0.78$), porém negativa, com o teor de sólidos solúveis, explicando a presença de um QTL em comum entre as características, onde o SNP 46_1453648_LG7 está associado aos QTLs COMP_6_5@17.5 (%Var = 3,01), ESP_3_5@14.8 (%Var = 7,82) e TSS_8_5@17.5 (%Var = 11,26).

Foi observada a associação do SNP 3148_6446_Un com os QTLs $COMP_9_5@433.5$ (%Var = 7,97) e DF_12_5@433.5 (%Var = 20,86); e do SNP 286_11712_LG1 com os QTLs $COMP_13_9@15.0$ (%Var = 7,16) e DF_17_9@12.5 (%Var = 9,51). Segundo Quintal (2009), as características comprimento e diâmetro do fruto possuem correlação genotípica alta ($R^2 = 0,88$), indicando uma forte associação entre essas duas características. O SNP 286_11712_LG1 também está associado ao QTL AP_27_9@17.5 (%Var = 1,36), no entanto, conforme Silva et al. (2007), não existe correlação entre o comprimento do fruto e a altura de planta.

O SNP 65_485044_Un possui associação com os QTLs COMP_10_6@112.5 (%Var = 6,24) e NNSF_6_6@105.0 (%Var = 21,85), sendo o QTL de maior relevância para a característica. De acordo com Silva et al. (2007), o comprimento de fruto possui correlação genotípica média com o número de flores estéreis ($R^2 = 0,63$), sendo que essa característica está diretamente associada ao número de nós sem fruto, pois é esse tipo de flor que não gera fruto, causando falhas no cacho de frutos. Não foi identificado nenhum QTL de efeito principal (%Var ≥ 15) para a característica comprimento de fruto (Tabela 9).

A característica peso de frutos (PESO) apresentou 12 QTLs (Tabela 10), que explicaram 64,92% da variação fenotípica total observada. A porcentagem da variação fenotípica individual explicada por cada QTL variou de 2,58 a 11,13% e o LOD de 2,64 a 10,23. Foram identificados três QTLs no GL3, dois QTLs no GL6 e os grupos de ligação 2, 7 e 9 apresentaram um QTL cada. Quatro QTLs estiveram localizados em grupo de ligação desconhecido (Tabela 10).

Tabela 10 — QTLs e SNPs associados à característica peso de frutos com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP Comum
1_1@362.5	55_31450_LG2	[C/T]	6,20	6,04	**	С	Т	
2_2@257.5	5_1518720_LG4	[G/A]	8,30	7,88	***	G	А	
3_2@346.0	163_297115_LG4	[C/T]	4,62	4,60	***	С	Т	FE_4
4_2@373.3	189_11933_LG4	[A/G]	4,25	4,25	***	Α	G	
5_4@182.5	44_618459_LG6	[G/A]	8,29	7,87	***	Α	G	
6_4@206.0	567_33615_LG6	[A/C]	11,10	10,21	***	С	Α	
7_5@120.0	554_1631_Un	[C/T]	11,13	10,23	***	С	Т	
8_5@211.1	82_503394_Un	[T/C]	2,58	2,64	*	Т	С	
9_5@461.2	93_977357_LG7	[G/T]	4,62	4,59	***	G	Т	
10_6@135.0	2126_2822_Un	[C/T]	5,71	5,60	***	С	Т	
11_6@155.0	81_481869_LG9	[G/C]	3,02	3,06	**	G	С	
12_10@65.0	108_526839_Un	[T/C]	7,19	6,92	***	С	Т	

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; **significante a $P \le 0.001$).

Foi identificado apenas um SNP associado a QTL de outra característica para peso de frutos. O SNP 163_297115_LG4 está associado aos QTLs PESO_3_2@346.0 (%Var = 4,62) e FE_4_2@350.0 (%Var = 22,28). Conforme Quintal (2009), a correlação genotípica entre o peso de frutos e a firmeza externa é média ($R^2 = 0,58$). Não foi identificado nenhum QTL de efeito principal (%Var ≥ 15) para a característica peso de frutos.

5.1.2. Características relacionadas à produtividade

A característica número de frutos totais (NFT) apresentou 20 QTLs (Tabela 11), que explicaram 98,30% da variação fenotípica total observada. A porcentagem da variação fenotípica individual explicada pelos QTLs variou de 1,09 a 5,33% e o LOD de 18,37 a 52,75. Foram identificados quatro QTLs no GL4, três no GL1, dois em cada GL2 e GL7 e nos grupos de ligação 5, 8 e 9 apenas um QTL em cada.

Tabela 11 — QTLs e SNPs associados à característica número de frutos totais com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1_1@15.0	42631_636_Un	[A/T]	4,65	48,96	***	Т	А	AP_1
2_1@98.3	97_390208_LG2	[G/A]	1,30	21,13	***	G	A	
3_1@100.0	//_191/9_LG2	[A/G]	4,87	50,23	~ ~ ~	А	G	NFC_2
4_2@190.0	92_457409_LG4	[T/C]	3,85	43,98	***	Т	С	DC 2
5_2@260.0	3597_1273_Un	[G/A]	5,33	52,75	***	G	А	
6_2@287.4	33536_1801_Un	[T/C]	4,07	45,39	***	С	Т	
7_2@296.7	33_2029472_LG4	[C/G]	2,22	31,05	***	С	G	
8_2@414.9	125_457510_LG4	[C/T]	3,38	40,66	***	Т	С	DC_3
9_3@350.6	60_794585_LG3	[T/A]	3,04	38,08	***	А	Т	NFC_7 PROD 14
10_5@22.5	46_1774448_LG7	[T/C]	1,44	22,77	***	Т	С	_
11_5@32.7	450_36153_LG7	[A/G]	1,09	18,37	***	А	G	
12_5@147.8	28_1952843_Un	[A/G]	4,83	50,02	***	А	G	NFC_10
13_6@407.5	19_35645_LG9	[A/G]	3,09	38,47	***	А	G	
14_7@300.0	3_2400812_LG8	[T/C]	4,15	45,91	***	С	Т	NFC_11
15_8@237.5	11_45623_LG4	[T/A]	3,96	44,69	***	А	Т	
16_8@342.5	195_376088_Un	[T/C]	1,81	26,99	***	С	Т	FE_14 ESP_13
17_8@467.5	9_2671463_LG5	[G/C]	3,13	38,83	***	С	G	NFC_13 AP 26
18_9@83.1	26_970480_LG1	[G/C]	3,17	39,12	***	С	G	—
19_9@118.9	64_1099827_LG1	[C/T]	1,39	22,17	***	С	Т	
20_9@142.4	49_185647_LG1	[C/T]	1,83	27,12	***	Т	С	

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; ***significante a $P \le 0.001$).

Foram identificados cinco QTLs em grupo de ligação desconhecido para número de frutos totais e não foi identificado nenhum QTL de efeito principal (%Var ≥ 15) para o número de frutos totais (Tabela 11).

Silva et al. (2007) constataram uma correlação genotípica fortíssima ($R^2 = 0.99$) entre o número de frutos totais e comerciais, estudando uma população de retrocruzamento obtida do cruzamento entre uma linhagem do grupo heterótico solo e o genótipo dioico Cariflora. Essa forte associação explica o grande número de QTLs em comum entre as duas características. O SNP 77_19179_LG2 está associado aos QTLs NFT_3_1@100.0 (%Var = 4,87) e NFC_2_1@101.2 (%Var = 20,06); o SNP 60_794585_LG3 está associado aos QTLs NFT_9_3@350.6 (%Var = 3,04) e NFC_7_3@347.5 (%Var = 5,67); o SNP 28_1952843_Un está associado aos QTLs NFT_12_5@147.8 (%Var = 4,83) e NFC_10_5@147.5 (%Var = 8,38); o SNP 3_2400812_LG8 está associado aos QTLs NFT_14_7@300.0 (%Var = 4,15) e NFC_11_7@300.0 (%Var = 8,32); e por último, o SNP 9_2671463_LG5 está associado aos QTLs NFT_17_8@467.5 (%Var = 3,13) e NFC_13_8@465.0 (%Var = 5,29).

O número de frutos totais possui correlação genotípica média ($R^2 = 0,50$) com a altura de plantas (Silva et al., 2007), no entanto, os autores realizaram essa análise em populações distintas da população utilizada para a análise de QTLs. Foi identificado o SNP 42631_636_Un associado aos QTLs NFT_1_1@15.0 (%Var = 4,65) e AP_1_1@15.0 (%Var = 1,47); e, também, o SNP 9_2671463_LG5 associado aos QTLs NFT_17_8@467.5 e AP_26_8@470.0 (%Var = 3,93).

O SNP 92_457409_LG4 está associado aos QTLs NFT_4_2@190.0 (%Var = 3,85) e PROD_7_2@190.0 (%Var = 2,74); e o SNP 60_794585_LG3 associado aos QTLs NFT_9_3@350.6 e PROD_14_3@357.5 (%Var = 1,48). Estes QTLs em comum podem ter efeitos opostos, pois, as características número de frutos totais e produção possuem correlação genotípica média e negativa (Ide, 2008; Quintal, 2009). Silva et al. (2007) constataram uma correlação genotípica forte entre as características número de frutos totais e o diâmetro do caule. Desta forma, pode-se observar a associação do SNP 92_457409_LG4 com os QTLs NFT_4_2@190.0 e DC_2_2@187.5 (%Var = 13,90); e do SNP 125_457510_LG4 com os QTLs NFT_8_2@414.9 (%Var = 3,38) e DC_3_2@414.9 (%Var = 4,86). A característica número de frutos comerciais (NFC) apresentou 16 QTLs (Tabela 12), que explicaram 91,56% da porcentagem da variação fenotípica total observada. A porcentagem da variação fenotípica individual explicada pelos QTLs variou de 1,66 a 20,06% e o LOD de 6,68 a 45,18. Os grupos de ligação 2 e 4 apresentaram três QTLs cada, dois QTLs foram identificados no GL1, enquanto que os grupos de ligação 3, 5, 6, 7 e 8 apresentaram apenas um QTL cada. Foram identificados três QTLs em grupo de ligação desconhecido (Tabela 12). O SNP 35659_3030_Un associado ao QTL NFC_12_8@255.3 está localizado a 93 pb do final da sequência desse *contig*, assim, não foi possível desenhar os marcadores SNAPs.

Tabela 12 — QTLs e SNPs associados à característica número de frutos comerciais com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1 1@20.0	80 138781 LG2	[G/A]	2.54	9.78	***	Α	G	Contain
2_1@101.2	77_19179_LG2	[A/G]	20,06	45,18	***	A	G	NFT_3
3_1@126.6	25_1307799_LG2	[C/T]	8,66	26,21	***	С	Т	
4_2@319.6	120_548508_LG4	[G/A]	9,60	28,19	***	G	А	AP_7
5_2@376.0	260_178192_LG4	[C/T]	1,66	6,68	***	С	Т	
6_2@417.0	125_680537_LG4	[C/T]	7,85	24,42	***	Т	С	
7_3@347.5	60_794585_LG3	[T/A]	5,67	19,07	***	А	Т	NFT_9 PROD_14
8_4@307.6	16_2867072_LG6	[G/A]	9,63	28,27	***	А	G	
9_5@46.6	95_267264_LG7	[A/G]	6,38	20,89	***	Α	G	AP_14
10_5@147.5	28_1952843_Un	[A/G]	8,38	25,61	***	Α	G	NFT_12
11_7@300.0	3_2400812_LG8	[T/C]	8,32	25,47	***	С	Т	NFT_14
12_8@255.3	35659_3030_Un	[G/A]	7,71	24,10	***	А	G	
13_8@465.0	9_2671463_LG5	[G/C]	5,29	18,07	***	С	G	NFT_17 AP_26
14_9@21.6	26_790256_LG1	[G/A]	5,39	18,34	***	G	А	AP_28
15_9@138.6	24415_38221_Un	[G/A]	11,64	32,19	***	А	G	COMP_14 PROD_29
16_9@169.5	36_1367348_LG1	[C/G]	7,92	24,58	***	С	G	PROD_30

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; **significante a $P \le 0.001$).

Como apresentado para a característica número de frutos totais, Silva et al. (2007) constataram uma correlação genotípica muito alta ($R^2 = 0,99$) entre o número de frutos totais e comerciais, explicando a presença de cinco QTLs em comum entre as características (Tabela 12).

Foi identificado o SNP 60_794585_LG3 associado aos QTLs NFC_7_3@347.5 (%Var = 5,67) e PROD_14_3@357.5 (%Var = 1,48); o SNP 24415_38221_Un associado aos QTLs NFC_15_9@138.6 (%Var = 11,64) e PROD_29_9@138.6 (%Var = 11,05); e o SNP 36_1367348_LG1 associado aos QTLs NFC_16_9@169.5 (%Var = 7,92) e PROD_30_9@169.5 (%Var = 5,88). Conforme Silva et al. (2007), as características número de frutos comerciais e a produção possuem correlação genotípica média (R² = 0,38). Essa correlação é contrária aos resultados obtidos por Ide (2008), que constatou uma correlação média, porém, negativa (R² = -0,39) para as mesmas características.

Observou-se a presença de quatro QTLs em comum entre as características número de frutos comerciais e altura de planta, onde o SNP 120_548508_LG4 está associado aos QTLs NFC_4_2@319.6 (%Var = 9,60) e AP_7_2@320.0 (%Var = 0,65); o SNP 95_267264_LG7 está associado aos QTLs NFC_9_5@46.6 (%Var = 6,38) e AP_14_5@46.6 (%Var = 0,75); o SNP 9_2671463_LG5 está associado aos QTLs NFC_13_8@465.0 (%Var = 5,29) e AP_26_8@470.0 (%Var = 3,93); e o SNP 26_790256_LG1 está associado aos QTLs NFC_14_9@21.6 (%Var = 5,39) e AP_28_9@27.5 (%Var = 1,37). Silva et al. (2007) constataram uma correlação genotípica média ($R^2 = 0,40$) entre número de frutos comerciais e altura da planta, enquanto que, Ide (2008) observou correlação baixa e negativa ($R^2 = -0,24$) entre as características.

Segundo Silva et al. (2007), o número de frutos comerciais possui correlação genotípica forte e negativa ($R^2 = -0.79$) com o comprimento de fruto, justificando a presença de um QTL em comum entre as características, onde o SNP 24415_38221_Un está associado aos QTLs NFC_15_9@138.6 (%Var = 11,64) e COMP_14_9@140.0 (%Var = 7,52).

A característica número de frutos deformados (NFD) apresentou quatro QTLs (Tabela 13), que explicaram 39,55% da variação fenotípica total observada. A porcentagem da variação fenotípica individual explicada pelos QTLs variou de 4,21 a 7,69% e o LOD de 2,50 a 4,45. Foram identificados dois QTLs no GL1, um QTL no GL4 e um QTL em grupo de ligação desconhecido. Tabela 13 — QTLs e SNPs associados à característica número de frutos deformados com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1_2@383.2	189_279526_LG4	[C/T]	5,53	3,25	**	С	Т	AP_9
2_7@16.0	37453_445_Un	[T/C]	4,28	2,54	**	Т	С	
3_9@175.0	21_1338327_LG1	[T/C]	4,21	2,50	**	С	Т	
4_10@4.0	14_561074_LG1	[C/T]	7,69	4,45	***	С	Т	NNSF_11

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; **significante a $P \le 0.001$).

Para a característica número de frutos deformados não foi identificado QTLs de efeito principal. O SNP 189_279526_LG4 associado ao QTL NFD_1_2@383.2 (%Var = 5,53) é o mesmo identificado para o QTL AP_9_2@382.5 (%Var = 1,17). A contagem de número de frutos deformados em mamão depende do número de frutos carpeloides e pentândricos observados durante a avaliação. Sendo assim, Silva et al. (2007) constataram correlação genotípica baixa e negativa entre a altura de plantas com o número de frutos carpeloides ($R^2 = -0,18$) e o número de frutos pentândricos ($R^2 = -0,24$).

Outra associação que podemos fazer é com o número de nós sem fruto, que depende principalmente, do número de flores estéreis produzidas pelo mamoeiro. Desta forma, Silva et al. (2007) constataram que não existe correlação entre o número de flores estéreis com as características associadas ao número de frutos deformados. No entanto, observou-se, neste trabalho, a presença de um QTL em comum entre número de frutos deformados e número de nós sem fruto (Tabelas 13 e 14), onde o SNP 14_561074_LG1 está associado aos QTLs NDF_4_10@4.0 (%Var = 7,69) e NNSF_11_10@5.0 (%Var = 15,38).

A característica número de nós sem fruto (NNSF) apresentou 13 QTLs (Tabela 14), que explicaram 72,12% da variação fenotípica total observada. A porcentagem da variação fenotípica individual explicada pelos QTLs variou de 3,3 a 21,85% e o LOD de 4,15 a 21,49. Tabela 14 — QTLs e SNPs associados à característica número de nós sem fruto com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1_1@142.5	741_3553_Un	[C/T]	20,76	20,66	***	С	Т	
2_1@303.8	79_225223_LG2	[C/A]	16,38	17,16	***	С	А	
3_5@30.0	97_24339_LG2	[C/T]	7,25	8,59	***	С	Т	
4_5@44.7	11_244485_LG4	[G/A]	4,27	5,29	***	G	А	
5_5@442.7	93_1017294_LG7	[G/T]	3,30	4,15	**	G	Т	
6_6@105.0	65_485044_Un	[G/A]	21,85	21,49	***	G	А	COMP_10
7_6@120.0	139_488424_LG9	[C/T]	8,94	10,33	***	С	Т	
8_7@212.5	4_553194_LG8	[G/A]	9,05	10,44	***	А	G	
9_8@172.5	18_137553_LG5	[G/C]	8,12	9,49	***	G	С	
10_8@227.5	18_1663218_LG5	[G/A]	16,23	17,04	***	А	G	
11_10@5.0	14_561074_LG1	[C/T]	15,38	16,31	***	С	Т	NFD_4
12_10@27.5	70_885771_Un	[C/T]	9,53	10,92	***	С	Т	
13_10@35.0	360_23065_Un	[A/G]	7,02	8,34	***	G	Α	

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; ***significante a $P \le 0.001$).

Os grupos de ligação 2 e 5 apresentaram dois QTLs cada, enquanto que os grupos de ligação 1, 4, 7, 8 e 9 apresentaram apenas um QTL cada. Foram identificados quatro QTLs em grupo de ligação desconhecido (Tabela 14). Para a característica número de nós sem fruto foram identificados cinco QTLs de efeito principal, sendo eles os QTLs NNSF_1_1@142.5, NNSF_2_1@303.8, NNSF_6_6@105.0, NNSF_10_8@227.5 e NNSF_11_10@5.0, que explicaram 20,76, 16,38, 21,85, 16,23 e 15,38% da porcentagem da variação fenotípica observada, respectivamente.

Foi observada a associação do SNP 65_485044_Un com os QTLs NNSF_6_6@105.0 (%Var = 21,85) e COMP_10_6@112.5 (%Var = 6,24). De acordo com Silva et al. (2007), o comprimento de fruto possui correlação genotípica média com o número de flores estéreis ($R^2 = 0,63$). A característica número de flores estéreis está diretamente associada ao número de nós sem fruto, pois é esse tipo de flor que não gera fruto, causando falhas no cacho de frutos.

A característica diâmetro do caule (DC) apresentou oito QTLs (Tabela 15), que explicaram 64,08% da variação fenotípica total observada. A porcentagem da variação fenotípica individual explicada pelos QTLs variou de 4,86 a 24,38% e o LOD de 4,71 a 19,24.

Tabela 15 — QTLs e SNPs associados à característica diâmetro do caule com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1_1@352.5	129_437317_LG2	[G/A]	9,17	8,44	***	А	G	
2_2@187.5	92_457409_LG4	[T/C]	13,90	12,15	***	Т	С	NFT_4; PROD_7
3_2@414.9	125_457510_LG4	[C/T]	4,86	4,71	**	Т	С	NFT_8
4_3@275.8	213_15704_Un	[T/C]	5,59	5,37	***	С	Т	
5_3@367.5	0_4584375_LG3	[C/T]	5,81	5,57	***	Т	С	
6_4@152.5	157_169542_LG6	[T/C]	17,65	14,84	***	С	Т	TSS_7
7_5@285.0	27_92703_LG7	[G/C]	24,38	19,24	***	G	С	
8_8@132.5	9_1340872_LG5	[A/C]	7,41	6,96	***	С	А	

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; ***significante a $P \le 0.001$).

Foram identificados dois QTLs no GL4, enquanto que os grupos de ligação 2, 3, 5, 6 e 7 apresentaram apenas um QTL cada. Foi identificado um QTL em grupo de ligação desconhecido (Tabela 15). Foi identificado para a característica diâmetro do caule dois QTLs de efeito principal. Os QTLs DC_6_4@152.5 e DC_7_5@285.0 apresentaram 17,65 e 24,38 da %Var, respectivamente.

Segundo Silva et al. (2007), o diâmetro do caule possui correlação genotípica forte com o número de frutos totais ($R^2 = 0,67$), onde pode-se observar a associação do SNP 92_457409_LG4 com os QTLs NFT_4_2@190.0 e DC_2_2@187.5 (%Var = 13,90); e do SNP 125_457510_LG4 com os QTLs NFT_8_2@414.9 (%Var = 3,38) e DC_3_2@414.9 (%Var = 4,86). O SNP 92_457409_LG4 também está associado ao QTL PROD_7_2@190.0 (%Var =

2,74). Silva et al. (2007) constataram uma correlação forte ($R^2 = 0,84$) entre o diâmetro do caule e a produção.

O SNP 157_169542_LG6 associado ao QTL DC_6_4@152.5 (%Var = 17,65) também foi identificado para o QTL TSS_7_4@151.8 (%Var = 2,34). No entanto, não foi possível identificar na literatura se existe correlação entre essas duas características.

A característica altura da planta (AP) apresentou 31 QTLs (Tabela 16), que explicaram 99,02% da variação fenotípica total observada. A porcentagem da variação fenotípica individual explicada pelos QTLs variou de 0,29 a 22,02% e o LOD de 9,7 a 117,18. O grupo de ligação 2 apresentou o maior número de QTLs (5), seguido pelo GL4 (4) e GL5 (3). Os grupos de ligação 1, 7 e 8 apresentaram dois QTLs cada, enquanto que os grupos de ligação 5 e 6 apresentaram apenas um QTL cada. Foram identificados nove QTLs em grupo de ligação desconhecido (Tabela 16). Apenas o QTL 15_5@230.6 foi considerado de efeito principal por explicar 22,02% da variação fenotípica.

A altura de plantas possui correlação genotípica média ($R^2 = 0,50$) com o número de frutos totais (Silva et al., 2007). Foi identificado o SNP 42631_636_Un associado aos QTLs NFT_1_1@15.0 (%Var = 4,65) e AP_1_1@15.0 (%Var = 1,47); e, também, o SNP 9_2671463_LG5 associado aos QTLs NFT_17_8@467.5 e AP_26_8@470.0 (%Var = 3,93).

Observou-se a presença de quatro QTLs em comum entre as características número de frutos comerciais e altura de planta, onde o SNP 120_548508_LG4 está associado aos QTLs NFC_4_2@319.6 (%Var = 9,60) e AP_7_2@320.0 (%Var = 0,65); o SNP 95_267264_LG7 está associado aos QTLs NFC_9_5@46.6 (%Var = 6,38) e AP_14_5@46.6 (%Var = 0,75); o SNP 9_2671463_LG5 está associado aos QTLs NFC_13_8@465.0 (%Var = 5,29) e AP_26_8@470.0 (%Var = 3,93); e o SNP 26_790256_LG1 está associado aos QTLs NFC_14_9@21.6 (%Var = 5,39) e AP_28_9@27.5 (%Var = 1,37). Silva et al. (2007) constataram uma correlação genotípica média ($R^2 = 0,40$) entre número de frutos comerciais e altura da planta, enquanto que, Ide (2008) observou correlação baixa e negativa ($R^2 = -0,24$) entre as características.

O SNP 189_279526_LG4 associado ao QTL NFD_1_2@383.2 (%Var = 5,53) é o mesmo identificado para o QTL AP_9_2@382.5 (%Var = 1,17).

Tabela 16 — QTLs e SNPs associados à característica altura da planta, %Var com respectivas LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1 1@15.0	42631 636 Un	[A/T]	1,47	34,04	***	Т	А	NFT 1
2 1@82.7	284 27184 LG2	[G/A]	0,68	19,67	***	G	А	
3_1@90.9	12 2607980 LG2	ĨA/CĪ	2,42	46,16	***	С	А	
4_1@97.7	97_366390_LG2	ĪT/AĪ	4,43	63,42	***	А	Т	
5 1@180.0	180 469206 LG2	[C/Τ]	1,21	29,80	***	С	Т	
6_1@437.5	29_1208046_LG2	iπ/ci	2,25	44,35	***	Т	С	
7_2@320.0	120_548508_LG4	[G/A]	0,65	18,89	***	G	А	NFC_4
8_2@325.0	54_1497499_LG4	[G/A]	0,77	21,58	***	G	А	
9_2@382.5	189_279526_LG4	[C/T]	1,17	29,13	***	С	Т	NFD_1
10_2@435.1	228_265003_LG4	[G/C]	0,68	19,56	***	С	G	
11_3@432.5	235_178341_LG3	[G/A]	3,31	54,80	***	А	G	
12_3@442.5	119_631513_LG3	[T/C]	3,03	52,34	***	С	Т	
13_4@463.4	44_770181_LG6	[C/T]	0,75	34,02	***	С	Т	
14_5@46.6	95_267264_LG7	[A/G]	0,75	21,20	***	А	G	NFC_9
15_5@230.6	126_371146_Un	[C/T]	22,02	117,18	***	С	Т	
16_6@197.9	2_3303661_LG9	[C/T]	4,18	61,68	***	С	Т	
17_6@502.5	53_157623_LG9	[G/T]	0,41	12,91	***	G	Т	FI_10
18_7@102.5	173_31614_LG8	[C/A]	1,63	36,37	***	А	С	
19_7@145.0	2686_1623_Un	[T/C]	0,52	15,72	***	С	Т	PROD_25
20_7@157.5	2002_6551_Un	[C/T]	0,53	15,87	***	С	Т	
21_7@367.5	107_123159_LG8	[G/T]	0,98	25,73	***	G	Т	
22_8@90.0	146_12453_Un	[C/G]	0,49	15,13	***	G	С	
23_8@110.0	35704_145_Un	[A/C]	2,14	43,03	***	С	А	
24_8@217.5	18_1247802_LG5	[C/T]	0,29	9,70	**	Т	С	
25_8@285.0	10_1817047_LG5	[T/C]	1,30	31,45	***	С	Т	
26_8@470.0	9_2671463_LG5	[G/C]	3,93	59,86	***	С	G	NFT_17 NFC_13
27_9@17.5	286_11712_LG1	[C/T]	1,36	32,38	***	С	Т	DF_17 COMP 13
28_9@27.5	26_790256_LG1	[G/A]	1,37	32,50	***	G	А	NFC_14
29_10@20.1	3119_5679_Un	[C/T]	1,97	40,88	***	Т	С	
30_10@32.5	70_875557_Un	[C/T]	1,75	38,10	***	С	Т	
<u>31_10@11</u> 7.5	818_11197_Un	[C/T]	6,20	73,97	***	С	Т	

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; **significante a $P \le 0.001$).

A contagem de número de frutos deformados em mamão depende do número de frutos carpeloides e pentândricos observados durante a avaliação. Sendo assim, Silva et al. (2007) constataram correlação genotípica baixa e negativa entre a altura de plantas com o número de frutos carpeloides ($R^2 = -0,18$) e o número de frutos pentândricos ($R^2 = -0,24$). O SNP 53_157623_LG9 associado ao QTL AP_17_6@502.5 (%Var = 0,41) também está associado a QTL FI_10_6@465.0 (%Var = 13,50). Conforme Silva et al. (2007), a altura de planta e a produção possuem correlação genotípica média ($R^2 = 0,44$), onde foi observada a associação do SNP 2686_1623_Un com os QTLs AP_19_7@145.0 (%Var = 0,52) e PROD_25_7@155.0 (%Var = 1,82). Foi observada a associação do SNP 286_11712_LG1 com os QTLs AP_27_9@17.5 (%Var = 1,36), DF_17_9@12.5 (%Var = 9,51) e COMP_13_9@15.0 (%Var = 7,16). No entanto, Silva et al. (2007) constataram que não existe correlação entre a característica altura de planta com o diâmetro e o comprimento de fruto.

A característica produção (PROD) apresentou 30 QTLs (Tabela 17), que explicaram 99,33% da variação fenotípica total observada. A porcentagem da variação fenotípica individual explicada pelos QTLs variou de 0,13 a 11,05% e o LOD de 6,65 a 106,14. Os grupos de ligação 2 e 4 apresentaram cinco QTLs cada. Os grupos de ligação 6 e 9 apresentaram três QTLs cada. Foram identificados nos grupos de ligação 1 e 3 dois QTLs cada, enquanto que nos grupos de ligação 7 e 8 foram identificados um QTL para cada. Foram identificados oito QTLs em grupo de ligação desconhecido (Tabela 17). O SNP 415_39913_LG9 associado ao QTL 21_6@167.5 está localizado 73 pb do fim da sequência desse *supercontig*, assim, não foi possível desenhar os marcadores SNAPs. Todos os QTLs identificados para essa característica foram considerados de baixo efeito.

O SNP 1380_1407_Un associado ao QTL PROD_2_1@113.2 (%Var = 0,34) também está associado ao QTL FE_3_1@112.5 (%Var = 5,60) e ao QTL TSS_1_1@113.2 (%Var = 6,50). Além disso, o SNP 6_2014486_LG2 associado ao QTL PROD_6_1@392.5 (%Var = 0,76) também foi identificado para o QTL TSS_2_1@421.1 (%Var = 10,60). De acordo com Quintal (2009), as características produção e teor de sólidos solúveis possuem correlação genotípica considerada média e negativa ($R^2 = -0,54$) e a produção com a firmeza externa, a correlação é forte ($R^2 = 0,64$).

Tabela 17 — QTLs e SNPs associados à característica produção com respectivas %Var, LOD, significância (F), genótipo dos parentais P1 (Sekati) e P2 (JS-12), e SNPs comuns associados a QTLs de outras características

QTL	SNP ID	SNP	%Var	LOD	F	P1	P2	SNP comum
1_1@110.0	1878_7074_LG2	[C/A]	7,4	92,47	***	А	С	
2_1@113.2	1380_1407_Un	[A/G]	0,34	15,40	***	А	G	TSS_1 FE_3
3_1@117.1	77_1344566_LG2	[A/G]	0,13	6,65	**	А	G	_
4_1@220.0	672_18441_LG2	[T/A]	2,56	58,31	***	Т	Α	
5_1@238.7	29_1010038_LG2	[G/A]	1,08	35,69	***	G	Α	COMP_2
6_1@392.5	6_2014486_LG2	[C/T]	0,76	28,09	***	С	Т	TSS_2
7_2@190.0	92_457409_LG4	[T/C]	2,74	60,29	***	Т	С	NFT_4 DC_2
8_2@212.5	104_218_LG4	[C/A]	2,35	55,78	***	С	А	—
9_2@222.5	104_144428_LG4	[C/T]	0,85	30,33	***	С	Т	
10_2@250.2	5_916349_LG4	[T/A]	0,35	15,44	***	Т	А	
11_2@267.3	5_2424137_LG4	[G/T]	8,94	98,79	***	G	Т	
12_2@438.2	3370_683_Un	[T/C]	2,37	56,08	***	С	Т	
13_3@337.2	72_26362_LG3	[C/T]	0,69	26,33	***	Т	С	
14_3@357.5	60_794585_LG3	[T/A]	1,48	43,24	***	А	Т	NFT_9 NFC_7
15_4@40.0	58_39617_LG6	[C/T]	0,46	19,33	***	Т	С	—
16_4@105.0	1183_495_Un	[C/A]	0,35	15,70	***	А	С	ESP_2
17_4@147.5	157_292256_LG6	[G/A]	2,99	62,94	***	А	G	
18_4@350.0	52_200146_LG6	[T/C]	2,08	52,33	***	С	Т	
19_5@186.5	61_214386_LG7	[T/C]	1,86	49,25	***	Т	С	
20_6@80.0	65_1189099_Un	[G/A]	1,10	35,95	***	G	А	
21_6@167.5	415_39913_LG9	[G/A]	1,51	43,67	***	G	А	
22_6@173.7	112_654_LG9	[A/G]	1,04	34,77	***	А	G	
23_6@432.5	53_1092396_LG9	[G/C]	0,35	15,77	***	G	С	DF_13
24_7@135.0	17_1312447_LG8	[A/G]	2,33	55,54	***	G	A	
25_7@155.0	2686_1623_Un	[T/C]	1,82	48,67	***	C	Т	AP_19
26_8@102.5	146_267983_Un	[I/A]	2,25	54,54	***		A	
27_8@127.5	/31_3422_Un	[C/1]	0,87	30,87	***	C		FE_13
28_9@110.3	26_1614923_LG1	[1/C]	0,60	23,77	~ ~ *	I	C	
29_9@138.6	24415_38221_Un	[G/A]	11,05	106,14	***	А	G	NFC_15
30_9@169.5	36_1367348_LG1	[C/G]	5,88	84,53	***	С	G	NFC_16

%Var (porcentagem da variação fenotípica explicada pelo QTL); P1 (Sekati) e P2 (JS-12); LG (Grupo de ligação); Un (Grupo de ligação desconhecido); F (*significante a $P \le 0.05$; **significante a $P \le 0.01$; ***significante a $P \le 0.001$).
Além disso, observou-se que o SNP 731_3422_Un associado ao QTL PROD_27_8@127.5 (%Var = 0,87) também está associado ao QTL FE_13_8@127.5 (%Var = 22,0). Segundo Quintal (2009), o comprimento do fruto possui correlação genotípica forte ($R^2 = 0,78$) com a produção. Foram identificados dois QTLs em comum entre essas características, onde o SNP 29_1010038_LG2 está associado aos QTLs COMP_2_1@238.7 (%Var = 6,95) e PROD_5_1@238.7 (%Var = 1,08); e o SNP 24415_38221_Un está associado aos QTLs COMP_14_9@140.0 (%Var = 7,52) e PROD_29_9@138.6 (%Var = 11,05).

O SNP 92_457409_LG4 está associado aos QTLs NFT_4_2@190.0 (%Var = 3,85) e PROD_7_2@190.0 (%Var = 2,74); e o SNP 60_794585_LG3 associado aos QTLs NFT_9_3@350.6 e PROD_14_3@357.5 (%Var = 1,48). Estes QTLs em comum podem ter efeitos opostos, pois as características número de frutos totais e produção possuem correlação genotípica média e negativa (Ide, 2008; Quintal, 2009). O SNP 92_457409_LG4 também está associado ao QTL DC_2_2@187.5 (%Var = 12,15). Silva et al. (2007) constataram uma correlação forte ($R^2 = 0.84$) entre o diâmetro do caule e a produção.

Foi identificado o SNP 60_794585_LG3 associado aos QTLs NFC_7_3@347.5 (%Var = 5,67) e PROD_14_3@357.5 (%Var = 1,48); o SNP 24415_38221_Un associado aos QTLs NFC_15_9@138.6 (%Var = 11,64) e PROD_29_9@138.6 (%Var = 11,05); e o SNP 36_1367348_LG1 associado aos QTLs NFC_16_9@169.5 (%Var = 7,92) e PROD_30_9@169.5 (%Var = 5,88). Conforme Silva et al. (2007), as características número de frutos comerciais e a produção possuem correlação genotípica média ($R^2 = 0,38$). Essa correlação é contrária aos resultados obtidos por Ide (2008), que constatou uma correlação média, porém, negativa ($R^2 = -0,39$) para as mesmas características.

O SNP 1183_495_Un associado ao QTL PROD_16_4@105.0 (%Var = 0,35) também foi identificado para o QTL ESP_2_4@112.5 (%Var = 20,03). Segundo Quintal (2009), essas duas características possuem correlação genotípica forte ($R^2 = 0,69$) e fenotípica média ($R^2 = 0,47$).

A correlação genotípica entre o diâmetro do fruto e a produção de frutos é forte ($R^2 = 0,65$) (Quintal, 2009), explicando a presença de um QTL em comum entre as características, onde o SNP 53_1092396_LG9 está associado aos QTLs DF_13_6@432.8 (%Var = 12,24) e PROD_23_6@432.5 (%Var = 0,35).

Conforme Silva et al. (2007), a altura de planta e a produção possuem correlação genotípica média ($R^2 = 0,44$), onde foi observada a associação do SNP 2686_1623_Un com os QTLs AP_19_7@145.0 (%Var = 0,52) PROD_25_7@155.0 (%Var = 1,82).

5.2. Desenvolvimento dos marcadores moleculares SNAPs

Foram utilizados 225 QTLs associados a 14 características importantes para o melhoramento do mamoeiro (Tabelas 4-17). No entanto, com a presença de SNPs associados a mais de um QTL em diferentes características obteve-se um total de 186 SNPs, que foram submetidos ao desenho de *primers*. Foi possível desenhar *primers* para os marcadores SNAPs para 181 SNPs, sendo que três SNPs apresentaram ambos os alelos incompatíveis com o genoma de referência, não sendo usados para desenho de *primers*, e dois SNPs apresentaram sequência genômica muito pequena para desenho dos *primers*. Desta forma, foram desenhadas sequências de *primers* para 362 alelos, que totalizaram 724 sequências individuais de *primer*.

A Figura 5 sumariza a temperatura de *melting* (Tm) de 724 sequências de *primers* desenvolvidas neste trabalho. Aproximadamente 65% dos *primers* possuem Tm entre 50 a 59° C e apenas 1,52% dos *primers* tiveram Tm acima de 65° C.

O genoma do mamoeiro possui relativamente menos CG (39%) do que AT (61%) (Ming et al., 2008). Essa característica faz com que, na maior parte dos casos, os *primers* tenham Tm mais baixa, devido à natureza química dos nucleotídeos Adenina e Timina, que se mantém estáveis com apenas duas ligações de hidrogênio, enquanto que, Citosina e Guanina necessitam de três ligações para ficarem estáveis. Além disso, a Tm é a temperatura em que metade dos *primers* estão ligados ao DNA molde. Assim, SNPs em regiões ricas em CG geram *primers* alelo-específicos com alta Tm. Esse tipo de *primer* não é desejado, pois há uma grande dificuldade de encontrar os *primers* complementares com Tm compatível.

Figura 5 — Classificação de 724 sequências de *primers* por faixas de temperatura de *melting* (Tm).

Em todos os casos buscou-se a máxima compatibilidade entre os *primers.* Além disso, a escolha das melhores combinações de *primers* teve o auxílio da ferramenta *NetPrimer* que verifica a existência de estruturas secundárias intramoleculares, como: a) Grampos ou *hairpin loop* — essa estrutura é formada quando o *primer* dobra-se em torno de si mesmo, mantendo-se ligado por ligações intramoleculares; b) Dímero ou *self dimer* — um dímero é formado quando uma região de homologia está presente dentro da sequência do *primer.* Isto resulta na ligação de dois *primers*, aumentando a produção de artefatos do tipo dímeros e diminuindo a eficiência da PCR; ou intermoleculares, como: c) Dímero cruzado ou *cross dimer* — esse tipo de estrutura é observado quando sequências homólogas estão presentes nos *forward* e *reverse primers*, resultando em ligação dos *primers* e, consequentemente, na diminuição da eficiência da PCR (PREMIER Biosoft, 2018).

Essas interações afetam o anelamento de *primers* ao DNA molde e, consequentemente, a amplificação. Elas também diminuem a disponibilidade de *primers* durante a PCR. A força dessas estruturas é expressa pela energia livre de Gibbs (Δ G), dada por valores negativos, onde quanto mais baixo o valor mais estável é a estrutura secundária e mais dificilmente ela irá se desfazer. Em contrapartida, estruturas com Δ G mais próximas de zero são mais fracas e terão pouca influência sobre a reação (PREMIER Biosoft, 2018).

Primers que pudessem formar essas estruturas foram evitados, no entanto, isso nem sempre foi possível e a escolha dos melhores *primers* teve como base no *Rating*, que calcula a máxima eficiência dos *primers* com base na presença de *self dimer* e *hairpin*. A Figura 6 sumariza o *Rating* de 724 sequências de *primers* desenvolvidas neste trabalho. A maior frequência de *primers* com alto

Rating demonstra a boa qualidade das sequências, pois quanto mais alto for o Rating maior será a eficiência do primer.

Figura 6 — Classificação de 724 sequências de primers com base no Rating.

Os primers que apresentaram Rating mais baixos são na maior parte por conta das estruturas do tipo *self dimer*, que foram mais frequentes e mais fortes em relação às estruturas do tipo *hairpin*. A Figura 7 demonstra a classificação de 724 sequências de *primers* com base na formação dessas estruturas.

Figura 7 — Classificação de 724 sequências de *primers* conforme a presença de *self dimer* (barras tracejadas) e *hairpin* (barras sólidas). ΔG (energia necessária para quebrar a estrutura secundária, expressa em kcal/mol).

As figuras 8 e 9 mostram exemplos de *self dimer* e *hairpin*, respectivamente.

Figura 8 — Exemplo de *self dimer* formado pela sequência de *primer* (F:GAAAGCATCATACCCTTCGC) específica para o alelo C associado ao QTL FE_8_4@154.9. Estão apresentados dois *self dimers* com Δ G muito próximos.

```
Total Found = 1

1. \Delta G = -0.34 kcal/mol (3' Hairpin)

CTACGAAAG 5'

A | |||

LTACCCTTCGC 3'
```

Figura 9 — Exemplo de *hairpin* formado pela sequência de *primer* (F:GAAAGCATCATACCCTTCGC) específica para o alelo C associado ao QTL FE_8_4@154.9.

Outro aspecto importante na escolha dos melhores *primers* foi a presença de *cross dimer*, estrutura esta, que diminui a eficiência da PCR pela presença de sequências complementares presentes entre os *primers forward* e *reverse*. A Figura 10 sumariza o número de SNAPs que apresentaram *cross dimer*. A Figura 11 demostra três *cross dimers* formados pelo SNAP FE_8_4@154.9_C. O *cross dimer* 1 é o mais forte dos três, pois, sua energia (ΔG = -6,69 kcal/mol) é mais baixa, exigindo mais energia para a sua quebra.

Figura 10 — Classificação de 362 marcadores SNAPs conforme a presença de *cross dimer* (estrutura formada pelos *primers forward* e *reverse* de cada SNAP). ΔG (energia necessária para quebrar a estrutura secundária, expressa em kcal/mol).

Figura 11 — *Cross dimer* formado pelas sequências de *primer* (F:GAAAGCATCATACCCTTCGC e R:TGTGCTATTTCTCCTTCCCA) específicas para o alelo C associado ao QTL FE_8_4@154.9. Estão apresentados três *cross dimers*, onde o primeiro é mais difícil de ser quebrado em relação ao terceiro.

SNPs localizados em regiões repetitivas do genoma do mamoeiro foram mais trabalhosos para o desenho dos SNAPs devido à presença de múltiplos sítios de ligação (MSL) dos *primers*. A ligação de um *primer* a MSL pode diminuir significativamente a reação, pois, a quantidade de *primer* que irá se ligar ao sítio alvo é menor, podendo até mesmo, impossibilitar que ela ocorra. Outro problema com este tipo de *primer* é a grande chance de formar bandas inespecíficas no gel, dificultando a interpretação dos resultados.

Primers com MSL próximos ao sítio alvo são ainda mais indesejados, pois, em uma PCR a molécula que sintetiza as novas cópias da sequência alvo, *Taq* DNA polimerase, consegue sintetizar fragmentos de até 5 kpb a uma velocidade de 0,9-1,2kpb/minuto. Se o *primer* possuir um sítio de ligação indesejado muito próximo do sítio alvo as chances de formar bandas inespecíficas são enormes.

A Tabela 18 demonstra a presença de MSL em *primers* aleloespecíficos. O *primer* específico para o alelo A do SNP 796_17418_Un possui quatro sítios de ligação indesejados, sendo o primeiro a quatro bases e o último a 6.119 em relação ao sítio alvo. Para o *primer* específico do alelo T do SNP 42631_636_Un foram observados quatro sítios indesejados, sendo o primeiro a uma base e o último a 25 bases do sítio alvo. Para o SNP 2002_6551_Un o *primer* alelo-específico para o alelo C possui um sítio indesejado a 1.361 bases do SNP. O primer específico para o alelo G do SNP 19_35645_LG9 possui um sítio indesejado a 69 bases do sítio alvo. Esses *primers* têm grande chance de insucesso, pela quantidade e distância dos sítios de ligações indesejados em relação ao sítio alvo. Os outros alelos apresentados na Tabela 18 têm chances de amplificarem normalmente, devido à menor quantidade e maior distância dos MSL.

58

Tabela 18 — *Primers* alelo-específicos que apresentaram múltiplos sítios de ligação (MSL), quantidade de MSL e as distâncias do primeiro e o último sítio em relação ao sítio alvo.

QTLs	SNP	Alelo	Quant.	Dist. 1	Dist. 2
TSS_7; DC_7	157_169542_LG6	Т	1	296.833	
FI_2	77_790129_LG2	Т	1	447.839	
FI_11	4_1693602_LG8	G	1	7.048	
FI_14	14_1604543_LG1	С	1	1.153.606	
FE_11	3_2220266	С	1	145.801	
DF_1	296_98549_LG2	G	1	8.187	
DF_2	1749_9182_Un	А	1	5.262	
COMP_15	796_17418_Un	А	4	4	6.119
AP_1; DC_1; NFT_1	42631_636_Un	Т	4	1	25
		С	1	198.494	
AF_3	12_2007900_LG2	А	4	1.213.286	1.930.929
AP_4	97_366390_LG2	Т	1	277.353	
AP_11	235_178341_LG3	G	1	20.673	
AP_15	126_371146_Un	Т	2	81.076	139.886
AP_20	2002_6551_Un	С	1	1.361	
DC_2; NFT_4;	92_457409_LG4	С	2	17.4901	235.452
		Ŧ	2	100 001	600.047
NFC_7; NF1_9;	60_794585_LG3		3	128.621	000.247
PROD_14		A	6	26.654	707.439
NFC_10; NFT_12	28_1952843_Un	А	1	229.293	
NFC 16: PROD 30	36 1367348 LG1	G	1	1.202.597	
NFT_2	97_390208_LG2	А	2	155.290	269.282
NFT 13	19 35645 LG9	G	1	69	
PESO_7	554_1631_Un	Т	1	16.403	
PESO_11	81_481869_LG9	G	2	217.636	336.773
PESO_12	108_526839_Un	Т	2	9.053	82.432
PROD_9	104_144428_LG4	Т	1	375.554	
NFD_4; NNSF_11	14_561074_LG1	С	1	520.727	
NNSF_8_	4_553194_LG8	А	1	391.665	

Quant. = quantidade de sítios de ligação adicionais; Dist. 1 = distância do primeiro sítio de ligação em pares de base em relação ao sítio alvo; Dist. 2 = distância do último sítio de ligação em pares de base em relação ao sítio alvo.

A Figura 12 apresenta a quantidade e as posições dos MSL em relação aos *primers* desenvolvidos para o SNP 60_794585_LG3 associado aos QTLs NFC_7_3@347.5; NFT_9_3@350.6; e PROD_14_3@357.5. O *primer* específico para o alelo T apresenta três sítios adicionais, sendo o primeiro a 128.621 e o último a 688.247 bases do sítio alvo, enquanto que o *primer* específico para o alelo A apresenta seis sítios adicionais, sendo o primeiro a 26.654 e o último a 707.439 bases do sítio alvo. Os *primers* alelo-específicos desse SNP foram os que mais apresentaram MSL por estar em uma região repetitiva do genoma.

Figura 12 — Exemplo de *primers* alelo-específicos que possuem múltiplos sítios de ligação. Foi utilizado o SNP 60_794585_LG3 associado aos QTLs NFC_7_3@347.5; NFT_9_3@350.6; e PROD_14_3@357.5.

Foi desenvolvida uma planilha contendo as sequências de 362 marcadores SNAPs incluindo todos os parâmetros de qualidade referentes a cada sequência de *primer* (APÊNDICES A-N). Esse banco de marcadores associados às características de qualidade e produtividade de frutos dará suporte para programas de melhoramento assistido por marcadores na cultura do mamoeiro.

5.3. Validação dos marcadores SNAPs

A validação dos marcadores SNAPs é uma etapa essencial para a sua utilização efetiva em estudos na cultura do mamoeiro. Esse tipo de marcador já foi desenvolvido para algumas culturas, como soja (Kim et al., 2005), arroz (Kim et al., 2016), coqueiro (Pesik et al., 2017). No entanto, não há relatos da utilização dos SNAPs em mamão, além disso, a utilização deste marcador molecular, neste trabalho, é pioneira na UENF. Para isto, foram sintetizados 12 SNAPs referentes aos alelos de seis SNPs (Tabela 19).

A temperatura ótima de amplificação dos marcadores foi determinada através de gradiente de temperatura. Cada SNAP foi testado em pelo menos três diferentes temperaturas (Tabela 3) que, em grande parte dos casos, foi suficiente para determinar a melhor. A Tabela 19 mostra as melhores temperaturas de anelamento dos SNAPs com base nas imagens do gel.

		Parontal	TP (pb)	Ta	Parâmetros de qualidade			
SNAP	Sequência dos SNAPs	Específico			Rat.	Self Dimer	Hairpin	Cross Dimer
TSS_11_8@50.0_[T]	F: TTAGCAAGGGTGCACGTA R: TTTTATGGGCAGTGTTCCTA	P1	118	52	79 100	-10,7 -	-0,6 -	-5,7
TSS_11_8@50.0_[G]	F: ACGCAAATTATGTGTTAACAG R: GGGTTTCGTTACCATCTTCT	P2	236	52	77 99	-12,4 -	-	-4,3
FI_14_10@17.5_[T]	F: AGATGATGACTGAAATGGAT R: CTTTCTCTCTTTGTTTTTCTT	P1	133	48	100 100	-	-	-6,5
FI_14_10@17.5_[C]	F: ATCAATACATGCATATCCG R: GATTCTTCATCCTCTTCACTA	P2	203	48	82 100	-10,0 -	-	-4,0
FE_8_4@154.9_[T]	F: TTGCGTGAAGTGATACGTAAA R: GACTCGGTTGTGTTATTGCC	P2	145	52	82 100	-9,2 -	-0,8 -	-3,9
FE_8_4@154.9_[C]	F: GAAAGCATCATACCCTTCGC R: TGTGCTATTTCTCCTTCCCA	P1	278	52	91 100	-4,5 -	-0,3 -	-6,7
ESP_1_1@347.4_[A]	F: GTGCCCCTCTAGCGGGCA R: TCACAGAGCATTCAAAAGCCA	P1	229	60	66 100	-12,2 -	-8,1 -	-7,2
ESP_1_1@347.4_[G]	F: AAATTTCAAAATGCATTAGTCC R: TCCTTCCGTTGCTGTTTCTTT	P2	339	50	70 100	-13,9 -	-3,4 -	-4,9
DF_12_5@433.5_[A]	F: TTACTCCGATTCCAGGAAAA R: ACTGATGCTCTGCCTTGACT	P1	221	54	84 100	-7,6 -	-1,5 -	-
DF_12_5@433.5_[G]	F: CTGTCACCTAGAACACACAACC R: CACGCTTTGAAGACTTGACA	P2	475	52	92 100	-4,3	-	-7,8
COMP_7_5@107.5_[C]	F: ATATGAGATTAGGGTCATGTG R: TTTTGAAGGACTACGACTG	P1	334	57	85 100	-6,4 -	-1,9 -	-3,9
COMP_7_5@107.5_[T]	F: TGATATCAAATATGGGTCCT R: CAAGTGAGACACCAAGAGA	P2	184	50	80 100	-11,0 -	-	-3,9

Tabela 19 — Sequência e parâmetros de qualidade dos SNAPs utilizados para a validação.

TP (Tamanho do produto de PCR); Ta (Temperatura de anelamento em °C); Rat. (*Rating*); P1 (Sekati); P2 (JS-12).

A temperatura de amplificação ideal para o SNAP TSS_11_8@50.0_[G] foi a 52 °C, no entanto, para o outro alelo, o SNAP TSS_11_8@50.0_[T], os resultados do gradiente não foram satisfatórios, pois, as bandas no gel se mostraram fracas e inconsistentes (Figura 13). Assim, o SNAP TSS_11_8@50.0_[T] foi testado em temperaturas diferentes (Figura 14), onde a temperatura de 52 °C foi determinada como a melhor.

Figura 13 — Gradiente de temperatura para SNAPs TSS_11_8@50.0_[T] (51, 53 e 55 °C), TSS_11_8@50.0_[G] (48, 50 e 52 °C), FI_14_10@17.5_[T] (46, 48 e 50 °C) e FI_14_10@17.5_[C] (46, 48 e 50 °C). f. = poço quebrado do gel que não foi aplicado produto. Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

Figura 14 — Gradiente de temperatura para SNAPs COMP_7_5@107.5_[T] (46, 48 e 50 °C), COMP_7_5@107.5_[C] (50, 52 e 54 °C), TSS_11_8@50.0_[T] em nova configuração (50, 52 e 54 °C) e DF_12_5@433.5_[A] (54, 56 e 58 °C). Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

Para os SNAPs FI_14_10@17.5_[T] e FI_14_10@17.5_[C], a temperatura de 48 °C foi considerada ideal (Figura 13). A temperatura de amplificação ideal para o SNAP COMP_7_5@107.5_[T] foi a 50 °C. No entanto, para o outro alelo, o SNAP COMP_7_5@107.5_[C], formaram-se bandas inespecíficas no gel (Figura 14), mas essas, nitidamente ficaram mais fracas com o aumento da temperatura. Desta forma, o SNAP COMP_7_5@107.5_[C] foi analisado a 57 °C. Para os SNAPs DF_12_5@433.5_[A] e DF_12_5@433.5_[G] todas as temperaturas testadas foram ótimas (Figuras 14 e 15). Assim, foram selecionadas as temperaturas de 54 e 52 °C para os marcadores DF_12_5@433.5_[A] e DF_12_5@433.5_[G], respectivamente.

Figura 15 — Gradiente de temperatura para SNAP DF_12_5@433.5_[G] (48, 50 e 52 °C). Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

Os SNAPs FE_8_4@154.9_[T] e FE_8_4@154.9_[C] foram testados nas temperaturas de 51, 53 e 55 °C, onde, para todas as reações podem ser observadas, com clareza, as bandas no gel (Figura 16). Assim, a temperatura de 52 °C foi determinada como a melhor.

Figura 16 — Gradiente de temperatura para SNAPs FE_8_4@154.9_[T] (51, 53 e 55 °C) e FE_8_4@154.9_[C] (51, 53 e 55 °C). Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

O SNAP ESP_1_1@347.4_[G] específico para o alelo G amplificou com sucesso nas três temperaturas testadas e foi selecionada a temperatura de 50 °C (Figura 17).

Figura 17 — Gradiente de temperatura para SNAP ESP_1_1@347.4_[G] (46, 48 e 50 °C). Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

O SNAP ESP_1_1@347.4_[A] não amplificou com sucesso em alguns testes e novos testes foram realizados aumentando-se a concentração de MgCl₂ de 1,92 mM para 2,88 mM. O MgCl₂ é um cofator da enzima *Taq* polimerase e aumenta a produtividade da mesma. Desta forma, foi determinado que 60 °C seria o ideal para o SNAP ESP_1_1@347.4_[A] (Figura 18) com esse acréscimo de MgCl₂. Esse problema foi possivelmente devido às características

dos *primers* F e R do SNAP, que apresentaram diferença de Tm de 4,8 °C e *cross dimer* de -7,2. Além disso, o *primer* F apresentou *Rating* de 66%, sendo considerada uma sequência de baixa qualidade (Tabela 19).

Figura 18 — Gradiente de temperatura para o SNAP ESP_1_1@347.4_[A] (56, 58, 60, 62 e 64 °C). Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

Os 12 SNAPs desenvolvidos foram testados seguindo as melhores temperaturas de amplificação determinadas pelo gradiente de temperatura. Cada SNAP foi testado primeiramente em *singleplex* para validar a eficiência dos marcadores nesse sistema. Utilizou-se o DNA genômico dos parentais P1 (Sekati) e P2 (JS-12) e do *bulk* de 10 genótipos F₂. Apenas os SNAPs DF_12_5@433.5_[G] e DF_12_5@433.5_[A] não foram alelo-específicos, sendo que os outros 10 SNAPs se mostraram eficientes em discriminar os alelos dos SNPs. Os resultados obtidos foram utilizados para validar os marcadores em *multiplex* e apenas os SNAPs FI_14_10@17.5_[T] + FI_14_10@17.5_[C] e FE_8_4@154.9_[T] + FE_8_4@154.9_[C] foram eficientes nesse sistema. Essa estratégia era mais interessante para a validação, pois, em uma única reação poderiam ser detectados os diferentes alelos do SNP e os esforços para a genotipagem seriam reduzidos pela metade.

A reação de PCR utilizando os marcadores SNAPs realiza a amplificação preferencial do alelo-específico em relação ao alelo não específico. Assim, um SNAP pode produzir falsos positivos, pois nestes casos o alelo não específico possui um nucleotídeo incompatível naturalmente na extremidade 3' do *primer* não específico e outro nucleotídeo incompatível entre as quatro bases

próximas ao SNP. Em certos casos, essas duas bases incompatíveis não são suficientes para inibir a produção de banda para o alelo não específico (Drenkard et al., 2000). Segundo o autor, uma maneira de minimizar esse problema é diminuindo os ciclos de PCR. Desta maneira, o SNAP específico para um alelo ainda será eficiente na sua amplificação, mas não amplificará bandas quando o alelo alternativo estiver presente (falsos positivos).

Kim et al. (2005), utilizando marcadores SNAP em soja, constataram esse problema quando as reações de PCR foram realizadas com 35 ciclos. Ao realizar as reações com 28 ciclos de amplificação os autores demonstraram que todos os SNAPs foram alelo-específicos, por não produzirem falsos positivos. Assim, as reações para validação em *singleplex* e *multiplex* foram realizadas utilizando 30 ciclos de amplificação, onde não foi detectada a presença de falsos positivos, exceto para os SNAPs DF_12_5@433.5_[A] e DF_12_5@433.5_[G]. Serão descritos, com detalhes, os resultados obtidos em relação a cada SNAP a seguir.

Os SNAPs FE_8_4@154.9_[T] e FE_8_4@154.9_[C] desenvolvidos com base no SNP 157_123015_LG6_[C/T] associado ao QTL FE_8_4@154.9, com produtos de PCR de 145 e 278 pb, respectivamente, foram validados com sucesso (Figura 19a). O parental P1 (Sekati) é homozigoto para este *locus*, possuindo o alelo C, enquanto que o parental P2 (JS-12) é homozigoto para o outro alelo (T). Desta forma, era esperado que em *singleplex* o SNAP FE_8_4@154.9_[T] amplificasse apenas para o P1 e não amplificasse para o P2. Contrariamente, o SNAP FE_8_4@154.9_[C] deveria produzir banda apenas para o P2 e não deveria amplificar para o P1. O DNA do *bulk* F₂ foi utilizado como uma fonte de heterozigotos. Assim, era esperado que ambos SNAPs produzissem as bandas de tamanhos específicos (145 e 278 pb), de acordo com a imagem do gel (Figura 19a).

Figura 19 — a) Validação *singleplex* dos SNAPs FE_8_4@154.9_[T] e FE_8_4@154.9_[C] nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F₂. b) Validação *multiplex* dos SNAPs FE_8_4@154.9_[T] e FE_8_4@154.9_[C] (FE_8_4@154.9_[M]) nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F₂, Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

Em seguida, os dois SNAPs foram testados em *multiplex*, onde para cada reação, os dois eram colocados juntos. Foram obtidos resultados satisfatórios com a reprodução exata dos três genótipos utilizados (Figura 19b). Apenas o SNAP FE_8_4@154.9_[C] amplificou para o P1 e apenas o SNAP FE_8_4@154.9_[T] amplificou para o P2. Foi detectada, no *bulk*, a presença das duas bandas específicas (145 e 278 pb referentes aos alelos T e C, respectivamente).

É esperada, na reação em *multiplex*, a presença de uma banda comum em todos os genótipos. Esta banda é gerada pelos *primers reverse_1* e *reverse_2*, pois neste momento são utilizados dois pares de SNAPs por reação, e seu tamanho é praticamente a soma do produto das duas bandas específicas, conforme a Figura 20. Além disso, pode-se observar que a banda comum é muito mais forte que as bandas específicas (Figura 19b), isto é possivelmente devido à ausência de estruturas secundárias formadas pelos *primers* reversos 1 e 2 (*Rating = 100*) dos SNAPs, enquanto que, os *primers* específicos FE_8_4@154.9_[T]_F e FE_8_4@154.9_[C]_F apresentaram *Rating* igual a 82 e 91, respectivamente (Tabela 19). Desta forma, é sugerida a utilização desses marcadores em *multiplex* por reduzir o número de reações para a genotipagem.

Figura 20 — Representação esquemática da reação em *multiplex*. A seta de \cong 145 pb representa o produto de PCR esperado para o alelo T. A seta de \cong 278 pb representa o produto esperado para o alelo C. E a seta de \cong 381 pb representa o produto esperado pelos *primers* reversos T e C, sendo a banda comum presente em todos as amostras em *multiplex*.

Os SNAPs desenvolvidos para o SNP 14_1604543_LG1_[T/C] associados ao QTL FI_10@17.5 foram validados com sucesso. O parental P1 (Sekati) é homozigoto para este *locus* (genótipo T/T), possuindo o alelo T, enquanto que o parental P2 (JS-12) é homozigoto para o outro alelo (genótipo C/C). O SNAP FI_14_10@17.5_[T] específico do parental P1 gerou banda (133 pb) apenas neste parental e no *bulk* (genótipo T/C) (Figura 21a). No outro alelo, o SNAP FI_14_10@17.5_[C] apresentou banda (203 pb) apenas no P2 que ele é específico e também no *bulk*.

Esses SNAPs foram validados em *multiplex*, onde para o P1 apenas o SNAP FI_14_10@17.5_[T] amplificou e para o P2 apenas o SNAP FI_14_10@17.5_[C] gerou banda (Figura 21b). Foi observada a presença das duas bandas específicas para os alelos T e C no *bulk*, demonstrando a boa eficiência dos marcadores em discriminar os alelos do SNP. A banda comum nas três amostras possui tamanho aproximado de 298 pb.

Figura 21 — a) Validação *singleplex* dos SNAPs FI_14_10@17.5_[T] e FI_14_10@17.5_[C] nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F₂. b) Validação *multiplex* dos SNAPs FI_14_10@17.5_[T] e FI_14_10@17.5_[C] (FI_14_10@17.5_[M]) nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F₂. Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

Foram desenvolvidos marcadores SNAPs específicos para os alelos [T/G] do 9_366188_LG5 associado ao QTL TSS_11_8@50.0. O SNAP TSS_11_8@50.0_[T] com produto de PCR de 118 pb e específico para o alelo T gerou banda apenas para o parental P1 (genótipo T/T) que ele é específico e no *bulk* (genótipo T/G). Para o outro alelo, o SNAP TSS_11_8@50.0_[G] específico para o alelo G foi obtida a banda de tamanho específico (236 pb) apenas para o P2 (genótipo G/G) e para o *bulk* (Figura 22).

Figura 22 — Validação *singleplex* dos SNAPs TSS_11_8@50.0_[T] e TSS_11_8@50.0_[G] nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F₂. Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

А utilização dos **SNAPs** TSS_11_8@50.0_[T] е TSS_11_8@50.0_[G] pode discriminar nitidamente os alelos do SNP, no entanto, devem ser realizadas PCRs individuais para cada SNAP e, desta forma, são necessárias duas reações por amostra para definir o SNP. Nos testes realizados em *multiplex* foi detectada apenas a banda comum para os três genótipos e a banda específica para o alelo G, além disso, essa banda se mostrou fraca e inconsistente. Uma possível justificativa para esse resultado pode ser o fato dos primers alelo-específicos dos SNAPs TSS_11_8@50.0_[T] (F1) е TSS_11_8@50.0_[G] (F2) apresentarem Rating de 79 e 77%, respectivamente. Assim, esses baixos valores de qualidade em relação aos primers aleloespecíficos poderiam interferir significativamente na reação em multiplex. Além disso, Kim et al. (2016) desenvolveram marcadores SNAPs e descrevem que alguns marcadores foram validados em multiplex e outros não, demonstrando certa instabilidade nesse sistema. Os autores escolheram por utilizar os SNAPs apenas em singleplex.

Os SNAPs referentes aos alelos [C/T] do SNP 61_1220909_LG7, associado ao QTL COM_7_5@107.5 foram validados com sucesso no sistema de *singleplex*. O SNAP COMP_7_5@107.5_[T] produziu a banda específica (184 pb) apenas no P2 (genótipo T/T), que ele é específico e no *bulk* (genótipo T/C). O SNAP COMP_7_5@107.5_[C] específico para o P2 (genótipo C/C) amplificou com sucesso e gerou a banda específica (334 pb) nesse parental e no *bulk* (Figura 23).

Figura 23 — Validação *singleplex* dos SNAPs COMP_7_5@107.5_[T] e COMP_7_5@107.5_[C] nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F₂. Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

Não foi possível a validação desses SNAPs em *multiplex*, onde nos testes realizados foi detectada, com clareza, apenas a banda comum para os três genótipos. Pesik et al. (2017) discutem que na reação em *multiplex* o balanço ideal entre as concentrações de todos os *primers* é fundamental para que ocorra a reação de forma esperada, sendo que esse balanço pode variar de acordo com as condições de PCR, como o tipo de sequência de *primer*, amostras de DNA, concentrações de sais, concentração de *Taq* polimerase, etc.

Para o QTL ESP_01_1@347.4, foram desenvolvidos SNAPs específicos para os alelos [A/G] com base no SNP 129_404685_LG2. Os SNAPs ESP_1_1@347.4_[G] e ESP_1_1@347.4_[A] produziram produtos de PCR de 339 e 229 pb, respectivamente. O SNAP ESP_1_1@347.4_[G] produziu a banda específica apenas no parental P2 (genótipo G/G) e no *bulk* (genótipo GA), enquanto que o SNAP ESP_1_1@347.4_[A] gerou banda apenas no P1 (genótipo A/A) e no *bulk* (Figura 24). Ambos SNAPs foram precisamente alelo-específicos e podem ser utilizados para discriminar os alelos desse SNP em reações separadas. As reações em *multiplex* com esses SNAPs não produziram resultados satisfatórios, pois, apenas a banda comum entre os três genótipos foi detectada. Esse fato, deve-se possivelmente pelas características dos dois *primers* alelo-específicos dos SNAPs, que apresentaram diferença de Tm de 10 °C, além disso, esses *primers* mostraram *Rating* muito baixo (Tabela 19).

Figura 24 — Validação *singleplex* dos SNAPs ESP_1_1@347.4_[G] e ESP_1_1@347.4_[A] nos parentais P1 (Sekati) e P2 (JS-12) e no *bulk* de 10 indivíduos segregantes da geração F₂. Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

Foram desenvolvidos SNAPs específicos para os alelos [A/G] com base no SNP 3148_6446_Un associado ao QTL DF_12_5@433.5. Os SNAPs DF_12_5@433.5_[G] (475 pb) e DF_12_5@433.5_[A] (221 pb) não foram aleloespecíficos, por apresentarem bandas independentemente do genótipo testado (Figura 25).

Figura 25 — Padrão de amplificação indesejado, apresentado pelos SNAPs DF_12_5@433.5_[G] e DF_12_5@433.5_[A]. Setas sólidas indicam o tamanho real da banda de acordo com o marcador de 100 pb; setas pontilhadas indicam o tamanho do produto esperado para cada alelo.

O SNP 3148_6446_Un apresentou segregação mendeliana distorcida na geração F₂ (genótipos A/A, G/G e A/G com frequência de 90,2%, 6,5% e 3,7%, respectivamente). Chen et al. (2007) observaram distorção da segregação de marcadores SSR localizados na região MSY (*male-specific* Y) no GL1 do mamoeiro, causada por seleção pós-zigótica, abortando embriões YY. O mesmo autor também observou marcadores com segregação distorcida no GL6, onde não foi possível determinar a causa da distorção. Apesar de o SNP 3148_6446_Un estar localizado em grupo de ligação desconhecido, o mesmo pode estar localizado no GL1 ou GL6. Além disso, era esperado que uma pequena porção dos SNAPs não funcionassem corretamente, sendo que, isso é esperado para qualquer outro marcador molecular.

De acordo com Kim et al. (2005), se existe um marcador SNP ligado a uma certa característica de interesse que será utilizado em algum programa de SAM, os melhoristas de plantas deveriam, preferencialmente, considerar métodos simples, com requisitos básicos, com baixo custo e alta reprodutibilidade. Assim, a utilização dos marcadores alelo-específicos SNAPs satisfazem todos os pontos acima citados.

5.4. Anotação de genes candidatos

A utilização de mapas genéticos saturados permite, através da análise de QTLs, identificar marcadores localizados em genes associados a uma característica de interesse ou em regiões próximas a esses genes. As características estudadas aqui são todas de natureza quantitativa. Essas características são multifatoriais e influenciadas por diversos genes polimórficos e condições ambientais, assim, um ou muitos QTLs podem influenciar um fenótipo. Além disso, uma variação fenotípica pode ser causada por fatores ambientais independentes do genótipo ou por interações gene-ambiente (*Complex Trait Consortium*, 2003).

A identificação dos possíveis genes associados às características de interesse para o melhoramento genético do mamoeiro, num primeiro momento, torna-se uma boa estratégia para aumentar o entendimento sobre como ocorre a expressão dessas características e possibilita o desenvolvimento de outros estudos, visando uma caracterização mais profunda desses genes.

A anotação gênica é o primeiro passo para identificação de genes candidatos associados às características de interesse para o melhoramento do mamoeiro. O genoma do mamoeiro é relativamente pequeno, contendo cerca de 20 mil genes que estão disponíveis para estudo na base de dados de genes do NCBI. Desta forma, foram anotados todos os genes em uma região de aproximadamente 400 kpb (representando aproximadamente 4 cM de acordo com o mapa genético utilizado como base para este estudo) para cada um dos 186 SNPs associados a QTLs de 14 características quantitativas (Tabelas 4-17). No entanto, a presença de SNPs em contigs e supercontigs menores que 400 kpb tornou a anotação limitada ao tamanho da sequência. Além disso, alguns SNPs estavam próximos uns dos outros (<400 kpb) e foram anotados em conjunto, onde toda a região entre os marcadores, mais 200 kpb à esquerda do primeiro SNP e 200 kpb à direita do segundo SNP foram anotadas. O número total de genes foi de 3.596 em uma região de 46.486,7 kpb (Tabela 20). Esse número de genes representa 18,22% dos genes já identificados em mamão, disponível na base de dados de genes e expressão gênica do NCBI, e a região total analisada representa cerca de 12,50% do genoma.

Essa base de dados possui uma *pipeline* automatizada de anotação gênica de genomas, baseada em dois componentes principais: 1) alinhamento de transcritos e proteínas depositados na base, através das ferramentas *Splign* e *ProSplign*, que permitem identificar com alta resolução os sítios de *splicing* 2) e predição *ab initio* de genes pela ferramenta *Gnomon*, que utiliza alinhamentos de evidências experimentais e modelos gerados pelo algoritmo HMM (*Hidden Markov Model*).

O SNP 26_1614923_LG1 associado ao QTL PROD_28_9@110.3 foi o que apresentou o maior número de genes associados (67) na região de 400 kpb. Não foi possível identificar nenhum gene em 12 SNPs localizados em *contigs* e *supercontigs* com sequências muito pequenas. O SNP 46171_471_Un associado ao QTL ESP_6_5@262.5 esteve localizado no menor *contig* (1,23 kpb) e foi identificado apenas um gene associado a esse SNP. O *supercontig* 80 apresentou três SNPs próximos (80_138781_LG2, 80_351371_LG2, 80_724758_LG2) e a anotação gênica foi feita em conjunto, sendo que em uma região total de 924 kpb foram identificados 86 genes. Quarenta e sete SNPs (25,27%) estiveram localizados em grupo de ligação desconhecido (*Unknown*) e apenas 11,01% dos genes totais estiveram associados a esses SNPs. O GL2 foi o que apresentou o maior número de SNPs associados (29) e, consequentemente, foi o GL que apresentou o maior número de genes e a maior região acessada (Tabela 20). O GL7 foi o que apresentou a menor porcentagem de genes (5,73%) e a menor densidade de genes por 100/kpb. A maior densidade de 10,31 genes/ 100 kpb foi observada para o GL1. A menor região acessada foi em relação ao GL6. A Figura 26 ilustra a relação entre a porcentagem de genes, porcentagem da região analisada e densidade de genes/100 kpb por grupo de ligação.

Grupo de ligação	Número de SNPs	Número de genes	Tamanho da região (kpb)	% Genes	% Região	Genes/ 100 kpb
GL1	12	381	3.696,01	10,60	7,95	10,31
GL2	29	617	7.165,75	17,16	15,41	8,61
GL3	11	222	3.639,23	6,17	7,83	6,10
GL4	20	375	5.643,93	10,43	12,14	6,64
GL5	12	330	3.903,26	9,18	8,40	8,45
GL6	14	256	3.107,92	7,12	6,69	8,24
GL7	13	206	3.911,09	5,73	8,41	5,27
GL8	14	438	5.266,65	12,18	11,33	8,32
GL9 + GL10	14	375	4.301,63	10,43	9,25	8,72
Unkown	47	396	5.851,23	11,01	12,59	6,77
Total	186	3.596	46.486,7	100	100	

Tabela 20 — Número de genes totais distribuídos por grupo de ligação e densidade de genes em 100 kpb

Unknown (Grupo de ligação desconhecido)

Unknown (Grupo de ligação desconhecido)

Figura 26 — Porcentagem de genes totais, porcentagem da região total analisada e densidade de genes a cada 100 kpb de acordo com o grupo de ligação (GL).

O total de genes para cada característica pode ser observado na Tabela 21. O maior número de genes identificados em relação a Tabela 20 é devido à presença de SNPs associados a mais de um QTL em diferentes características. Os genes associados a esses SNPs foram contabilizados em todas as características que eles estiveram associados. Por exemplo, o SNP 65_485044_Un associado aos QTLs COMP_10_6@112.5 e NNSF_6_6@105.0 apresentou 43 genes na região de 400 kpb, assim, esses genes foram contabilizados em ambas as características.

A característica altura da planta que apresentou o maior número de QTLs (31) também apresentou o maior número de genes e a maior região acessada (Tabela 21). Em contrapartida, a característica número de frutos deformados que apresentou o menor número de QTLs também apresentou o menor número de genes e a menor região acessada.

	Características	Número de QTLs	Número de genes	Tamanho da região (kpb)
os frutos	TSS	14	455	4.833,6
	FI	14	390	5.138,3
	FE	14	455	4.815,3
le do	ESP	16	406	4.835,4
lidac	DF	18	443	5.423,3
Qua	COMP	15	265	4.346,8
	PESO	12	290	4.389,8
Produtividade	NFT	20	609	7.051,8
	NFC	16	450	6.368,8
	NFD	4	98	1.123,5
	NNSF	13	291	4.573,8
	DC	8	252	3.230,6
	AP	31	758	9.295,0
	PROD	30	710	8.123,6
Total		225	5.872	73.549,6

Tabela 21 — Número de QTLs, quantidade de genes e tamanho da região genômica acessada para cada característica.

Royaert et al. (2016) investigaram com detalhes todos os genes em uma região de 300 a 700 kpb (2 a 3 cM) associados a QTLs de maior efeito para a identificação de genes candidatos associados com a resistência da doença vassoura de bruxa em cacau. Os autores identificaram vários genes candidatos, pesquisando por termos específicos (baseado em genes de resistência às doenças disponíveis na literatura) e confirmaram a expressão diferenciada de alguns através de RNA-seq. Os resultados obtidos são de grande importância, pois, permitirão а criação е seleção de materiais vegetais mais tolerantes/resistentes para essa doença.

A ampla anotação gênica associada às características de interesse para o melhoramento do mamoeiro permitirá a identificação de genes candidatos. O desenvolvimento de estudos com base nessa anotação gênica permitirá um melhor entendimento sobre como é a interação desses genes na expressão de características quantitativas na cultura do mamoeiro. Para isso, foram inclusos, nesse trabalho, todos os genes associados aos QTLs de efeito principal.

Foram identificados 51 genes em uma região de 434 kpb em relação ao SNP 9_366188_LG5 associado ao QTL TSS_11_8@50.0 (APÊNDICE O). O SNP 163_297115_LG4 associado ao QTL FE_4_2@350.0 apresentou 19 genes em uma região de 400 kpb (APÊNDICE P). Para o SNP 14_1604543_LG1 associado ao QTL FI_14_10@17.5 foram identificados 29 genes em uma região de 400 kpb (APÊNDICE Q). Em relação ao SNP 731_3422_Un associado ao QTL FE_13_8@127.5 foram identificados apenas três genes (APÊNDICE R). O SNP 1183 495 Un associado ao QTL ESP 2 4@112.5 apresentou apenas três genes em uma região de 18,5 kpb (APÊNDICE S). Para o SNP 77 19179 LG2 associado ao QTL NFC_2_1@101.2 foram identificados 17 genes em uma região de 219 kpb (APÊNDICE T). Foram identificados 56 genes em uma região de 467,6 kpb em relação ao SNP 157_123015_LG6 associado ao QTL FE_8_4@154.9 (APÊNDICE U). Para o SNP 18_1663218_LG5 associado ao QTL NNSF_10_8@227.5 em uma região de 400 kpb foram identificados 16 genes (APÊNDICE V). Em relação ao SNP 129_404685_LG2 associado ao QTL ESP_1_1@347.4 foram identificados 41 genes em uma região de 433 kpb (APÊNDICE W). O SNP 79 225223 LG2 associado ao QTL NNSF 2 1@303.8 apresentou oito genes em uma região de 400 kpb (APÊNDICE X). Foram identificados 27 genes para o SNP 14_561074_LG1 associado ao QTL NNSF_11_10@5.0 em uma região de 400 kpb (APÊNDICE Y). Em relação ao SNP 65 485044 Un associado ao QTL NNSF 6 6@105.0 foram identificados 43 genes em uma região de 400 kpb (APÊNDICE Z). Para o SNP 157_169542_LG6 associado ao QTL DC_6_4@152.5 foram identificados 56 genes em uma região de 467,6 kpb (APÊNDICE AA). O SNP 27_92703_LG7 associado ao QTL DC_7_5@285.0 apresentou 23 genes em uma região de 292 kpb (APÊNDICE BB). O SNP 126_371146_Un associado ao QTL AP_15_5@230.6 apresentou 26 genes em uma região de 400 kpb (APÊNDICE CC). Não foi possível identificar genes para os SNPs 3148_6446_Un e 741_3553_Un associados aos QTLs DF 12 5@433.5 e NNSF 1 1@142.5, respectivamente.

Devido à grande quantidade de genes identificados em relação a todos os SNPs, a planilha com a descrição dos mesmos será disponibilizada como material suplementar em formato digital.

6. CONCLUSÕES

Todos os SNPs fortemente associados a cada QTL foram identificados e com base nesses SNPs foram desenvolvidos *primers* de alta qualidade para os marcadores SNAPs, visando a implementação da seleção assistida por marcadores na cultura do mamoeiro.

A validação dos SNAPs mostrou que os marcadores foram eficientes em relação ao custo de aplicação, rapidez para obtenção dos dados e facilidade de manuseio, podendo discriminar nitidamente os alelos do SNP.

A anotação gênica associada aos QTLs utilizados neste estudo permitirá um melhor entendimento da expressão das características estudadas. Além disso, uma análise mais detalhada dos genes anotados irá permitir identificar genes candidatos associados às características de interesse para o melhoramento genético do mamão.

O atlas desenvolvido neste trabalho dará suporte a outros trabalhos que visem a seleção assistida por marcadores desenvolvidos na UENF e em outras instituições de pesquisa.

REFERÊNCIAS BIBLIOGRÁFICAS

- Badillo, V. M. (2000) Carica L. vs Vasconcellea St. Hil. (*Caricaceae*) com La rehabilitacion de este ultimo. *Ernstia*, 10:74-79.
- Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A., Selker, E.U., Cresko, W.A., Johnson, E.A. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. *PLoS One.* doi: 10.1371/journal.pone.0003376
- Blas, A.L.; Yu, Q.; Veatch, O.J.; Paull, R.E.; Moore, P.H.; Ming, R. (2012) Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya. *Molecular Breeding*, 29:457:466.
- Borém, A. (2005) Melhoramento de plantas. 4ª Edição. Viçosa: UFV, 525p.
- BRASIL (2007) Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Cadeia produtiva de frutas / Secretaria de Política Agrícola, Instituto Interamericano de Cooperação para a Agricultura; Antônio Márcio Buainain e Mário Otávio Batalha (coordenadores). Brasília: IICA: MAPA/SPA. 102 p.; Agronegócios; v. 7. Disponível em: < http://www.ibraf.org.br/x_files/Documentos/Cadeia_Produtiva_de_Frutas_S% C3%A9rie_Agroneg%C3%B3cios_MAPA.pdf>. Acessado em: 23 jun. 2016.

Brookes, A.J. (1999) The essence of SNPs. Gene, 177-186.

- Carvalho, F.I.F. et al. (2004) Estimativas e implicações da correlação no melhoramento vegetal. Pelotas: UFPel, 142p.
- Celik, I.; Gurbuz, N.; Uncu, A.T.; Frary, A.; Doganlar, S. (2017) Genome-wide SNP discovery and QTL mapping for fruit quality traits in inbred backcross lines

(IBLs) of Solanum pimpinellifolium using genotyping by sequencing. BMC Genomics 18:1.

- Chagné, D.; Gasic, K.; Crowhurst, R. N.; Han, Y.; Bassett, H. C.; Bowatte, D. R.; Lawrence, T. J.; Rikkerink, E. H. A.; Gardiner, S. E.; Korban, S. S. (2008) Development of a set of SNP markers present in expressed genes of the apple. *Genomics*, 92, p. 353-358.
- Chen, C., Yu, Q., Hou, S., Li, Y., Eustice, M., Skelton, R.L., Veatch, O., Herdes, R.E., Diebold, L., Saw, J., Feng, Y., Qian, W., Bynum, L., Wang, L., Moore, P.H., Paull, R.E., Alam, M., Ming, R. (2007) Construction of a sequencetagged high-density genetic map of papaya for comparative structural and evolutionary genomics in *Brassicales. Genetics* 177: 2481-2491.
- Ching, A., Caldwell, K.S., Jung, M., Dolan, M., Smith, O.S., Tingey, S., Morgante, M., Rafalski, A.J. (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. *BMC Genetics* 3:19.
- Chutimanitsakun, Y., Nipper, R.W., Cuesta-Marcos, A., Cistué, L., Corey, A., Filichkina, T., Johnson, E.A., Hayes, P.M. (2011) Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. *BMC Genomics*. doi: 10.1186/1471-2164-12-4
- Collard, B.C., Mackill, D.J. (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. *Philosophical Transactions of the Royal Society B*, 363: 557-572.
- Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B., Pang, E.C.K. (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. *Euphytica* 142: 169-196.
- Complex Trait Consortium. (2003) The nature and identification of quantitative trait loci: a community's view. *Nature Reviews Genetics*, 4: 911-916.
- Correa, J., Mamani, M., Muñoz-Espinoza, C., Laborie, D., Muñoz, C., Pinto, M., Hinrichsen, P. (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). *Theortical and Applied Genetics*, 127: 1143-1162.
- Cortes, D. F. M.; Santa-Catarina, R.; Barros, G. B. A.; Arêdes, F. A. S.; Silveira, S. F.; Ferreguetti, G. A.; Ramos, H. C. C.; Viana, A.P.; Pereira, M. G. (2017) Model-assisted phenotyping by digital images in papaya breeding program. *Scientia Agricola*, 74: 294-302.
- Dantas, J. L. L. (2000) Introdução, Variedades. In: Trindade, A. V (org.). *Mamão. Produção: aspectos técnicos.* 1. ed. Embrapa Mandioca e Fruticultura (Cruz

das Almas, BA). Brasília: Embrapa Comunicação para Transferência de Tecnologia, p. 9-15.

- Dantas, J. L. L.; Castro, M. T. N. (2000) Aspectos Botânicos e Fisiológicos. In: Trindade, A. V. Mamão. Produção: aspectos técnicos. 1. ed. Embrapa Mandioca e Fruticultura (Cruz das Almas, BA). Brasília: Embrapa Comunicação para Transferência de Tecnologia, p. 11-14.
- Deokar, A.A., Ramsay, L., Sharpe, A.G., Diapari, M., Sindhu, A., Bett, K., Warkentin, T.D., Tar'an, B. (2014) Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. *BMC Genomics* 15: 708.
- Drenkard, E., Richter, B.G., Rozen, S., Stutius, L.M., Angell, N.A., Mindrinos, M., Cho, R.J., Oefner, P.J., Davis, R.W., Ausubel, F.M. (2000) A Simple Procedure for the Analysis of Single Nucleotide Polymorphisms Facilitates Map-Based Cloning in Arabidopsis. *Plant Physiology*, 124.
- Etter, P.D., Bassham, S., Hohenlohe, P.A., Johnson, E.A., Cresko, W.A. (2011) SNP Discovery and Genotyping for Evolutionary Genetics Using RAD Sequencing. *Molecular Methods for Evolutionary Genetics*. 772: 1-19.
- Evans, E. A.; Ballen, F. H. (2012) An Overview of Global Papaya Production, Trade, and Consumption. Gainesville: University of Florida. p. 7. Disponível em: < http://edis.ifas.ufl.edu/pdffiles/FE/FE91300.pdf>. Acessado em: 10 nov. 2016.
- Fan, C.C; Yu, X.Q.; Xing, Y, Z.; Xu, C.G.; Luo, L.J.; Zhang, Q. (2005) The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. *Theortical and Applied Genetics*, 110: 1445-1452.
- FAOSTAT (2018) Food and Agriculture Organization of the United Nations. Disponível em: http://www.fao.org/faostat/en/#compare. Acessado em 09/02/2018.
- Ferreguetti, G.A. (2003) Caliman 01 O Primeiro hibrido de Mamão formosa Brasileiro. *Papaya Brasil,* 211-218.
- Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T., Turner, D.H. (1986) Improved free-energy parameters for predictions of RNA duplex stability. *Proceedings of the National Academy of Sciences*, 83: 9373-9377.
- Giacometti, D. C.; Mundim, L. B. (1953) Melhoramento do mamão (*Carica papaya* L.). *Boletim de Agricultura,* 2^a Ed, Belo Horizonte: MG, N. 5 e 6, p. 32p.

- Hodgkin, J. (1998) Seven types of pleiotropy. *International Journal of Developmental Biology*, 42: 501-505.
- IBGE (2013) Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal. Disponível em: <http://www.ibge.gov.br/home/estatistica/economia/pam/2013/>. Acessado em: 23 jun. 2016.
- Ide, C. D. (2008) Melhoramento genético do mamoeiro (Carica papaya L.): parâmetros genéticos e capacidade combinatória em ensaios de competição de cultivares. Tese (Doutorado em Genética e Melhoramento de Plantas) Campos dos Goytacazes – RJ, Universidade Estadual do Norte Fluminense – UENF, 153p.
- Khlestkina, E.K., Salina, E.A. (2006) SNP markers: Methods of analysis, ways of development, and comparison on an example of common wheat. *Russian Journal of Genetics*, 42: 585-594.
- Kim, M.S., Moore, P.H., Zee, F., Fitch, M.M.M., Steiger, D.L., Manshardt, R.M., Paull, R.E., Drew, R.A., Sekioka, T., Ming, R. (2002) Genetic diversity of Carica papaya as revealed by AFLP markers. *Genome*, 45: 503-512.
- Kim, M.Y., Van, K., Lestari, P., Moon, J.K., Lee, S.H. (2005) SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean. *Theortical and Applied Genetics*, 110: 1003-1010.
- Kim, S.-R., Ramos, J., Ashikari, M., Virk, P.S., Torres, E.A., Nissila, E., Hechanova, S. Lou., Mauleon, R., Jena, K.K. (2016) Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, *Oryza sativa* L. *Rice* (NY) 9: 12.
- Lestari, P., Koh, H.J. (2013) Development of New CAPS/dCAPS and SNAP Markers for Rice Eating Quality. *HAYATI Journal of Biosciences*, 20: 15.
- MAPA (2018) Ministério da Agricultura, Pecuária e Abastecimento. Registro Nacional de Cultivares (RNC). Disponível em: < http://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_registradas.php >. Acessado em: 26 mar. 2018.
- MAPA (2018) Ministério da Agricultura, Pecuária e Abastecimento. Plano Nacional do Desenvolvimento da Fruticultura. Disponível em: <http://www.agricultura.gov.br/noticias/mapa-lanca-plano-de-fruticultura-emparceria-com-o-setor-

privado/PlanoNacionaldeDesenvolvimentodaFruticulturaMapa.pdf>. Acessado em: 04 abr. 2018.

- Marin, S.L.D., Pereira, M.G., Amaral Júnior, A.T. Do., Martelleto, L.A.P., Ide, C.D. (2006) Partial diallel to evaluate the combining ability for economically important traits of papaya. *Scientia Agricola*, 63: 540-546.
- Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J.H., Alam, M., et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (*Carica papaya* Linnaeus). *Nature*, 452: 991-996.
- Ming, R., Yu, Q., Moore, P.H. (2007) Sex determination in papaya. *Cell and Development Biology*, 18: 401-408.
- Morris, G.P., Ramu, P., Deshpande, S.P., Hash, C.T., Shah, T., Upadhyaya, H.D., Riera-Lizarazu, O., Brown, P.J., Acharya, C.B., Mitchell, S.E., Harriman, J., Glaubitz, J.C., Buckler, E.S., Kresovich, S. (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. *Proceedings of the National Academy of Sciences*, 110: 453-458.
- Pereira, M.G., Ferreguetti, G.A., Nair, T., Pereira, S., Cancela Ramos, H.C., Fernando, D., Cortes, M., Santa Catarina, R., Nunes Da Luz, L., Brito De Araújo Barros, G., Abreu, F., Arêdes, S., Santana, M., Boechat, B., Felipe Da Silveira, S., Gonçalves De Oliveira, J. (2015) *MELHORAMENTO GENÉTICO DO MAMOEIRO: PROGRAMA UENF/CALIMAN.*
- Pesik, A. (2017) Development of SNAP markers based on nucleotide variability of WRKY genes in coconut and their validation using multiplex PCR. *Biodiversitas, J Biol Divers* 18: 465-475.
- PREMIER Biosoft (2018) NetPrimer Manual. Disponível em < file:///D:/Dieimes/Desktop/NetPrimerManual.pdf>. Acessado em: 04 abr. 2018.
- PREMIER Biosoft (2018) NetPrimer Free web-based tool to analyze primers. Disponível em < http://www.premierbiosoft.com/NetPrimer/AnalyzePrimer.jsp>.
- Quintal, S. S. R. (2009) Caracterização e avaliação de um banco de germoplasma de mamoeiro para estudo dos parâmetros genéticos e diversidade genética. Tese (Mestrado em Genética e Melhoramento de Plantas) Campos dos Goytacazes – RJ, Universidade Estadual do Norte Fluminense – UENF, 168p.
- Ramos, H, C, C.; Barros, G. B.; Luz, L. N.; Barros, F.R.; Pereira, M. G.; Ming, R. (2013) Rápida Descoberta de SNP em Mamoeiro (*Carica papaya* L.) via Metodologia RAD-sequencing. *In: 7º Congresso Brasileiro de Melhoramento de Plantas*, Uberlândia MG.
- Ramos, H. C. C. (2010) Retrocruzamento em mamoeiro: avanço de gerações e seleção de linhagens via procedimentos clássicos e moleculares. Tese

(Genética e Melhoramento de Plantas) — Campos dos Goytacazes – RJ, Universidade Estadual do Norte Fluminense – UENF, 134p.

- Ramos, H. C. C.; Pereira, M. G.; Gonçalves, L. S. A.; Berilli, A. P. C. G.; Pinto, F. O.; Ribeiro, E. H. (2012) Multivariate analysis to determine the genetic distance among backcross papaya (*Carica papaya* L.) progenies. *Genetics and Molecular Research*, 11: 1280-1295.
- Ramos, H. C. C.; Pereira, M. G.; Silva, F. F.; Gonçalves, L. S. A.; Pinto, F. O.; Souza Filho, G. A.; Pereira, T. S. N. (2011b) Genetic characterization of papaya plants (*Carica papaya* L.) derived from the first generation of backcross. *Genetics and Molecular Research*, 10: 393-403.
- Ramos, H. C. C.; Pereira, M. G.; Silva, F. F.; Viana, A. P. (2011a) Seasonal and genetic influences on sexual expression in segregating papaya population derived from backcross. *Crop Breeding and Applied Biotechnology*, 11: 97-105.
- Ramos, H. C. C.; Pereira, M. G.; Viana, A. P.; Luz, L. N.; Cardoso, D. L.; Ferreguetti, G. A. (2014) Combined Selection in Backcross Population of Papaya (*Carica papaya* L.) by the Mixed Model Methodology. *American Journal of Plant Sciences*, 5: 2973-2983.
- Ramos, H.C.C., Pereira, M.G., Gonçalves, L.S. a., Berilli, a P.C.G., Pinto, F.O., Ribeiro, E.H. (2012) Multivariate analysis to determine the genetic distance among backcross papaya (*Carica papaya*) progenies. *Genetics and Molecular Research*, 11: 1280-95.
- Ramos, H.C.C., Pereira, M.G., Pereira, T.N.S., Barros, G.B.A., Ferreguetti, G.A. (2014) Genetic-molecular characterization of backcross generations for sexual conversion in papaya (*Carica papaya* L.). *Genetics and Molecular Research*, 13: 10367-10381.
- Royaert, S., Jansen, J., da Silva, D.V., de Jesus Branco, S.M., Livingstone, D.S., Mustiga, G., Marelli, J.P., Araújo, I.S., Corrêa, R.X., Motamayor, J.C. (2016) Identification of candidate genes involved in Witches' broom disease resistance in a segregating mapping population of Theobroma cacao L. in Brazil. *BMC Genomics*, 17: 1-16.
- Sacco, A., Di Matteo, A., Lombardi, N., Trotta, N., Punzo, B., Mari, A., Barone, A. (2013) Quantitative trait loci pyramiding for fruit quality traits in tomato. *Molecular Breeding*, 31: 217-222.
- Silva, C.A.; Schmildt, E.R.; Schmildt, O.; Alexandre, R.S.; Cattaneo, L.F.; Ferreira, J.P.; Nascimento, A.L. (2016) Correlações fenotípicas e análise de trilha em caracteres morfoagronômicos de mamoeiro. *Revista Agro@mbiente On-line*, 10:3 217-227.
- Silva, F. F; Pereira, M. G; Campos, W. F; Damasceno Júnior, P. C; Pereira, T. N. S; Souza Filho, G. A; Ramos, H. C. C; Viana, A. P; Ferreguetti, G. A. (2007a) DNA marker-assisted sex conversion in elite papaya genotype (*Carica papaya* L.), *Crop Breeding and Applied Biotechnology*, 7: 52-58.
- Silva, F. F; Pereira, M. G; Ramos, H. C. C; Damasceno Júnior, P. C; Pereira, T. N. S; Ide, C. D. (2007c) Genotypic correlations of morpho-agronomic traits in papaya and implications for genetic breeding, *Crop Breeding and Applied Biotechnology*, 7: 345-352.
- Silva, F. F; Pereira, M. G; Ramos, H. C. C; Damasceno Júnior, P. C; Pereria, T. N; Viana, A. P; Daher, R. F; Ferreguetti, G. A. (2008a) Estimation of genetic parameters related to morphoagronomic and fruit quality traits of papaya, *Crop Breeding and Applied Biotechnology*, 8: 65-73.
- Silva, F. F; Pereira, M. G; Ramos, H. C. C; Damasceno Júnior, P. C; Pereira, T. N. S; Gabriel, A. P. C; Viana, A. P; Ferreguetti, G. A. (2008b) Selection and estimation of the genetic gain in segregating generations of papaya (Carica papaya L.), *Crop Breeding and Applied Biotechnology*, 8: 1-8.
- Silva, F. F; Pereira, M.G; Damasceno Júnior, P. C; Pereira, T. N. S; Viana, A. P; Daher, R. F; Ramos, H. C. C; Ferreguetti, G. A. (2007b) Evaluation of the sexual expression in segregation BC1 papaya population, *Crop Breeding and Applied Biotechnology*, 7: 16-23.
- Silva, F.F., Pereira, M.G., Campos, W.F., Damasceno, P.C., Pereira, T.N.S., De Souza Filho, G.A., Ramos, H.C.C., Viana, A.P., Ferreguetti, G.A. (2007) DNA marker-assisted sex conversion in elite papaya genotype (*Carica papaya* L.). *Crop Breeding and Applied Biotechnology*, 7: 52-58.
- Silva, F.F.; Pereira, M. G.; Ramos, H. C. C.; Damasceno Junior, P. C.; Pereira, T, N, S.; Ide, C. D. (2007) Genotypic correlations of morpho-agronomic traits in papaya and implications for genetic breeding. *Crop Breeding and Applied Biotechnology*, 7: 345-352.
- Silva, M. C. A.; Tarsitano, A. A.; Corrêa, L. S. (2004) Análise do custo de produção e lucratividade do mamão formosa, cultivado no município de Santa Fé do Sul (sp). *Revista Brasileira de Fruticultura*, Jaboticabal. 26:1 40-43.
- STATISTA (2016) The Statistics Portal. Global fruit production in 2013, by variety (in million metric tons). Disponível em: < http://www.statista.com/statistics/264001/worldwide-production-of-fruit-byvariety/>. Acessado em: 13 mar. 2018.
- Steemers, F.J.; Gunderson, K.L. (2007) Whole genome genotyping technologies on the BeadArray[™] platform. *Biotechnology Journal*. 2: 41-49.

- Sun, R., Chang, Y., Yang, F., Wang, Y., Li, H., Zhao, Y., Chen, D., Wu, T., Zhang, X., Han, Z. (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. *BMC Genomics* 16: 1-15.
- Vidal, N.M., Grazziotin, A.L., Ramos, H.C.C., Pereira, M.G., Venancio, T.M. (2014) Development of a gene-centered ssr atlas as a resource for papaya (*Carica papaya*) marker-assisted selection and population genetic studies. *PLoS One*. doi: 10.1371/journal.pone.0112654
- Xu, Y., Crouch, J.H. (2008) Marker-assisted selection in plant breeding: From publications to practice. *Crop Science*, 48: 391-407.
- Yu, Q., Tong, E., Skelton, R.L., Bowers, J.E., Jones, M.R., Murray, J.E., Hou, S., Guan, P., Acob, R.A., Luo, M.C., Moore, P.H., Alam, M., Paterson, A.H., Ming, R. (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. *BMC Genomics* 10: 371.
- Yuan, X.J., Li, X.Z., Pan, J.S., Wang, G., Jiang, S., Li, X.H., Deng, S.L., He, H.L., Si, M.X., Lai, L., Wu, A.Z., Zhu, L.H., Cai, R. (2008) Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. *Plant Breeding*, 127: 180-188.

APÊNDICES

						Pa	arâmetros	s de qualic	lade
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
4 4 9 4 4 9 9		G	F: AGGCTCAAATCTTGATGAGGG	157	58,43	86	-6,1	-2,0	-
1_1@113.2 PROD_2; FE_3	1380_1407_Un	A		295	57,06 59,58 59 19	100 83 89	-7,1 -5.7	-2,8	-4,8
2 1@421.1	0.0044400.1.00	С	F: ATGAGATCTTGGCAGGCG R: ACAACCCAGTCAGCACCC	107	56,26 55,40	85 100	-7,8	-	-
DF_3; PROD_6	6_2014486_LG2	т	F: GAGCCACGCTAACGAGCT R: TGGGGCGAAGAGGACTATT	173	56,08 57,02	85 100	-7,3 -	-1,2 -	-
2.2@100.8	450 207482 1 02	т	F: GACAATAGGAATTCGTTGTAT R: ATCCATCAAACAAAGACAAT	184	49,04 49,13	81 100	-8,5 -	-1,9 -	-6,2 CDF
5_3@190.6	150_307462_EG3	А	F: AAGAACACTTCAAATGGCT R: AGTAAAAATCCCAAAATGTG	295	49,30 49,85	100 100	-	-	-6,0
1 2@201 2	42 1670422 1 62	G	F: TGTATAGTTAGTGACTCTTGCG R: ATTTTGTATCAACCAGAAGATG	112	50,57 51,67	93 92	-3,4 -4,0	-	-6,1 CDF
4_3@301.2	43_1070432_LG3	А	F: CAGAACCACGTGCTTATCT R: CTATGCTCCCAATCTCAG	216	50,39 47,46	81 100	-10,2 -	-	4,2
5 3@3825	73 /35582 1 63	C SBQ	F: AAAAAGTATGACCACGTGGTAC R: CGTTTGTGTGTGTGGGAT	161	54,00 51,49	56 100	-20,0 -	-5,4 -	-7,4 CDF
0_0@002.0	75_455562_665	Т	F: CGTAGTGCTGACAGGAACA R: TTAAGGGGGGGAGAGTTGTA	275	51,78 52,07	100 91	- -4,8	-	-4,3
6 1@25	567_34739_LG6	Т	F: R:						
0_4@2.0	AI	G	F: R:						

APÊNDICE A — SNAPs para QTLs identificados em população segregante (F2) de mamão para teor de sólidos solúveis (TSS)

APÊNDICE A, Cont.

						Pa	arâmetros	s de qualid	lade
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		Т	F: TTAGATTCATGGGCAACCAA	207	56,40	87	-6,0	-1,5	-9,6
7_4@151.8	157 169542 G6	MSL	R: TCCCATCCTTAATCGTTTCA	291	55,54	91	-4,8	-	CDF
DC_7	107_100042_000	С	F: ACATTCTTGTTACCAGGTGAGC	119	56,19	100	-	-	-6,9
		U	R: TGGGAATGATAAGCTTGTGG	110	55,94	81	-10,2	-	CDF
		Т	F: ATGGTTTGAATCATTGTGACCT	259	56,13	89	-5,4	-0,2	-5.8
8_5@17.5	46_1453648_LG7				56,93	100	-	-	,
COMP_6; ESP_3		С		397	56,96	100	-	-	-5,4
					52.87	85	-6.2	-21	
		С	R: TCCGATGCTTTTGATTCTAA	310	53.66	100	-0,2	- <u></u> , ı	-5,0
9_7@294.6	31503_4573_Un	_	F: TTTTGGGGTTTTAGAAAAGAT		55.41	82	-6.8	-3.9	
		I	R: ATGGGATTGAAGAATAGGAGAG	195	54,76	100	-	-	-
		C	F: CTGTAATAGAAAAACAGTACC	115	44,27	90	-4,9	-0,7	2.2
10 7@240.2	2 202650 1 00	G	R: CTAGTATGTATGAATAAGGAAA	115	44,77	92	-4,2	-	-3,3
10_7@349.2	3_202030_LG0	т	F: TCCTATCAGATTTTGACTT	103	43,64	91	-4,5	-0,1	-5.8
			R: ATGGGAAAAATGTAATAGTA	155	44,70	100	-	-	-0,0
		т	F: TTAGCAAGGGTGCACGTA	118	52,84	79	-10,7	-0,6	-5.7
11 8@50.0	9 366188 LG5	-	R: IIIIAIGGGCAGIGIICCIA		53,50	100	-	-	-,-
		G		236	53,37	11	-12,4	-	-4,3
			R: GGGTTTCGTTACCATCTTCT		53,46	100	-	-	
	184 102693 1 65	С							
12_8@252.5	AI								
	<i>,</i>	A							

APÊNDICE A, Cont.

						Parâmetros de qualidade			
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		А	F: ATAATGAAAAAGAGTGTCACAA	241	49,70	91	-4,5	-0,3	4.0
12 8@260 5	06 270426 Up	Tml	R: AGTGGTTGATAAGGCAGGAC	241	53,98	100	-	-	-4,9
13_0@200.5	90_370420_011	G	F: TGATGGCACGTGGGTCTC	187	57,24	81	-10,2	-	-7,5
		9	R: AGAACCCCTGATGGTTACTAAA	407	55,37	85	-	<u>s de qualida</u> Hairpin -0,3 - - - -1,5 - - -0,5	CDF
		т	F: TTAGATTCATGGGCAACCAA	105	56,40	87	-6,0	-1,5	-5.6
14 10@53 3	108 73/372 Un	1	R: CGTTTCACATTCATCTACCGA	195	56,09	100	-	-	-5,0
14_10@33.3	100_734372_011	C	F: ACATTCTTGTTACCAGGTGAGC	127	56,19	100	-	-	-6,6
		U	R: TTCCTGTGGCTGACCATACT	137	55,08	99	-	<u>s de qualida</u> Hairpin -0,3 - - - - -1,5 - - - -0,5	CDF

						P	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
4 4 9 75 0	40,4540000,100	С	F: ACGGACGAGATCAAAGGC R: GTTGCCCTGCGAAGAGAT	157	55,24 55,45	91 100	-4,6 -	-	-7,2 CDF
1_1@75.0	12_1519363_LG2	т	F: GAATCTCGTCCGTTCAGCA R: AGTCAGCAGCCACAGTGAAC	200	56,37 55,45	100 91	- -4,5	- -0,2	-7,8 CDF
0.4@405.0	77 700400 1 00	T MSL	F: CAGGTTGTGGTGTAGTGCTT R: TGTTTGTTCTCTGACACCGT	137	53,04 53,11	100 100	-	-	-8,7 CDF
2_1@105.6	77_790129_LG2	С	F: ATCAACCTTGGAGACTTTGG R: CATTTAGGCGTGAGACAGG	284	53,97 53,66	90 100	-4,9	-0,4	-5,7
2 4 9 4 2 2 4		С	F: GACTGTAACCAGGAAAAATCGC R: AAGAGGGAAGAAGAAATGTCGG	186	58,48 59,47	100 100	-	-	-3,9
3_1@133.1	25_759834_LG2	G	F: AACTGATCCAATGTTTCCAAGC R: GTTTTGGCTCTTCTTTCACCTG	296	58,54 58,57	91 100	-4,6	-	-7,0 CDF
4.2@2075	27 1212202 1 02	G	F: GCAGCACGCACAAAAGGG R: CACCTTATATCTGTGGTTGGCA	105	60,58 57,88	100 92	- -3,9	- -0,1	-5,2
4_3@207.5	37_1312392_LG3	С	F: TGGACTGATTATTTGTGTACTG R: GAGTGGAGACAGTCTCACGA	252	50,50 52,09	91 89	-4,6 -6,1	-	-6,5 CDF
E 4@210.0	50 010592 1 06	G	F: TGCATAGACAGAACTCGATAG R: GTAGACTGAGGTTTTTGTGG	191	50,50 49,37	86 100	-7,8 -	-	-4,3
5_4@210.0	59_910563_LG6	С	F: AATCCATGAAGTAATCTCTCTG R: TCAATCAAATAATCTGAAACAA	306	50,65 50,76	90 100	-5,4 -	-	-
6 5@224.0	92 44612 Lin	Т	F: CGTACTAAACTATGCGACCACA R: CATTTTGATAGCCAAGAAGTGA	273	56,10 55,22	93 100	-3,6 -	-	-4,3
0_0@224.9	02 <u>44013</u> UII	С	F: ATCCCGCTCCACTAAACAC R: AAGTCTCTGACGATGGGTTG	168	54,68 54,52	100 100	-	-	-7,1 CDF

APÊNDICE B — SNAPs para QTLs identificados em população segregante (F2) de mamão para firmeza interna ou da polpa (FI)

APÊNDICE B, Cont.

						P	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: CTCTGTTCGAGCTTCTGCC	125	55,52	87	-6,8	-	-9,2
7 5@260 5	7 2113087 1 67	C	R: TTGGCATGTAGGCAAGAATAA	155	56,38	90	-5,4	-	CDF
7_0@200.0	/_211000/_LO/	т	F: ATATGCATGTCCCACAACCA	268	56,45	82	-10,0	-	_
			R: GGAACTCAACCACCATCTAAAA	200	56,29	100	-	-	
		G	F: GAGAGTGAAAGAGAAGCGG	146	51,96	100	-	-	-6,1
8 5@301.8	27 1084946 LG7	•	R: TTCTGTAAACTCTGTAATCCG		50,09	100	-	-	CDF
		А		225	53,18	100	-	-	-
					53,94	89	-5,6	-0,4	
		Т		279	57.02	00	-0,4 5.4	-0,3	-5,5
9_5@412.5	152_478513_LG10				57.80	83	-5,4	-20	-67
		С	R' TGGGATACAAGCTGGTCAAA	155	56 29	88	-63	-2,9	CDF
		_	F' GTGAAATGAGTATAATGGAATG		49.61	93	-3.4	-	ODI
10 6@465.0		G	R: CAAACTCGTAGCAAATACAA	194	49.24	94	-3.3	-	-4,8
AP 17	53_157623_LG9	-	F: TCTGAATAATCGATGCACTA	o 4 -	48.83	82	-9.7	-	4.0
—		I	R: AATTTGCCAAGAAGAATCT	315	48,95	90	-5,4	-0,1	-4,0
		G	F: GGCTTGATTTTGTGAGCC	270	53,29	77	-8,8	-4,5	F 0
11 7@0405	1 1602602 1 69	MSL	R: TTAACAACTTGATTCCAGGG	372	52,75	91	-4,8	-	-5,2
11_7@242.5	4_1093002_LGo	т	F: AACAAGGCAAGCATATCATTAT	270	54,25	92	-3,9	-	_
		1	R: GAACCCCTCACTTTATTTCC	270	53,11	91	-4,5	-	-
		G	F: GCGTTGTAACTTGAATCTTCGC	495	59,60	83	-7,7	-1,6	-4 9
12 8@339.8	103 104445 LG5	0	R: CTCCAGTTGGCCTCTGCTCTC	400	61,32	83	-9,3	-	-4,5
12_0 000.0	100_101110_200	т	F: ATCAGGTTGCCTCGGGCAT	322	62,38	77	-9,2	-4,0	-6,1
		I	R: AAGACCATAGCGGAGCAGCA	022	60,80	100	-	-	CDF

APÊNDICE B, Cont.

						Parâmetros de qualidade			
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	<u>s de qualida</u> Hairpin -1,6 - - - - - - - - - - -	Cross Dimer
		C	F: CAGTGTCTGTCAACTTTCTGAC	101	51,91	87	-5,9	-1,6	1 5
12 0@700	206 2201 1 01	C	R: TTTTACTTTCATACTTGCCGT	101	52,76	100	-	-	-4,5
13_9@70.0	200_3391_LG1	т	F: AAACCCTCCAAATGCAGTA	190	52,88	85	-8,0	-	-6,2
		I	R: TAAAAGACGAGAGGCAGAA	100	50,71	100	-	-	CDF
		т	F: AGATGATGACTGAAATGGAT	122	48,37	100	-	-	-6,5
11 10@175	14 1604542 1 01	I	R: CTTTCTCTCTTTGTTTTCTT	155	48,37	100	-	-	CDF
14_10@17.5	14_1004040_LG1	С	F: ATCAATACATGCATATCCG	202	48,52	82	-10,0	-	4.0
		MSL	R: GATTCTTCATCCTCTTCACTA	203	48,42	100	Parâmetros de qualidaSelf DimerHairpin-5,9-1,68,0 <td>-4,0</td>	-4,0	

						Pa	arâmetros	s de qualic	lade
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		т	F: GTGGCACACTGGCATTACT	176	53,51	100	-	-	_
1 1@27 5	80 351371 LG2	I	R: TTGGAACTGAAAGCATACCC	170	55,18	100	-	-	-
1_1@21.0	00_001071_002	С	F: AGTAATACTCAAAGGCACCCAG	254	55,90	92	-3,9	-	-9,1
		U	R: TGGGAACAGTTATTCAATCTCA	201	55,01	100	-	-	CDF
		Т	F: GGGGGATATCTCTATGTACACT	124	52,11	84	-8,5	-	-3.4
2 1@52.5	12 113370 LG2		R: IICCAAAAAACAACCIAIGA		50,95	100	-	-	-,-
		С		219	50,90	91	-4,5	-	-5,4
					49,48	100	-	-	
3 1@1125		G	P. ACTGTCAAATCTTGATGAGGG	157	57.06	100	-0,1	-2,0	-
PROD 2 TSS 1	1380_1407_Un				59 58	83	-7 1	-2.8	
11(00_2, 100_1		A	R [·] GAGGCTCTGTTATCAACAAAGCA	295	59,19	89	-5.7	-	-4,8
		•	F: GCATAACAACAAAGAAAAAATG	400	53.04	92	-4.4	-	
4 2@350.0		С	R: ACTTTCAACCTTACCAATGTC	100	51,19	100	-4,5	-	-5,5
 PESO_4	163_297115_LG4	Ŧ	F: GTTGTCTCTCTTCTCAGGTGAT	004	52,39	91	-4,5	-	4.0
		I	R: TCTAAAACCCTAACTAACAGCC	224	53,53	100	-	-	-4,3
		C	F: GAATTTACCAAAGAGTTCATG	162	49,49	88	-6,4	-	-6.0
5 2@427 5	160 458540 1 64	U	R: ATAAAGCACACACATTCAAA	102	48,74	100	-	-	-0,0
5_2@421.5	100_400040_004	т	F: CTGAGAGAACTGCATCTTACT	213	48,65	87	-7,0	-	-46
			R: TCTGCGAATAGATAATGGTA	210	48,56	100	-	-	4,0
		т	F: GACTATATGCATGAGTCTACCT	202	48,24	81	-10,0	-0,3	-3.6
6 2@567.6	521 82654 Un		R: ATCAGAGCACGATTTTAGG		49,99	100	-	-	0,0
• • • • • •	- ··	А		102	50,33	91	-4,6	-	-4,5
			R: ATTACCGTTTGTAGCACTTT		49,77	100	-	-	<i>,</i> –

APÊNDICE C — SNAPs para QTLs identificados em população segregante (F2) de mamão para firmeza externa ou do fruto (FE)

APÊNDICE C, Cont.

				тр		Р	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
7 4 9 4 0 0 5	04 740004 1 00	т	F: CTTTGAAACCCCCCAAACA R: TGCTCCAACAATCTCATTCTCA	238	58,10 58,17	83 100	-6,84 -	-2,7 -	-4,5
7_4@122.5	84_743981_LG6	С	F: TTCATCCGCAAACATGACC R: ATGGTAGACAACAGGGAAATGG	156	57,02 58,28	85 100	-6,4	-1,9 -	-5,6
0 4@454.0	457 400045 1.00	т	F: CTTGCGTGAAGTGATACGTAAA R: GACTCGGTTGTGTTATTGCC	145	56,23 55,33	82 100	-9,2	-0,8 -	-3,9
8_4@154.9	157_123015_LG6	С	F: GAAAGCATCATACCCTTCGC R: TGTGCTATTTCTCCTTCCCA	278	57,40 55,60	91 100	-4,5	-0,3	-6,7 CDF
0 4@205 0	4000 45000 11-	G	F: TTCAGAGTCCCAATCATTTTG R: TCCCATTTGATACCTTCCAG	286	55,18 54,87	90 100	-4,9	-0,5 -	-5,0
9_4@325.0	1603_15926_01	А	F: AAATAAGTTCAGGCCACCCT R: ATGGGAAAAGAGATGCGA	196	55,71 53,16	81 100	-9,3 -	-1,2 -	-7,1 CDF
10.7@70.5	166 220497 1 09	С	F: CTGAATGAGACTCTACATTTTC R: AGAAAGATTGGGAAAAAGTT	153	48,62 50,46	85 100	-6,4 -	-2,3 -	-8,4 CDF
10_7@72.5	100_320407_LG8	т	F: CAGTAACATGCACCGCTA R: CCCATTTTCCTCTCTGAT	102	50,24 48,71	87 100	-7,0 -	-	-4,5
11_7@305.0	2 2220266	т	F: AGTACCAGAATGGAGAATCGT R: ATCCTACCTGATGCTTCCCT	104	52,99 55,27	93 100	-3,6 -	-	-5,6
	5_2220200	C MSL	F: CTCTAATTTTCTCATGGAGGG R: TCTTTATCCACAGATTTCACCA	469	53,60 55,01	90 100	-5,4 -	-	-6,6 CDF
12_7@332.5	2 4242007 1 02	С	F: CTTGAGGAGTCTTACAACTTAG R: ATCAAATCAGATAGTCCGA	266	48,59 46,81	92 100	-3,9 -	-	-5,6
DF_20	3_1242097_LG8	Т	F: TTGGAGTTGATGCATTACT R: TTTGTTAGAGGTGGGACT	100	47,96 46,46	82 100	-10,0	-	-3,9

APÊNDICE C, Cont.

						Pa	Parâmetros de qu		qualidade	
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	<u>s de qualid</u> Hairpin - -5,0 - - - - -	Cross Dimer	
		C	F: TGCTTTGGTACATTTTGGGGC	125	62,44	93	-3,6	-	-7,2	
13_8@127.5	721 2422 Lln	C	R: TGCCGATGGATTACTGCGTTT	155	62,95	100	-	-	CDF	
PROD_28	731_3422_011	т	F: TGCCATGCATCCAGGCAA	216	61,95	75	-10,0	-5,0	-7,2	
		I	R: GGTAGCCCCAATACGAAGTCCA	210	62,96	100	-	-	CDF	
		C	F: CAGAAGTTTAAACCGCTGC	145	53,67	91	-4,5	-	5 2	
14_8@360.0	105 276090 Up	C	R: AAAACCATTTACCTCTTTCCAG	145	55,33	100	-	-	-5,2	
NFT_16; ESP_13	195_570000_011	т	F: TTATCTAACCATCCCGAATGA	271	55,04	91	-4,4	-	-7,7	
		I	R: AGTAGGGACTTCAACTATGGGG	371	57,01	100	-	-	CDF	

						Pa	arâmetros	s de qualid	lade
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		А	F: GTGCCCCTCTAGCGGGCA		64,00	66	-12,2	-8,1	-72
1_1@347.4	129_404685_LG2	SBQ Tml	R: TCACAGAGCATTCAAAAGCCA	229	59,20	100	-	-	CDF
		G Tml	F: AAATTTCAAAATGCATTAGTCC R: TCCTTCCGTTGCTGTTTCTTT	339	54,00 59.30	70 100	-13,9 -	-3,4	-4,9
2 1@1125		A SBO	F: GAAGAGCACATATATATGTGTA	138	45,19	52 100	-20,3	-7,7	-5,2
TSS_8; PROD_17	1183_495_Un	C	F: TGGCTGAGAATGATTTAG R: CACAGACAAAACACACAA	214	44,33 45,43 43.40	92 100	-4,4 -	-	-4,9
3_5@14.8	40 4450040 1.07	Т	F: ATGGTTTGAATCATTGTGACCT R: GGGTGCCAAAACACATAAAGT	259	56,13 56,93	89 100	-5,4 -	-0,2	-5,8
TSS_10; COMP_6	40_1453048_LG7	С	F: AAATAAGGCAACACAGCATAGG R: GGGATTTTTTTTTGGGACA	397	56,96 57,00	100 100	-	-	-5,4
		G	F: CACCTAACTCCTTATCGTTGGC R: GCAAGTCGGTTTACCCCAG	426	58,55 57.85	92 100	-4,3	-0,2	-6,0
4_5@79.0	1287_9981_Un	т	F: ATGGTTGGGAGAGCGAGAAT R: CACACTTTCGCCTATTTGGG	282	58,51 58,28	100 100	-	-	-8,3 CDF
		А	F: GAGTGACGGTAAAGAGTACGT R: AACAGAGACTCCTTTATCAGAA	244	51,24 50,50	84 100	-7,3 -	-1,6 -	-6,4 CDF
5_5@171.1	61_369004_LG7	G	F: CGTAACTACGAGATAAGTGTTG R: ACTCCTAAGAACTGAACCAAT	447	50,30 50,08	82 100	-5,9 -	-4,9	-4,9
		G Tml	F: CTTCTACTTTCCTTACAGAGCC	447	52,89 57,26	92 100	-4,2	-	-8,2 CDE
6_5@262.5	46171_471_Un	A Tml	F: TACCGCAAGGCACCTGCAA R: GACAAGCCCAATCATCAACAA	197	63,18 58,27	82 100	-8,0 -	-2,0	-

^					
		~		~	
	CNIALIO DORO (ALLO Idoptit		oaroaonto (L.) do mom	\sim	
			$e_{0}e_{0}a_{0}e_{1}e_{1}e_{2}a_{0}e_{1}a_{0}a_{0}a_{0}a_{0}a_{0}a_{0}a_{0}a_{0$		
		····			

APÊNDICE D, Cont.

						Р	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: AGAACTTATCCTGCTGCTC	214	49,00	100	-	-	10
7 5@2051	530 13/31 Un	C	R: CTCCCACTAACAGTTGAAGA	214	49,71	100	-	-	-4,9
7_0@290.4	000_10 4 01_011	т	F: AGCTAATTCAAGTTCTCGATAA	487	51,58	86	-7,8	-	-43
			R: CGTCACGGAAAATGTAAC	-07	48,63	100	-	-	-+,5
		C	F: CGCCGGTGACGGTCGTTG	252	66,05	79	-9,7	-2,2	-9,6
8 6@57.5	139 478290	Tml	R: GGAAATTCAAAGCGACCACATT	202	60,91	90	-5,4	-	CDF
0_000110	100_110200	т	F: AAGAAAAAGAAAACCACCATTT	139	55,08	90	-4,9	-0,8	-
		-	R: GACGACGACIGAGAGAGACG		54,96	100	-	-	
		С		388	60,53	74	-11,4	-3,4	-
9_6@386.3	19_1324850_LG9				61,58	100	-	-	
_		Т		254	60,97	80	-10,9	-	-
					47 72	100	-	-	70
		С		332	41,12	93	-3,4	-	-7,3 CDE
10_7@117.5	17_537051_LG8				40,92 15 73	88	-4,9	-	CDF
		А		156	45,75	100	-0,4	-	-4,9
			F CAATAATGCATCCCAATT		48 44	81	-10.0	-0.3	-77
_		Т	R' AGAGGGAGTAAGTGATAGAGA	161	47.34	100	-	-	CDF
11_7@340.0	3_754190_LG8	-	F [·] GAGAGATAAGGTCACTGTTAG		45.55	92	-3.9	-	-7.6
		С	R: GACCTCCCACATCTAAGTA	256	46.23	100	-	-	CDF
		-	F: AGCATGAGGGAAACCCCCA	005	62.20	83	-7.1	-2.7	
40.00450.4	0.0470040.105	I	R: ATACAGATATTTTGGCGGCTCC	335	60,36	92	-3,9	-	-6,0
12_8@153.4	9_24/0312_LG5	0	F: CATTATCTTAGCTAAATGTGCC	407	52,40	76	-12,1	-1,1	
		C	R: CTCCCTTTCTTTCTTCCAG	127	53,57	100	-	-	-

APÊNDICE D, Cont.

						Pa	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
13_8@347.5		C	F: CAGAAGTTTAAACCGCTGC	145	53,67	91	-4,5	-	5.2
	105 376088 Up	C	R: AAAACCATTTACCTCTTTCCAG	145	55,33	100	-	-	-5,2
FE_14; NFT_16	193_370000_011	т	F: TTATCTAACCATCCCGAATGA	371	55,04	91	-4,4	-	-7,7
		I	R: AGTAGGGACTTCAACTATGGGG	571	57,01	100	-	-	CDF
14_9@0.0 DF_18 64_778855_L0		C	F: CACATGGAACACACAGTC	307	44,93	90	-5,4	-	_
	64 778855 I G1	U	R: ACAAAGGTAACGTGATAGTC	507	46,47	88	-6,3	-	
	04_110000_001	т	F: GTTACTTAGATTTCAGGAAAA	188	46,65	81	-6,5	-4,9	-7,9
			R: GACACCTAAAAATAAAATCG	100	47,58	100	-	-	CDF
		С	F: CAAAGACACAAAAGGAAGGTAG	479	54,09	100	-	-	-
15_10@67.5	3022 1150 Un	Ŭ	R: TTCACATGGATATGAGAGAAAC	110	51,85	90	-5,4	-	
DF_29	0022_1100_011	т	F: TCACTGTTGTGCACATCGT	300	52,32	75	-13,6	-	-7,5
			R: ACGAGAGAGAGGTTAGAGCC	000	52,68	100	-	-	CDF
		С	F: CTCCACCTACTAACCTCGGATC	260	57,39	89	-5,6	-0,4	-5.6
16_10@87.5	170 320831 Un	Ŭ	R: TCATTGGTCCCTTTCTCCTC	200	56,26	100	-		0,0
	110_020001_011	т	F: ATGCTAATACGGGAGGTGGA	167	57,13	100	-	-	-8,0
		I	R: TGAAGTATGTCCGTGCCAAT	107	56,10	100	-	-	Cross Dimer -5,2 -7,7 CDF - -7,9 CDF - -7,5 CDF -5,6 -8,0 CDF

				тр		Р	arâmetros	s de qualida	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		Δ	F: CTTTTCTCGGACCTAAGAAA	160	51,87	79	-8,1	-4,0	-15
1 1@1460	206 08540 1 62	~	R: CTAGACCTGACTGAGGAACA	103	49,20	92	-4,2	-0,3	-4,5
1_1@140.0 230_00040_002	G	F: CATTGTTTGATAACTTCTTACC	350	49,42	92	-3,9	-	_	
	MSL	R: GCTACTTACTGGATTAGGCA	000	50,11	93	-3,6	-		
	G	F: TCATCGCGATCTAATCTTTGC	200	58,24	70	-16,5	-	-6,2	
2 1@2117	1749 9182 Hn	0	R: GTCAGTAGCCCCGACGAAC	200	57,59	100	-	-	CDF
2_1@211.7	1745_5162_611	А	F: GATTTGAATGCGATTGGAAGA	267	57,84	100	-	-	-6,2
		MSL	R: TTACCTCTTTTGGCAGTCGG	207	57,97	100	-	-	CDF
3_1@295.5 6_3167356_LG2	С	F: AGAGTCTCATACCTTGTAATCG	471	50,91	100	-	-	-4 4	
	6 3167356 LG2	Ũ	R: ATTTTTGGTGGTTGTTATTGTT		53,96	100	-	-	•, •
	0_0101000_202	т	F: CCTCCAATCCATGCTCGT	308	55,85	90	-5,4	-	-54
			R: ATTTCACCCATATTGCTCTG	000	52,57	92	-3,9	-	0,1
		А	F: CAGTGGTTTTATTAGACAAAA	316	48,09	83	-6,8	-2,7	-4.5
4 2@281.1	258 27643 Un		R: GGCTTCCCTTATTCTCTGTA	0.0	51,49	100	-	-	.,0
	200_21010_011	G	F: CACCCCAAGGAGACAAAC	222	52,47	100	-	-	-6,2
		•	R: AAGAAGACCACCCTGTTTAC		50,76	100	-	-	CDF
		С	F: TAGTICGACTIGTATCACATC	296	47,33	87	-6,8	-	-
5 2@552.5	17 1911513 LG8	-	R: ATATITITICCATAAGGCTC		48,93	92	-3,9	-	
• • • • • • •		т	F: CGATAIGAGACTATICAGGA	205	47,16	91	-4,5	-0,2	-7,2
			R: ICTICIAICITTICICCICC		47,80	100	-	-	CDF
		А	F: GGGAAGAAGIGAGIGAIAAGAI	100	52,19	100	-	-	-4.5
6 3@241.6	20 480105 LG3		R: CICIGAGCCGICIAAAIGIIC		54,42	100	-	-	.,-
0_3@241.0	·	Т	F: GATCIGGGCCGAACACII	319	55,03	83	-9,3	-	-
		-	R: ICGCACCAAACICTAACACT	2.0	53,08	100	-	-	

T ENDICE E — SIMP'S para QTES identificados em população segregante (12) de mainao para diametro do indio (DT)
--

APÊNDICE E, Cont.

				тр		P	arâmetro	s de qualid	lade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: ACCATATAGCATCAAGAAAC	310	46,80	92	-3,9	-	-1 9
7 3@3316	426 10821 LG3	U	R: TTTAAGGTGGAATCAGTAAC	510	47,04	91	-4,8	-	-4,3
1_00001.0	120_10021_200	т	F: TCATATTGGTTTGGGTTA	209	45,99	92	-3,9	-	-3.9
					48,08	88	-6,3	-	- , -
		G		102	61,44 50,72	100	-9,3	-4,1	-
8_4@185.5	44_753691_LG6		F CTTTGTCCGGACGGTGTACG		59,72 61 13	71	-15.6	-	
		С	R: AAGTTTTCACGGTGAGGGTCG	304	61,48	91	-4.9	-	-3,9
		т	F: GTTGGCAAAGATCAAGGTCAA	107	57,71	91	-4,9	-	
0 1@2080	165 160705 1 66	I	R: GCGAAGTTAGGCAGGGTAAAG	127	58,87	92	-3,9	-	-
9_4@200.0	105_109795_000	C	F: ACAGGAGCTCGGATCATGAC	264	56,92	82	-9,5	-	-57
		Ũ	R: AGGGTTCCAAAAAAGAAGGCT	201	59,19	100	-	-	0,1
		А	F: D.						
10_5@283.0	7_457029_LG7 ΔΙ		К. Е·						
		G	R'						
		0	F: CATGTTTGAGAAGTTCACTAGC	040	52,15	90	-5,4	-	
11 5@3575	152 255842 1 010	C	R: CTGATTGGGAGACAAGGAT	313	51,46	100	-	-	-
11_0@007.0	132_233042_1010	Δ	F: ATCCAAAGGAGAGATGGTTAT	126	52,35	98	-	-0,8	-
		~	R: AGTCCCAAATGTCCAGAGTA	120	51,57	100	-	-	
		А		221	55,04	84	-7,6	-1,5	-
12_5@433.5	3148_6446_Un				54,38	100	-	-	
		G		109	54,50 56 16	92 92	-4,3 -4 2	-	-4,2
					50, 10	52	⊐,∠	_	

APÊNDICE E, Cont.

				тр		Р	arâmetros	s de qualid	ade								
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer								
		G	F: TTTCGGGCTATAACAGACAG	165	53,22	93	-3,4	-	-5 1								
13 6@432.8	53 1092396 I G9	0	R: TCATCTCTGGTTCTTCTCCTT	105	52,96	100	-	-	-0,1								
	С	F: ATACCCTCTCCCTTGCTG	330	51,76	100	-	-	-5,7									
					53,62	88	-6,3	-	,								
	G		438	54,31 55 51	85	-7,0	-1,0	-									
14_6@443.7	53_491984_LG9				55 61	90 89	-5,2	-	-78								
		A	R: AAATGGCAAATGGTGTGAGT	232	55.14	100	-	-	CDF								
		0	F: AATTGACGGAGACCATAAACAC	470	56,12	90	-5,4	-	-6,0								
	0 332853 1 65	G	R: TAATAATAATCGGGCTGGGC	478	57,44	100	-	-	CDF								
15_0@111.4	9_332033_LG3	Δ	F: TGGCCCAGTTCGACAGAA	305	57,40	83	-9,3	-	-59								
			R: TGTGCTGACCATCCACTGTA	000	54,67	100	-	-	0,0								
		А	F: AACTCTGGTGTGAAGACA	230	43,82	92	-4,3	-0,1	-5,5								
16_8@292.5	10_2655097_LG5				45,39	100	-	-									
		G	Ρ. ΑΤΟΤΤΟΑΤΤΑΟΑΟΤΑΟΙΟΤΑΘΟΟ Β· ΑΤΟΤΤΟΑΤΤΑΟΑΟΤΑΘΑΟΑΟΑΤ	340	40,10 45.67	03 02	-5,6 -4-2	-4,2	-5,8								
		-	F [·] AATCCTTATCTGAAACAACCAC		53.16	100		-									
47.00405	000 44740 1 04	С	R: AGTGATTGTCTTTTGGGTGT	153	51,49	100	-	-	-5,4								
17_9@12.5	286_11712_LG1	286_11712_LG1	286_11712_LG1	286_11712_LG1	286_11712_LG1	286_11712_LG1	286_11712_LG1	286_11712_LG1	286_11712_LG1 т	т	F: ACTTGAAGTTTCTCCGCA	402	50,62	91	-4,9	-	-6,2
		I	R: AAAAAAAAAAAGCAAAACGA	493	53,35	100	-	-	CDF								
		С	F: CACATGGAACACACAGTC	307	44,93	90	-5,4	-	_								
18 10@5.0	64 778855 LG1	Ŭ	R: ACAAAGGTAACGTGATAGTC	007	46,47	88	-6,3	-									
10_10@0.0	· _ · · · · · · · · · · · · · · · · · ·	Т	F: GTTACTTAGATTTCAGGAAAA	188	46,65	81	-6,5	-4,9	-7,9								
			R: GAUACUTAAAAATAAAATCG		47,58	100	-	-	CDF								

				тр		P	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		т	F: AGCTGCATTGATATAATACA	318	45,95	87	-7,0	-	-4 4
1 1@232.0	29 1104499 G2	•	R: AGAAGAAACCAGACTATGAG	010	45,50	100	-	-	•,•
1_1020210	20_1101100_202	G	F: GTTGAACATTACATTTTACG	261	45,89	100	-	-	-4.5
		-	R: ACAIGGIIIIIAICICIIIC		46,13	90	-5,4	-	.,-
0 4 @ 000 7		G		207	50,70	84	-7,2	-2,0	-5,7
Z_1@238.7	29_1010038_LG2				49,06	100	-	- 2 E	6.6
PROD_5		А		316	20,03 49.05	00 100	-0,0	-3,5	-0,0 CDE
			F. TTCAAATCTCTCCGGGTAATAC		40,95	82	-9.7	-	CDF
		С	R' CCTGAAAATGGTGGCAAAAG	200	58 23	100	-	-	-5,5
3_1@337.5	26343_5685_LG2	-	F: CTGGCGAAACCCAGACCAC		60.83	84	-6.6	-2.3	
		G	R: GATATGCGAACAGTTCAACGAA	322	58,15	91	-4,9	-,•	-
		0	F: TTTGTTTTATGCAATTCGC	400	52,52	87	-7,0	-	5.0
1 1 @ 245 6	100 100000 100	G	R: TGAAAATGTAGTGTCACGGTA	429	51,43	100	-	-	5,8
4_1@345.0	129_433320_LGZ	т	F: ACAAACTATAAACGAACGCAT	214	52,57	93	-3,4	-	-7,3
		I	R: CAAATGGAGACTTTTATGGG	214	52,46	100	-	-	CDF
		т	F: CCATCCCAGTCACCTAGT	201	48,92	90	-5,2	-	_
5 2@252.3	5 1385482 G4		R: CTTCATTGTCTTTTTGCC	201	48,13	100	-	-	
0_20202.0	0_1000102_201	G	F: TGAAAGCTATCAGAAACTACTC	109	49,03	88	-6,3	-	-4.5
		•	R: GTCGTTCTTGCCACTTAC		47,55	100	-	-	.,0
0 5 9 4 7 5		Т	F: AIGGIIIGAAICAIIGIGACCI	259	56,13	89	-5,4	-0,2	-5,8
6_5@17.5 TSS_10; ESP_3	46_1453648_LG7				56,93	100	-	-	,
		С		397	56,96	100	-	-	-5,4
			R. GUGATTITITITIGGGACA		57,00	100	-	-	

APÊNDICE F — SNAPs para QTLs identificados em população segregante (F₂) de mamão para comprimento do fruto (COMP)

APÊNDICE F, Cont.

				тр		Р	arâmetro	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
7 5 9 407 5 04 4000000 1 07	С	F: ATATGAGATTAGGGTCATGTG R: TTTTGAAGGACTACGACTG	334	49,02 47,88	85 100	-6,4 -	-1,9 -	-3,9	
7_5@107.5	61_1220909_LG7	т	F: TGATATCAAATATGGGTCCT R: CAAGTGAGACACCAAGAGA	184	49,33 47,27	80 100	-11,0 -	-	-3,9
0.5@100.0	20. 2450420 Up	С	F: GCTGGTTGGTAGGCGTTG R: AAAAGGCAGACACATCAAGACA	106	56,93 57,41	100 100	-	-	-4,9
8_5@190.0	28_2458136_01	т	F: ACATTGTGGGAGCTGGTCGT R: CATCCAAAGAAAAAAGGAATGC	243	59,88 58,68	88 91	-6,3 -4,4	- -0,3	-6,4 CDF
9_5@433.5	2149 6446 115	А	F: TTACTCCGATTCCAGGAAAA R: ACTGATGCTCTGCCTTGACT	221	55,04 54,38	84 100	-7,6 -	-1,5 -	-
DF_12 3148_6446_00	G	F: CTGTCACCTAGAACACACAACC R: CCCTAGTAGCCCTCAAGAATG	109	54,50 56,16	92 92	-4,3 -4,2	-	-4,2	
10_6@112.5	65 485044 Up	А	F: CACCCAGTCATGGCCACA R: GGCACTAAACTCATAGCCTTGT	154	58,09 56,04	73 98	-14,2 -	-0,5 -1,3	-
NNSF_6	03_485044_011	G	F: ACTCACAGGGAGGAGATCAAC R: CTTCAGGAGCCCAGTAGGTA	372	55,23 54,48	89 100	-5,6 -	-	-
11 6@263 3	2 1101645 1 C0	А	F: TGGTTGTCCTGCTTAGGT R: CATCAAGTTCTTCACACACA	482	50,22 48,58	88 100	-5,7	-1,2	-4,3
11_6@263.3 2_1101645_LG9	2_1101043_LG9	G	F: AGATTACCATCCCTAACATTAG R: AATAGGACGCTTTGTGATAG	228	50,61 49,89	85 100	-5,5 -	-3,6 -	-5,6
10 7@353.0	2 102678 1 68	А	F: AGAATTTCTGGCATGACCATCA R: AAGTCTGGCGTGTCAGTTTCC	338	59,54 59,15	86 100	-6,0 -	-1,6 -	-4,9
12_1 @000.2	2_192070_00	С	F: GCGGAGAGGCAAGGAGAG R: AAGCCCAGAAGATCACATCACA	237	57,78 59,50	100 91	- -4,6	-	-

APÊNDICE F, Cont.

				тр		Р	arâmetros	s de qualid	ade	
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer	
		C	F: AATCCTTATCTGAAACAACCAC	150	53,16	100	-	-	5.4	
13_9@15.0 AP_27 286_117 ⁻	296 11712 1 C1	C	R: AGTGATTGTCTTTTGGGTGT	155	51,49	100	-	-	-5,4	
	200_11/12_LG1	200_11/12_001	т	F: ACTTGAAGTTTCTCCGCA	402	50,62	91	-4,9	-	-6,2
		I	R: AAAAAAAAAAAGCAAAACGA	493	53,35	100	-	-	CDF	
1/ 0@1/00		G	F: AATCGGTTAGTGGGGGACGTC	305	62,58	81	-10,4	-	_	
PROD 30	24415 38221 Un	G	R: AAGCGAACATCATTCCAAAGGC	303	63,20	100	-	-	-	
NEC 15	24413_30221_011	Δ	F: CCGCTGGAGGAGCCCTAACTA	176	63,35	99	-	-0,3	-7,8	
NI 0_13		~	R: AGGAGGCTTTCTGGGTGGAAG	170	62,21	91	-4,5	-0,3	CDF	
		G	F: CCGTGTGCATGCATCTGGTCC	307	66,49	71	-15,6	-	-6,6	
15_10@51.3	706 17/18 Un	0	R: TGATCTCGCTTCCGCATTTGA	531	63,93	91	-4,6	-	CDF	
	730_17410_011	А	F: AGATGCACGCGCACGGCCA	204	71,01	80	-10,4	-0,6	-6.0	
		MSL	R: TGTGGTCAGGTGTGGGTGGGGT	204	68,73	100	-	-	-0,0	

				тр		P	arâmetro	s de qualida	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		т	F: TGGAGAAAAAAAATCTTTT	47,13	331	80	-6,8	-4,9	_
1 1@362.5 55 31450 LG2	1	R: CACTGCTTTACATACATCAA	46,43	331	100	-	-	-	
1_1@302.3	00_01400_CO2	C	F: AAAGCTTGAGACAGTGTATAG	46,66	138	81	-10,2	-	-5 5
		U	R: CTCATTTCAACTCCCTATT	46,22	100	100	-	-	-0,0
		G	F: ATTCATATTTTTAATCATACCC	48,73	416	91	-4,8	-	-
2 2@257.5	5 1518720 I G4	U	R: ATCTTATTCTTTTCCTTCTTGT	49,78	110	100	-	-	
2_2020110	0_1010120_201	А	F: TGGAATTAGGGTATGCGA	51,72	116	90	-5,4	-	4.4
			R: TTCATATCTGTCGAATAGCTT	49,78		86	-7,3	-	., .
3_2@346.0 163_297115_LG4 FE_4	С	F: GCATAACAACAAAGAAAAAATG	53,04	100	92	-4,4	-	-5,5	
			51,19		100	-4,5	-	,	
	Т		52,39	224	91	-4,5	-	-4,3	
				50,53 50,70		100	-	-	
		G		50,70 52,70	481	02	-10,0	-	-
4_2@373.3	189_11933_LG4			53,70		91	-4,9	-	
		А		55 / 8	378	100	-	-	-
				50,40		82	-7.0	-3.4	
		G		51 46	108	100	-	-	-4,2
5_4@182.5	44_618459_LG6		F [·] TATCACCAGTAGTTGGGTGTA	50.41		82	-7.4	-3.3	
		A	R: TATGAAATGCTATTGACGCT	51.24	268	100	-	-	-
		٩	F: GTCTGATGCATGAACTCGT	50,21	0.07	82	-10.0	-	4.5
0.4@000.0		A	R: ATAGATGAGTGTGCTGGAGAG	51,50	367	100	-	-	-4,5
6_4@206.0	507_33615_LG6	0	F: ATTTATTGGGAGAAGGAAGTC	52,38	000	100	-	-	-8,3
		С	R: GGTTTACTTCTCTCGTGG	51,34	200	100	-	-	CDF

APÊNDICE G -	SNAPs para QTL	s identificados err	n população segre	egante (F2) de m	namão para peso	de frutos (PESO)
	•		1 1 3 0	0 ()		

APÊNDICE G, Cont.

				тр		Pa	arâmetros	s de qualid	lade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: CTGCATGCCACAACGTTCG	111	61,37	79	-11,7	-	-6,1
7 5@1200	554 1631 Un	C	R: AAGTCACATGGTCCTGCCGA	144	60,84	90	-5,4	-	CDF
7_0@120.0	33 <u>4_1031_011</u>	Т	F: TTGTCCGCCTGCATGCTAGT	207	61,51	79	-11,7	-	_
		MSL	R: TACGCTTGTGTGCCCTTCCA	207	62,21	100	-	-	
		т	F: TTGGGTCAGCATTTTTGA	440	52,28	91	-4,5	-0,4	-6,5
8 5@211.1	82 503394 Un	•	R: GCTCAGAATGTCCTGTCAAT	110	51,83	100	-	-	CDF
0_0021111	02_000001_011	С	F: ATCTAGAATAGCTCAGGGTGC	218	53,29	86	-7,3	-	-7,4
		•	R: AAGGCACTGAGAAAAAACAA		52,73	100	-	-	CDF
		G		441	53,42	11	-11,7	-0,8	-4,4
9_5@461.2	93_977357_LG7				54,68	100	-	-	
		Т		192	58,30	78	-11,5	-0,2	
					50,99 61 01	90	-5,4 4 6	-	CDF
		С		124	62 57	91 01	-4,0	-0.4	-5,1
10_6@135.0	2126_2822_Un				62,57	91	-4,5	-0,4	
		Т		266	63 62	100	-3,4	_	-
		G	F: TATCATGTGCCAGGGGGGCCC		67 12	66	-16.4	-27	-10.3
		SBQ: MSI		258	64 56	99	-	-0.1	CDF
11_6@155.0	81_481869_LG9	obd, mol	F [·] CAGAGAATCAGATCAATCACGTC		56.42	86	-7.3	-	-6.6
		C	R: AGTTGGTATGCTATCTGCTGCT	141	56.45	100	-	-	CDF
		0	F: CGCATGACGGAAACAAGAG	407	57,12	90	-5,4	-	1.0
	400 500000 11-	C	R: TCTGCCCTCTGCTTTGGAC	467	58,21	100	-	-	-4,9
12_10@65.0	108_526839_UN	Т	F: CCCGTGTGGAATGCAGGT	200	59,23	85	-8,0	-	
		MSL	R: CGAGCCCAGAATTTAGGTTAGG	299	60,25	90	-5,4	-	-

				тр		Р	arâmetros	s de qualid	ade			
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer			
		Т	F: AGAGAGAGAGAGAGAGTGA	230	40,61	100	-	-	_			
1_1@15.0	42631 636 Un	MSL	R: CCTGAAGAAGATTGTTTA	230	41,90	100	-	-	-			
AP_1; DC_1	42001_000_011	Α	F: GGAAATATGTAAACACTCA	364	42,11	92	-3,9	-	-5.2			
		73	R: ATAAACTTCTGTTGAAAAAT	001	43,85	100	-	-	0,2			
	G	F: AAACATCAAAAAGCTGGCAGAC	453	58,99	88	-6,3	-	-5.8				
2_1@98.3	97_390208_LG2	^			56,91	100	-	-	, A A			
		A		212	50,80 57,00	100	-	-	-8,9 CDE			
		IVISL			07,92 48.75	88	-54	- 11	CDF			
3 1@1000		A	R' ATAAAACACACACTCTGTCCTA	277	49.30	100	-0,+	- 1, 1	-3,6			
NFC 2	77_19179_LG2	-	F: CCATTAGATGAGCTAACAGAC		49.31	88	-6.3	-0.1	-6.5			
•		G	R: TCAAAGACGATGGATAGAA	125	47,97	100	-	-	CDF			
		С	F: ATCAGAGCATGAGCTTGTCG	247	55,88	88	-6,3	-0,2	4.2			
4_2@190.0	02 457400 1 C4	MSL	R: AAGAAAAAACAGCACCTAACGG	347	58,56	100	-	-	-4,3			
DC_3; PROD_7	92_437409_104	т	F: ACGGCTTTGATTCAGCGTAT	156	57,59	87	-5,9	-1,0	-15			
			R: TTTGATTTCGCATTTCAGTCA	150	56,87	91	-4,5	-	-4,5			
		G	F: AGCACCTTGTGCTACACCTCC	478	59,20	81	-8,0	-2,8	-6,2			
5 2@260.0	3597 1273 Un	Ū	R: AAACACCAAGTCCAACTCCACA		59,39	100	-	-	CDF			
•	A		F: IGIIGCAGAGIGIGGCGA	198	56,52	87	-7,0	-	-4,9			
					56,01	86	-5,9	-1,8	,			
		С		491	55,∠5 54.04	76	-13,1	-	-5,7			
6_2@287.4	33536_1801_Un				55 25	100	-	-				
	00000_1001_011	Τ					R' TAATGTCGCCACAATTTCAG	213	53,23 54 50	90	-54	-
					54,00	50	0,7					

APÊNDICE H — SNAPs para QTLs identificados em população segregante (F₂) de mamão para número de frutos totais (NFT)

APÊNDICE H, Cont.

				тр		Pa	arâmetros	s de qualid	lade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: CAACCTGACAAGGCTCGC	246	56,81	99	-	-0,2	-6,4
7 2@2967	33 2029472 IG4	U	R: TGGGTTTTGCTTACAAATACAT	210	54,99	87	-5,8	-1,3	CDF
·	00_2020 2_20 .	G	F: CTTGTAATAGGTCCAACCATC	466	51,61	89	-5,4	-0,2	-6.0
		•			51,49	100	-	-	7.4
0.0@444.0		С		254	45,49	91	-4,5	-	-7,4
8_2@414.9	125_457510_LG4				44,24	100	-	-	CDF
DC_4		Т		457	43,07	02	-	-	-
		т			50 33	100	-3,4	_	
9 3@350.6		MSI	R' ATTCCTTCTCATTTCTTTCC	221	50.32	100	-	-	-4,7
NFC 7: PROD 14	60_794585_LG3	A	F: ACACATACACACACACGCT		48.42	100	-	-	
		MSL	R: AATCCTTCTAACGCAAATAA	138	50,22	100	-	-	-
		C	F: ACCTTCCATTCGACAGTC	266	49,00	87	-6,8	-	
10 5@225	16 1771118 LG7	C	R: TCTCCGTTCTATCTCGTTATT	200	51,41	100	-	-	-
10_0@22.0	40_1774440_LO7	т	F: GGTAGACCTTTATGCATACCGA	110	56,66	76	-11,9	-1,5	_
			R: ACCACTGTAAGCCACTTTGTTC	113	56,34	100	-	-	-
		А	F: ATAAAGGTCTTACTTGGTACA	300	46,56	91	-4,6	-	-7,8
11 5@32.7	450 36153 LG7	<i>,</i> ,,	R: TCAAGTAGCATTGTTTCTAA	000	46,01	93	-3,6	-	CDF
		G	F: GGGAAGIIGIICICICIC	487	44,95	100	-	-	-7,5
		۸			46,32	100	-	-	CDF
10 5@1470		A		269	51,47	100	-	-	-0,7
12_3@147.0	28_1952843_Un	INISL			52,39 52.00	100	-	-	CDF
		G	R: CTTTCTATGAAGCCTGGGT	408	52,00 51 71	100	-	-	-5,1
			1. 011101/10/00010001		51,71	100			

APÊNDICE H, Cont.

				тр		P	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		G	F: GATGCATATTTTGTTTTATTAC	100	47,80	82	-10,0	-	5.0
13 6@407 5	19 35645 1 69	MSL	R: AGAACCATCAGTCACCAGT	400	48,40	100	-	-	-5,0
10_0@+07.0	10_00040_000	Δ	F: TCCCAGCTCTGCAAAGACAA	145	59,04	87	-7,0	-	-4 9
		/	R: ATCCTAGCCACTTGATTACCTC	110	54,92	92	-4,2		1,0
		С	F: GATGGCGGTTGCAGCTGC	160	62,98	68	-17,5	-	-
14_7@300.0	3 2400812 LG8		R: CCAAACGGCGTCGGATTCG		66,65	100	-	-	0.0
NFC_11		Т		100	71,34	75	-10,7	-3,4	-9,8
					52 01	92	-3,9	- _0 1	CDF
		А		405	50 76	92	-4,0	-0,1	-4,9
15_8@237.5	11_45623_LG4		F: GGACTAAATACATAGCCGCT		51 95	89	-5.7	-0,-	
		Т	R: GGAAAAAAAAAAGACAGGAGA	223	51.55	100	-	-	-
		0	F: CAGAAGTTTAAACCGCTGC	4.45	53,67	91	-4,5	-	5.0
16_8@342.5	405 070000 Llm	C	R: AAAACCATTTACCTCTTTCCAG	145	55,33	100	-	-	-5,2
FE_14; ESP_13	195_376088_01	т	F: TTATCTAACCATCCCGAATGA	271	55,04	91	-4,4	-	-7,7
		I	R: AGTAGGGACTTCAACTATGGGG	571	57,01	100	-	-	CDF
		G	F: TTACAAGAGACTAAAATTGTCC	406	49,07	86	-6,2	-1,9	-6,8
17_8@467.5	9 2671463 LG5	U	R: TTTCTCATTGCCTTTTGT	400	48,13	100	-	-	CDF
NFC_13; AP_26	0_2011100_2000	С	F: TATTAGATTTTCAATGCAAGC	150	50,91	85	-8,0	-	-
		0	R: AATGATAGCAGACCCAAG		47,13	100	-	-	
		C T	F: IGCGCIIGAGAIICCCGG	160	62,52	80	-10,7	-	-
18 9@83.1	26 970480 LG1	Imi			58,45	90	-4,9	-0,8	0.4
		G		222	56,20	91	-4,5	-0,2	-6,1
			R: UGGAGAGGATGGAAAGAATG		57,02	100	-	-	CDF

APÊNDICE H, Cont.

						P	ade		
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)) Tm	Rat.	Self	Hairpin	Cross
				(1)			Dimer		Dimer
19_9@118.9 6 20_9@142.4 4		C	F: TGTTGTACCAGAGCAGCC	210	51,49	93	-3,6	-	10
	64 1099827 I G1	C	R: CTCAATGTACGGACCAAGTT	310	52,35	93	-3,6	-	-4,9
	04_1099027_LG1	т	F: CGAAGAGAAACTACAGCATCA	225	53,18	100	-	-	-6,5
		I	R: GACAGGCTACTCTCCTTTCC	225	52,97	99	-	-0,6	CDF
		т	F: TGCGGCACTGCGTCATCA	120	63,16	100	-	-	_
	10 185617 LC1	85647 LG1	R: AATCGGAAACCGGGGGTCG	120	66,29	80	-9,7	-1,5	-
	49_165647_LG1	C	F: GTGTCGCGTGGCAGTGTAC	C 210		81	-10,4	-	_
		C	R: GGGAGTGAATCTGGACCGTTC	210	60,63	91	-4,5	-0,3	-

				тр		P	arâmetros	s de qualida	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		Δ	F: TTTAGCACCTTCGTGTTTTCTT	460	56,76	100	-	-	-5.9
1 1@20.0 80 138781 LG2	~	R: ATGCGGGGATTTTTTACG	400	56,05	100	-	-	-0,9	
1_1@20.0	00_100701_202	G	F: TGTTTGCACATGCATAAACTG	125	55,55	74	-10,0	-5,1	-
		Ũ	R: TTAAAAGATCAAGAAGGGAATC	120	53,10	91	-4,8	-	
0 4 9 4 0 4 0		А	F: TCAATAGAAAGATTGCCAA	277	48,75	88	-5,4	-1,1	-3,6
2_1@101.2	77 19179 LG2				49,30	100	-	-	0.5
NFI_3		G		125	49,31	88	-6,3	-0,1	-6,5 CDE
					47,97	70	-	-	CDF
		С		304	40,00	100	- 1 1,4	-	-
3_1@126.6	25_1307799_LG2		F' GATGTCAAAAGTCTGGGT		46.06	100	_	_	
		Т	R: GCAGTTGGGTTTTATTATTA	151	48.16	100	-	-	-5,8
		0	F: GAGACCCTTTATCTCATG	007	43,24	86	-6,4	-1,6	
4_2@319.6		G	R: TTCTTCATAAAAAGTCACA	237	42,83	100	-	-	-5,5
	120_548508_LG4	۸	F: CTATACAGAGAATAAAAAGTTT	220	43,89	91	-4,9	-	
		A	R: CACCTTAGTAGTAAGCAGTT	329	44,14	91	-4,5	-	-
		т	F: TATTGTCCGTCCAATTTCA	483	51,63	87	-6,4	-1,1	-6,5
5 2@3760	260 178192 I G4		R: GGCAAAAGTGAGAAAAATAA	-00	50,41	100	-	-	CDF
0_2@070.0	200_110102_201	С	F: CAGATGCATTTTCTCTTTATAC	300	49,63	82	-10,0	-	-
		Ũ	R: TTTTACTTTTTTGGTGGTC	000	50,19	100	-	-	
		Т	F: GGCCACAAGGAGAAGGII	176	54,28	83	-9,3	-	-5,4
6 2@417.0	125 680537 LG4			110	54,53	100	-	-	-)
0	.20_000001_201	С		454	55,98	85	-6,5	-2,0	-4,9
			R: AAUTGITTUGGAUAUGGTAT		54,49	100	-	-	-

APÊNDICE I — SNAPs para QTLs identificados em população segregante (F2) de mamão para número de frutos comerciais (NFC)

APÊNDICE I, Cont.

				тр		Pa	arâmetros	s de qualid	lade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		Т	F: GATAGAGAGAGAGAGAGAGGGT	221	50,33	100	-	-	-17
7_3@347.5	60 794585 LG3	MSL	R: ATTCCTTCTCATTTCTTTCC	221	50,32	100	-	-	-4,7
NFT_9; PROD_14	00_101000_200	A	F: ACACATACACACACACGCT	138	48,42	100	-	-	-
		MSL	R: AATCCTTCTAACGCAAATAA	100	50,22	100	-	-	
		G	F: AGAGTAAAGGGGGAGAGGIGIIC	442	56,20	100	-	-	-
8_4@307.6	16_2867072_LG6				56,71	100	-	-	7.0
		А		170	54,31	86	-6,5	-1,3	-7,0 CDE
			F. TCATCAGTGCCCACCGCA		61 78	86	-6.1	-17	CDF
9 5@46 6		А	R' GCCAATCCATCCCTGTCAATCA	281	64 21	100	-0,1	-1,7	-
AP 14	95_267264_LG7	-	F [·] AAAAAAGCTGCAGTGCCCGC		65.08	81	-10.2	-	
/		G	R: TTCCGCATCGCTGGTCTCA	194	62,99	100	-	-	-
		А	F: GCTGCTCGGTTTAGTTGA	200	51,47	100	-	-	-6,7
10_5@147.5	20 1052012 Lin	MSL	R: ATTCTCGTAGCACTATTCGG	269	52,39	100	-	-	CDF
NFT_12	20_1952645_011	G	F: AGATGAGGAGAGGAAGAACC	108	52,00	100	-	-	-5 1
		0	R: CTTTCTATGAAGCCTGGGT	400	51,71	100	-	-	-3,1
		С	F: GATGGCGGTTGCAGCTGC	160	62,98	68	-17,5	-	-
11_7@300.0	3 2400812 LG8	SBQ	R: CCAAACGGCGTCGGATTCG		66,65	100	-	-	
NF1_14		Т	F: AAGTCCACCGCCTGACCGGCA	100	71,34	75	-10,7	-3,4	-9,8
					67,59	92	-3,9	-	CDF
	25650 2020 Up	А							
12_8@255.3	33039_3030_011 SMD		r. F						
	Givii	G	R:						

APÊNDICE I, Cont.

				тр		Р	arâmetros	s de qualid	ade					
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer					
		G	F: TTACAAGAGACTAAAATTGTCC	406	49,07	86	-6,2	-1,9	-6,8					
13_8@465.0	0 2671/63 1 65	G	R: TTTCTCATTGCCTTTTGT	400	48,13	100	-	-	CDF					
NFT_17; AP_26	9_2071403_003	C	F: TATTAGATTTTCAATGCAAGC	150	50,91	85	-8,0	-	_					
		U	R: AATGATAGCAGACCCAAG	150	47,13	100	-	-	-					
		G	F: ATCAAATAAAATTAACTTAATC	<i>11</i> 7	44,28	86	-7,3	-0,2	-7,3					
14_9@21.6	26 700256 LG1	0	R: ATTTTCTGAGGATTGACTTT	/	48,10	100	-	-	CDF					
AP_28	20_730230_001	А	F: GGAATTCATCCATGCAAA	188	51,45	84	-8,5	-0,2	-54					
		Tml	R: GTACTCAAAATTGTCAAAGC	100	47,41	90	-5,4	-	-0,-					
15 9@1386		G	F: AATCGGTTAGTGGGGGACGTC	305	62,58	81	-10,45	-	_					
PROD 30.	24415 38221 Un	0	R: AAGCGAACATCATTCCAAAGGC	000	63,20	100	-	-						
COMP 14	24410_00221_011	Δ	F: CCGCTGGAGGAGCCCTAACTA	176	63,35	99	-	-0,34	-7,81					
		~	R: AGGAGGCTTTCTGGGTGGAAG	170	62,21	91	-4,54	-0,34	CDF					
		C	F: TGCTGTTTGTAATGTTCGC	279	52,59	100	-	-	_					
16_9@169.5	36 1367348 1 61	U	R: TGTAAATCTATGGTTGGGGT	215	52,05	100	-	-						
PROD_30	30_130/348_LG1	36_1367348_LG1	36_1367348_LG1	30_1307348_LG1	30_1307340_LG1	30 30_1307348_LG1	G	F: TGGATGTATGCACACATAGAC	461	51,09	89	-5,39	-0,89	-5.64
		MSL	R: CTCAACTGCTTATGCTCCTT	401	52,33	100	-	-	-3,04					

				тр		P	arâmetros	s de qualida	de qualidade	
QTL	SNP ID	Alelo	Sequência dos SNAPs		Tm	Rat.	Self Dimer	Hairpin	Cross Dimer	
1_2@383.2 AP_9 189_279526_LG4		C	F: ATCTTTCGTTTCAATTTCTGAC	300	53,48	90	-5,4	-0,1	-6,4	
	U	R: GGATGTTGATTGTCATTGCT	500	52,73	100	-	-	CDF		
	т	F: AGACGCTTGTGTTCTGCA	100	52,06	85	-8,0	-	_		
	I	R: GATATGGTCCAACTGGGATAT	190	53,13	88	-5,6	-1,2	-		
		т	F: GTTAGCTGAATCCATTAAGCA	12/	52,89	86	-6,3	1,4	-6,4	
2_7@16.0 37453_445_Un	37453 445 Un	1	R: ACTAAGGACTAAGGTTCAATGC	124	52,97	100	-	-	CDF	
	37433_443_011	С	F: CCATGTCCAAGTTTGGAC	253	50,37	67	-10,9	-8,9	-6,6	
		SBQ	R: GTGGATCTTATTGTTCAGCAT	200	51,85	91	-4,6	-	CDF	
		т	F: GATGGACGATCCAGAGTT	271	48,76	86	-6,6	-1,4	_	
3 9@175 0	21 1338327 G1	I	R: TATAGGTGTAGGGAGGTTCA	271	49,57	93	-3,4	-		
0_0@170.0	21_1000027_001	C	F: TTTAGACTGATCACATGTTCG	470	50,86	83	-9,1	-	-5.2	
		U	R: TAACACCTGAGTCCAAAAAT	470	49,64	100	-	-	-0,2	
4_10@4.0 14_ NNSF_11 ^{14_}		С	F: TTGATGAGTTTGTCATTGAGGC	207	57,72	90	-5,0	-0,6	-54	
	14_561074_LG1 MS T	MSL	R: TTCGGAAAATGTTTGTGAGAGG	251	59,55	100	-	-	-0,-	
		т	F: CACTTGTGCGAGCAGGGA	200	58,08	100	-	-	-43	
		R: GTTGACAGGCAGGAGGTGAA 20		200	57,97	100	-	-	-ד,ט	

^					
	De hara () I e identificadoe	am noniliacao coaroaanto	(\mathbf{H}_{α}) do mamao n	ara numero de trutos	dotormodoc (NIEI))
			\mathbf{U} \mathcal{D} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}		
			(. 2)		

				тр		Р	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: TTAGAAGGAGATTACCTGAACC	302	52,80	99	-	-0,4	_
1 1@1425	741 3553 Un	U	R: AAAGACAAGCGTAGGAAGTG	502	52,31	100	-	-	
1_10112.0	111_0000_011	т	F: TATCGGGGTGGTTACTTAATA	431	52,50	89	-5,8	-	-4.3
			R: AAATGGTGAAGCAAAAAACT	101	52,08	100	-	-	1,0
		С	F: GCTCAGATTCCAGGAGAG	127	48,92	89	-5,6	-	-
2 1@303.8	79 225223 LG2	•	R: TCGCATATTTTGGTACATTT		51,24	92	-3,9	-	
		А	F: IGICACCIGGAAIACACAIAA	218	51,01	92	-4,3	-	-4.5
			R: ACACAATAGGCACGACTTC	-	50,09	100	-	-	7 -
		Т		363	56,25	100	-	-	-
3_5@30.0	97_24339_LG2				50,87	90	-4,9	-0,4	
		С		206	55,57 55,42	97	-	-	-
					56.26	77	-0,5	-0,0	
		G	R. TGATCGGTGTCTGTCCTGA	127	54 04	Q1	-12,0	_	-
4_5@44.7	11_244485_LG4				55 08	100	-4,0	_	
		А	R' TCGGAGATAATTCTTCGCCT	293	56 78	90	-54	-	-4,7
		-	F: GCCTGTTGTCGAGCATATC		53.36	87	-6.8	-	
		G	R: CACATTTCCAAAACTCATCAA	494	53.55	100	-	-	-4,9
5_5@442.7	93_1017294_LG7	-	F: CATGCTTGTGGCAGTTGT	0.4 5	52.22	89	-5.4	-0.7	-6.1
		I	R: ATAGGAAAAGGACTCGCAAA	315	54,56	100	-	-	CDF
		٨	F: CACCCAGTCATGGCCACA	454	58,09	73	-14,2	-0,5	
6_6@105.0	65 495044 Llo	A R: GGCACTAAACTCATAGCCTTGT 154	154 56,0	56,04	98	-	-1,3	-	
COMP_10	65_485044_Un	G	F: ACTCACAGGGAGGAGATCAAC	270	55,23	89	-5,6	-	
		G	R: CTTCAGGAGCCCAGTAGGTA	312	54,48	100	-	-	-

APÊNDICE K — SNAPs para QTLs identificados em população segregante (F₂) de mamão para número de nós sem fruto (NNSF)

APÊNDICE K, Cont.

				тр		Р	arâmetros	s de qualida	ade	
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer	
		C	F: CATTTAGGGTGATATGATTTCC	270	53,72	92	-3,9	-	_	
7 6@120.0	139 488424 IG9	C	R: CGTCTTTTTCTACGACTTCC	219	51,96	98	-	-0,8	-	
1_0@120.0	100_100121_200	т	F: ATGCATGCAACAAAAAACTA	175	52,01	71	-15,6	-	-	
			R: AACICCCCIIAIGGAIICA		51,60	99	-	-0,3		
		G		109	54,17 52,75	90	-5,4	-	-4,9	
8_7@212.5	4_553194_LG8	۸			52,75 53,53	100	-	-		
		MSI	R' CTTTGATTGAGTTCCTTCCT	433	53,55 53,20	100	-	-	-5,7	
		0	F: TTTATTTCATTGACTTAATG		43.32	85	-6.4	-2.0		
0 0@4705	40 407550 105	G	R: GTTGCTAATATAGTCCCAC	229	44,16	92	-3,9	-	-4,5	
9_0@172.5	16_13/333_LG3	C	F: TTTGTTTTAGTCATGTGG	400	43,15	88	-6,4	-	-6.0	
		C	R: TAGTAATTTTGCCATTTG	409	44,05	90	-5,4	-0,1	-0,0	
		G	F: AGTCCCTCTTCTTGTACCTG	225	50,60	91	-4,6	-	-3.3	
10 8@227.5	18 1663218 LG5	•	R: ATGCAATTTCTAGCGTATCA		51,24	87	-7,0	-	0,0	
		А		411	52,08	80	-8,8	-2,9	-6,2	
		C	R. AAAATOTOTOTOCOCAATAAAO		57 72	90	-5.0	-0.6	CDF	
11 10@5.0		MSI	R [·] TTCGGAAAATGTTTGTGAGAGG	297	59.55	100	-0,0	-0,0	-5,4	
NFD 9	14_561074_LG1	-	F: CACTTGTGCGAGCAGGGA		58.08	100	-	-		
		I	R: GTTGACAGGCAGGAGGTGAA	200	57,97	100	-	-	-4,3	
		C	F: GACGTACATGACACTTGTATAC	202	47,11	85	-7,1	-1,2	1 1	
12 10@27.5	70 885771 Un	C	R: CTCAACTAACTGATTCCATT	203	46,47	100	-	-	-4,4	
12_10@27.5	10_000111_00	/U_885//1_UN	т	F: AAGAGAAATTATTGATTCCA	473	46,74	89	-5,4	-0,4	-4.9
			R: ACAAAGTTTAGAACACAAGC	110	47.11	100	-	-	1,0	

APÊNDICE K, Cont.

						Parâmetros de qualidade					
QTL	SNP ID	Alelo	Sequência dos SNAPs	(ph)	Tm	Pat	Self	Hairnin	Cross		
				(pp)		Nai.	Dimer	тапріп	Dimer		
		C	F: AAAAAAGAATGACAGCAC	420	44,62	100	-	-			
12 10@25.0	260 22065 Up	G	R: TGGTAAGTAAAAGGGTAAAT	430	46,87	100	-	-	-		
13_10@35.0	360_23065_Un A	F: CGTTACACATATGCAGAA	211	44,15	85	-8,0	-				
		A	R: CTAAGGAGCCCATTAGAC	211	46,51	88	-5,5	-1,4	-		

				тр		Pa	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		٨	F: TTACTATTGCCTATAGGGACAT	192	51,32	77	-12,7	-	5.0
1 1@352.5	120 A37317 I G2	A	R: ACTTTCCTGTTTGGGTCTAT	102	50,49	100	-	-	-5,0
1_1@002.0	123_407017_002	G	F: AATGGCCTCCTCTAAGTTAG	273	50,92	83	-9,3	-	_
		0	R: ATGAAAGATCCAAAAAATGA	210	49,84	91	-4,6	-	
		C	F: ATCAGAGCATGAGCTTGTCG	347	55,88	88	-6,3	-0,2	-4.3
2_2@187.5	92 457409 LG4	MSL	R: AAGAAAAAACAGCACCTAACGG	•	58,56	100	-	-	.,e
NFT_4; PROD_7		Т		156	57,59	87	-5,9	-1,0	-4,5
			R: TTTGATTTCGCATTTCAGTCA		56,87	91	-4,5	-	7 4
2 2@414.0		С		254	45,49	91	-4,5	-	-7,4 CDE
5_2@414.9	125_457510_LG4				44,24 12 97	100	-	-	CDF
		Т		457	43,07	03	-3 /	-	-
			F: CTTAGTCATATGATTAGTTCG		40,01	80	-11 0	_	-7 0
	- · - · · · · ·	С	R [·] ATTGTGGTAACTGTCATAGA	475	44.36	100	-	-	CDF
4_3@275.8	213_15704_Un	_	F: TTGGCTTATTGATAGTGTAT		45.14	93	-3.4	-	
		Т	R: CTAATCTAAACCAGAAAAGTAT	203	46.02	100	-	-	-4,5
		0	F: AAGCTGATAGTAGCCGAGATG	000	54,35	87	-6,3	-0,4	-7,0
E 2@267 E	0 4594275 1 02	C	R: GCTCACTCCTGCTACAAAGAC	238	54,21	100	-	-	CDF
5_3@367.5	0_4584375_LG3	т	F: TTGAGCTTGCAACTTACTTCTT	164	54,60	80	-10,9	-	-7,0
		I	R: TCAAATCAGATTGCTTGGAG	104	53,42	90	-5,0	-0,6	CDF
		Т	F: TTAGATTCATGGGCAACCAA	207	56,40	87	-6,0	-1,5	-9,6
6_4@152.5	157 169542 G6	MSL	R: TCCCATCCTTAATCGTTTCA	231	55,54	91	-4,8	-	CDF
TSS_9	107_1000+2_200	C	F: ACATTCTTGTTACCAGGTGAGC	119	56,19	100	-	-	-6,9
		0	R: TGGGAATGATAAGCTTGTGG	113	55,94	81	-10,2	-	CDF

APÊNDICE L — SNAPs para QTLs identificados em população segregante (F₂) de mamão para diâmetro do caule (DC)

APÊNDICE L, Cont.

QTL	SNP ID	Alelo	Sequência dos SNAPs	TP (pb)	Tm	Parâmetros de qualidade			
						Rat.	Self	r Hairpin	Cross
							Dimer		Dimer
7_5@285.0	27_92703_LG7	С	F: AATCCCAACCAGCCTAACC	169	56,40	100	-	-	-
			R: GTCGTCATCATCAAGTCCTCTT		55,72	91	-4,5	-	
		G	F: CAAGTAGTTCTTCCTGCTACGC	472	56,75	90	-4,9	-0,7	-5,1
			R: AAGATAAGCCTTCATTGCCAG		56,73	100	-	-	
8_8@132.5	9_1340872_LG5	С	F: TGATTTTCTTATGGAGTCAAG	196	49,82	91	-4,5	-0,4	-5,5
			R: CTGTGTTCTGAAACGGTATC		50,03	100	-	-	
		А	F: TTCTGTACAGCGTGTCGA	283	49,93	80	-10,7	-	
			R: CCTATTCTAAAACATTGGCA		50,95	100	-	-	-
				тр		Pa	arâmetros	s de qualid	lade
-------------	-----------------	----------	--------------------------------------	------	-------	------	---------------	-------------	----------------
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		Т	F: AGAGAGAGAGAGAGAGTGA	220	40,61	100	-	-	
1_1@15.0	12631 636 Un	MSL	R: CCTGAAGAAGATTGTTTA	230	41,90	100	-	-	-
DC_1; NFT_1	42031_030_011	Δ	F: GGAAATATGTAAACACTCA	364	42,11	92	-3,9	-	-5.2
		7.	R: ATAAACTTCTGTTGAAAAAT	004	43,85	100	-	-	0,2
		G	F: CCTCTTCTCAATAAATCGCCG	229	59,43	100	-	-	-
2 1@82.7	284 27184 LG2	•	R: CGTTAGCACAACATTCCACCC		60,37	100	-	-	
		А	F: CGGCCGACCC1G1AGC11	133	60,79	70	-16,5	-	-5,7
		0			60,48	82	-9,9	-	,
				245	50,13	100	-	-	-
3_1@90.9	12_2607980_LG2				58,02	92	-4,Z	-	
		MSI	R'AGTCCGTCTGAGCGTTGATG	104	58 22	100	-4,5	_	-4,5
		A	F [·] ACTACTAAGCAAGTATTGATT		43.72	91	-4.9	-	
		Tml	R: TCTTCCTGGAGTAAAAATGG	473	52.11	100	-	-	-4,4
4_1@97.7	97_366390_LG2	Т	F: CGCCTCGTGCGGAGCTAT	0.44	61,93	83	-7,3	-2,3	
		MSL; Tml	R: AGGTTCACTTCTCGGTTCTA	241	51,34	100	-	-	-
		C	F: AGGCACAATTCCTGTTATC	100	49,47	89	-5,4	-0,6	2.0
5 1@180.0	180 160206 1 62	C	R: TCCAGAGGGTGTAAAAGAG	122	49,49	100	-	-	-3,9
5_1@100.0	100_409200_LG2	т	F: TGCATTATTCCTATAGTTGTCA	487	50,89	87	-7,0	-	_
		•	R: ATTCTCAGGTTCACTTTGG	407	49,18	100	-	-	
		т	F: CGTGTTTAATCGCGACCGTAAA	156	62,94	73	-13,5	-1,5	-5.6
6_1@437.5	29 1208046 LG2	·	R: ACCGCATGGCAAGACACAAC	100	61,41	90	-5,4	-	
	20_12000+0_LOZ	С	F: ICCCTCCTCAGATGCGCTC	276	60,64	80	-10,9	-	-7,7
		-	R: AGCICCCIICIICGGCGACT		62,85	88	-6,3	-	CDF

APÊNDICE M — SNAPs para QTLs identificados em população segregante (F₂) de mamão para altura de plantas (AP)

				тр		Р	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		G	F: GAGACCCTTTATCTCATG	237	43,24	86	-6,4	-1,6	-5.5
7_2@320.0	120 548508 LG4	-	R: IICIICAIAAAAAGICACA		42,83	100	-	-	-,-
NFC_4	NFC_4	А	F: CIAIACAGAGAAIAAAAAGIII	329	43,89	91	-4,9	-	-
			R: CACCITAGTAGTAGCAGTT		44,14	91	-4,5	-	
	G		132	44,81	89	-5,6	-0,5	-7,5	
8 2@325.0	54 1497499 LG4				47,10	100	-	-	CDF
000-	А		327	55,48	91	-4,6	-	-	
					52,49	89	-3,9	-2,3	6.4
0.2@3825		С		300	50,40 52,73	100	-5,4	-0,1	-0,4 CDE
9_2@302.3 NED 2	189_279526_LG4				52,75	85	-8.0	_	CDI
NI D_2		Т		190	52,00	88	-5,0	-12	-
			E COTOTTGGCTAATGCAACG		57 60	84	-8.0	-0.8	
_		С		120	57 79	100	-	-	-
10_2@435.1	228_265003_LG4	-	F [·] GATTTAGCAGCCCTTAGTGGG		58.59	83	-7.1	-2.7	
		G	R: TTGTGGCATTTGGATCTTGA	259	56.98	91	-4.6	_,	-
		G	F: TTTCTCTAATAAGTGTGATATG	005	44,88	91	-4,9	-	-7,8
11 20 422 5	00F 470044 LC0	MSL	R: AAAATTGCACTTACCAGT	225	44,53	87	-7,0	-	CDF
11_3@432.5	235_178341_LG3	۸	F: GGATCAACCACAATTCTT	105	46,45	88	-6,4	-	
	A	R: TTATTATTTCTACCAACCTTC	405	46,81	100	-	-	-	
		т	F: AAAAAAGAACATGTACATATCA	150	47,58	81	-10,5	-	51
12_3@442.5 11	110 631513 1 63	I	R: GTAGATTCAACTCTTCAGGA	150	46,02	100	-	-	-5,1
	119_631513_LG3	C	F: TATATGCATGTATATGGGC	272	46,46	82	-10,0	-	-18
		U	R: CAATAAGGGAAAACGATAC	213	47,42	100	-	-	-4,0

				тр		P	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: TCAATTGCAAGTGCTTAACTCG	433	58,65	80	-10,9	-	-4 2
13 4@463.4	44 770181 G6	Ũ	R: AGAAAGAGGGTAGTCGCCG	100	56,90	100	-	-	1,2
		т	F: GTCTTGGCAACATCCCGT	232	55,76	100	-	-	-8,0
					56,82	100	-	-	CDF
11 5@166		А		281	01,70 67.21	00 100	-0,1	-1,7	-
NFC. 9	95_267264_LG7		F: AAAAAAGCTGCAGTGCCCGC		65.08	81	-10.2	_	
		G	R: TTCCGCATCGCTGGTCTCA	194	62.99	100	-	-	-
		0	F: TGGTTCGAATCATATTATGTGG	407	55,51	80	-10,6	-	-6,2
15 5@2306	126 371146 Up	C	R: ATTGGGATGTTGTTGGCGAT	427	59,94	100	-	-	CDF
15_5@250.0	120_371140_011	Т	F: TCCGTGATGCCAGCCGCT	240	65,34	89	-4,7	-	-4 0
		MSL; Tml	R: CCCCACACTCAGGGTAATCG	240	59,97	97	-	-2,0	-+,0
		С	F: TTCAAGTACAAGAAAATAGCG	435	50,93	93	-3,6	-	-6,8
16 6@197.9	2 3303661 LG9	-	R: IGCITICACTIGCIGTIAIC		51,23	100	-	-	CDF
_		Т		177	51,75	100	-	-	-6,6 CDE
					JQ 61	03	-3.4	-	CDF
17 6@502 5		G	R [·] CAAACTCGTAGCAAATACAA	194	49 24	94	-3.3	-	-4,8
FI 10	53_157623_LG9	_	F: TCTGAATAATCGATGCACTA		48.83	82	-9.7	-	
		I	R: AATTTGCCAAGAAGAATCT	315	48,95	90	-5,4	-0,1	-4,0
		٨	F: ATGTGCTGAACCGTCCAA	101	54,42	100	-	-	10
18_7@102.5	A	A	R: ATAGGGAGACATCATTTGACA	191	51,80	91	-4,5	-	-4,9
	173_31014_LG8	173_31014_LG8	C	F: CAATATGACAGATCTATATAGG	382	44,31	80	-10,0	-0,7
		0	R: GATGCTTGTAAGGAATGAC	002	46,98	100	-	-	

				тр		Р	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: ATTTTTTCCTATCGCATAC	170	47,35	93	-3,4	-	-6,6
19_7@145.0	2686 1623 Un	C	R: AGTTGACTTGGGAAGATAG	179	45,86	100	-	-	CDF
PROD_26	2000_1020_011	т	F: CATATTACGATACCTGCAA	432	46,61	85	-8,0	-	-6,1
			R: GATACAAGCATAAAGACTCAC		46,65	100	-	-	CDF
	C		120	58,14	82	-10,0	-	-3,9	
20_7@157.5	2002_6551_Un	INISL			50,15	100	-	-	0.7
	Т		419	58 69	92 100	-4,3	-	-9,7 CDF	
		-	F: CATGAAGCAAAGGGTTACTTAG		54.47	89	-5.4	-0.2	-9.1
04 7 9 007 5	407 400450 1.00	G	R: CATTTACCACCCTGATTGAA	244	53,22	100	-	-	CDF
21_7@367.5	107_123159_LG8	т	F: AATGGTTCTCAGGTGATGAA	445	52,20	91	-4,5	-0,3	E 4
		I	R: GCAGCAAAGAATGTCGTAA	445	51,91	100	-	-	-5,1
		G	F: GGTTGATATCCATTGACGG	206	52,96	87	-7,1	-	-3 0
22 8@90.0	146 12453 Un	0	R: GGGAAGTGGTCCTTTACATT	200	53,27	99	-	-0,2	0,0
22_0000.0	110_12100_011	С	F: TCTCCATTTAAGGCATAGAAGG	416	56,21	91	-4,8	-	-
		-	R: CCATAGACATTIGCGTIGAT		53,44	100	-	-	
		С		348	52,95 50,67	90	-5,4	-	-5,9
23_8@110.0	35704_145_Un				50,07	100	-	-	
		А	R' GCTTAATTTGCTCTCGATC	70	50,25	86	-7.8	-	-4,7
		-	F: AGGCTCATAGTTCAAAGAAAAT		52.83	91	-4.5	-	
24_8@217.5	40 4047000 1 05		R: GAAGTAGTTCGCTTAGGTGTT	TT 171	51,24	100	-	-	-
	18_1247802_LG5	C	F: TACTTTCGAGATGCAGGG	420	51,10	85	-8,0	-	
		U	R: CTTGTATGGGGAGACTTTTG	439	52,26	100	-	-	-

						Pa	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: GCTTCCACAACTGTCATTCGC	241	60,51	100	-	-	-6,1
25 8@2850	10 1817047 I G5	U	R: TTGGTCAGCAATCAAGAAGTCA	271	58,31	100	-	-	CDF
20_0020010	10_1011011_2000	т	F: ATGGACATTGCATGCCTA	411	51,91	77	-12,7	-	-
					52,70	91	-4,6	-	0.0
26 0@470 0		G		406	49,07	86	-6,2	-1,9	-6,8 CDE
20_0@470.0 NET 17: NEC 13	9_2671463_LG5				40,13 50.01	85	-8.0	-	CDF
$111^{17}, 110^{13}$		С	R: AATGATAGCAGACCCAAG	150	47 13	100	-0,0	-	-
		0	F: AATCCTTATCTGAAACAACCAC	450	53.16	100	-	-	
27_9@17.5		C	R: AGTGATTGTCTTTTGGGTGT	153	51,49	100	-	-	-5,4
COMP_13	200_11/12_LG1	т	F: ACTTGAAGTTTCTCCGCA	402	50,62	91	-4,9	-	-6,2
		1	R: AAAAAAAAAAAGCAAAACGA	493	53,35	100	-	-	CDF
		G	F: ATCAAATAAAATTAACTTAATC	447	44,28	86	-7,3	-0,2	-7,3
28_9@27.5	26 790256 LG1		R: ATTTTCTGAGGATTGACTTT		48,10	100	-	-	CDF
NFC_14				188	51,45	84	-8,5	-0,2	-5,4
		Imi	R: GTACTCAAAATTGTCAAAGC		47,41	90	-5,4	-	0 0
		Т		225	40,40	00 100	-5,7	-1,2	-0,0 CDE
29_10@20.1	3119_5679_Un		F: CCGACTATAAGAGTCTAAAATG		40,55	91	-4.5	-0 1	CDI
		С	R: GGGTGATGTAAAATGTTGTA	109	48.03	100	-	-	-
		0	F: ATTCCATATGACAGTAAGATG	0.40	46,65	85	-7,8	-	0.0
30_10@32.5		R: ATGTGTTCCTACTTCCACT		248	45,56	92	-4,3	-	-3,9
	/U_8/555/_Un	/υ_٥/٥٥٥/_UN Τ	F: GTCATGATGTCCCTTGTT	155	46,47	84	-8,5	-	_
		I	R: CTGAGTTGATCCAGAGAAT	100	45,75	91	-4,6	-	-

				тр		Parâmetros de qualidade					
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Pat	Self	Hairnin	Cross		
				(pp)		Nai.	Dimer	Παιτριπ	Dimer		
	040 44407 110	С	F: TGGTGTGATGATGCCTAAG	100	51,57	100	-	-	E E		
21 10@1175		Tml	R: CCCTTCCCAAATCTCTTACAG	103	55,92	100	-	-	-၁,၁		
31_10@117.5	010_11197_011	т	F: GGTCTGTTCACATAAAAGTCCT	057	52,99	100	-	-	55		
		I	R: TAGTCCCTGAAACCGTCTTG	207	55,09	100	-	-	-5,5		

TDT alameter	is de qualité	ade
QTL SNP ID Alelo Sequência dos SNAPs (pb) Tm Rat. Self	Hairpin	Cross Dimer
F: TCTCTTTCGCTCTTTACTCCT 53,31 100 -	-	-3.0
1 1@110.0 1878 7074 LG2 R: CCGTTCCAACAAAATCTAA 412 53,31 100 -	-	-3,3
F: AATCAGTAAGCGGTAGAGCTC 219 53,65 79 -10,5	-1,4	-
R: AGTGTGTGACATTTTTGGGT 52,16 100 -	-	
$G \xrightarrow{F: AGGCICAAAICIIGAIGAGGG} 157 \xrightarrow{58,43} 86 \xrightarrow{-6,1}$	-2,0	-
$2_1@113.2$ R: AGIGIGAACAGGIGGGICGI 57,06 100 -	-	
A = CACCCTCTCTATCAAATGGATGGTGAAGAGTT 295 50,08 83 -7,1	-2,8	-4,8
F: CCGCCATCAGTTCTGGGA 59,19 69 -5,7	- -1 Q	-7 1
$\begin{array}{c} A \\ R^{\circ} CCAACAGTCAACCATACCCC \\ \end{array}$	-	CDF
$3_1@117.1$ 77_1344566_LG2 F: GTCATCAATGTGATATGAAGGC 54.62 89 -5.0	-0.8	0D1
G R: ACAGCACCAAAAGGGGGT 487 57,20 88 -5,4	-1,3	-
F: GTAGTATCATCATGGCTCAA 47,72 90 -5,4	-	4.0
A 1@220.0 672 18441 LC2 R: TGGCTTTTGTAGTTTTTTA 100 49,01 100 -	-	-4,9
$4_1 \otimes 220.0 \qquad 072_10441_LO2 \qquad \qquad$	-0,6	-4 9
R: TGACATTTATATGCGTTCTT 203 48,48 92 -3,9	-	-4,3
G F: AGGACAGAGTGTATATTTCCTG 207 50,70 84 -7,2	-2,0	-5.7
5_1@238.7 29 1010038 LG2 R: CTGATGCTCTACTTTGACCT 49,06 100 -	-	0,1
$\begin{array}{c} \text{COMP}_2 \\ \text{A} \\ \text{B} \\ \text{A} \\ \text{COMP}_2 \\ \text{COMP}_$	-3,5	-6,6
R: AAGGAGAATGTGGTAGUU 48,95 100 -	-	CDF
$C = \frac{10}{2025} C = \frac{107}{5540} = \frac{50,20}{100} C = \frac{107}{5540} = \frac{50,20}{100} = \frac{100}{100} = $	-	-
$C_1 = 392.5$ $6_{2014486} LG2$ $E_1 CACCCACCCACCCACCCACCCACCCACCCACCCACCCA$	- -1 2	
T R: TGGGGCGAAGAGGACTATT 173 50,00 00 -7,3	- ı,∠ -	-

^							
		dontifico do o omo	nonulooão oom	a a a a ta / L) d			
	SNAPS DATA UTTS	ideniiiicados em	DODUIACAO SEOF	$eoanie (F_2) o$	e mamao bai		(PR(JJ))
	para areo		populuğuo oogi	ogunto (1 2) a	o mamao pai	a produğuo	(1100)

QTL SNP ID Alelo Sequência dos SNAPs Tm Rat. Self Dimer Hairpin Cross Dimer 7_2@190.0 DC_3; NFT_4 92_457409_LG4 K F: ATCAGAGCATGAGCTTGTCG MSL 347 55.88 88 -6.3 -0.2 -4.3 0_C_3; NFT_4 92_457409_LG4 T F: ACGGCTTTGATTCAGCGCATA R: TTGATTCGCAGTTTCATCAGCG 347 55.88 88 -6.3 -0.2 -4.3 8_2@212.5 104_218_LG4 C F: AATATGGAGCTTTTCATTCAGTCA 156 55.53 86 -6.3 -1.5 -7.6 9_2@2222.5 104_14428_LG4 C F: GGAAGGGAAATAAGGCGC 120 57.55 80 -10.9 - - CDF 9_2@2222.5 104_144428_LG4 T F: CTAGTGGTGATCACACCA 180 51.83 77 -9.3 -4.1 - 10_2@250.2 5_916349_LG4 T F: CTCCTTTCTAGCACAATCAACCACACACT 134 56,70 87 -6,8 -0.2 -4.3 11_2@267.3 5_916349_LG4 T F: CTCACCTTCTTGAATCACAATCCA					тр		P	arâmetros	s de qualid	ade	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 2@190.0		С	F: ATCAGAGCATGAGCTTGTCG	347	55,88	88	-6,3	-0,2	-4.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DC 3	92 457409 I G4	MSL	R: AAGAAAAAACAGCACCTAACGG	047	58,56	100	-	-	ч,0	
$ \begin{array}{c} R: TITGATTICAGTICAGTCA \\ R: TITGATTICAGAGCGTTTTCTTCCTTG \\ R: AATATGGAGGCGAGACTGATAA \\ A \\ R: TGTTTAATGGGCGAGACTGATAA \\ R: TTGTTTAATGCTTCTTGAACG \\ P: CCTAGTGGGTGATGCACCA \\ A \\ R: TTGTTTAATGCTTCTTGAACG \\ R: GGGAAATAAGGCGC \\ T \\ F: GGAAGGGAAATAAGGCGC \\ R: GGGAAATAAGGCGC \\ T \\ R: TTCAACACATCGACAGCATCGAAAACG \\ T \\ MSL \\ R: CGTGAGCAAAAGAATCGAAAACG \\ T \\ MSL \\ R: CGTGAGCAAAAGAATCCAACT \\ 134 \\ 57,23 \\ 100 \\ - \\ 57,23 \\ 100 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	NFT 4	02_101100_201	т	F: ACGGCTTTGATTCAGCGTAT	156	57,59	87	-5,9	-1,0	-4.5	
			-	R: IIIGAIIICGCAIIICAGICA		56,87	91	-4,5	-	7.0	
$ \begin{array}{c} 8_2@212.5 \\ 8_2@212.5 \\ 104_218_LG4 \\ \\ 4 \\ \\ 8 \\ \\ \\ \\ 9_2@222.5 \\ 9_2@222.5 \\ 9_2@222.5 \\ 104_144428_LG4 \\ \\ 10_4_144428_LG4 \\ \\ 10_4_144428_LG4 \\ \\ \\ 7 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			С		120	55,53	86	-6,3	-1,5	-7,6	
$\begin{array}{c} A & F: CUTAGIGGAGCACCA \\ R: TTGTTTAATGCTTCTGAACG \\ P = 2@222.5 \\ P = 2@222.5 \\ P = 104_144428_LG4 \\ \end{array} \\ \begin{array}{c} C & F: GGAAGGGAAATAAGGCGC \\ T & F: GGAAGGGAAATAAGGCGC \\ T & F: TTCAACAACATCGACGGTTAA \\ MSL & R: CGTGAGCAAAAGAATCCAACT \\ T & F: TTCAACAACATCGACGGTTAA \\ MSL & R: CGTGAGCAAAAGAATCCAACT \\ T & F: CTCCTTTCTTTCCATTTCAATA \\ R: CTATCCTTGAAGCAAAAGAATCCAACT \\ T & F: AGCAGCAGGCAGAAAGAATCCA \\ T & F: AGCAGCAGGCAGATGTAA \\ R: CTATCCTTGAAGCAAAAGCATCCT \\ T & F: AGCAGCAGGCAGAATGTAA \\ R: CTATCCTTGAAGCAAAAGCATCCT \\ T & F: AGCAGCAGGCAGATGTAA \\ R: CTATCCTTGAAGCAAAAGCATCCT \\ T & F: AGCAGCAGGCAGATGTAA \\ R: CTGTTAGAATGGGAAGACAAA \\ P = 1000 \\ \hline T & F: CACCAACTAGATGGGAAGACAA \\ T & F: CTGTTAGAATGGGAAAACCT \\ T & F: AGCAGCAGCAGGCAGATGTAA \\ R: CTGTTAGAATGGGAAAACGCT \\ T & F: CACCAACTAGATGGAATGTCATGGT \\ R: GCAATGAATGGAATGGAGAAAACGCT \\ T & F: CGCACCAACTAGATGGAATAACGCT \\ C & F: CGGACCGCCTAATCAGCATGC \\ R: GCAATGAATGGAATACGCATGC \\ R: CGCATTGATCTAGCCCA \\ T & F: GGACCGCCTAATCAGCATGC \\ R: CGCATTGATCTAGCCCAACTAGC \\ T & F: GGACCGCCTAATCAGCATGC \\ R: CGCATTGATCTAGCCCAACCATGC \\ P : GGACCGCCTAATCAGCATGC \\ R: CGCATTGATCTAGCCCAACTAGCATGC \\ R: CGCATTGATCTAGCCCATCCA \\ T & F: CGCTCCGGTTCCTCCGA \\ T & F: CGCTCCGGTTCGTCCGA \\ T & F$	8_2@212.5	104_218_LG4				54,25	100	-	-	CDF	
$\begin{array}{c} 9_2@222.5 \\ 9_2@222.5 \\ 104_144428_LG4 \\ \end{array} \begin{array}{c} C \\ R \\ GGAAGGGAAATAAGGCGC \\ R \\ GGAAGGGAAATAAGGCGC \\ T \\ F \\ TTCAACAACATCGACGGTTAA \\ MSL \\ R \\ CGTGAGGCAAAAGAATCCAACT \\ T \\ R \\ CGTGAGCAAAAGAATCCAACT \\ T \\ R \\ CTCCTTTCTTTCCATTCAATA \\ R \\ CTATCCTTGAAGCAAAAGAATCCA CT \\ 134 \\ 56,70 \\ 57,23 \\ 100 \\ - \\ - \\ - \\ 53,61 \\ 100 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$			А		180	53.87	01	-9,3	-4,1	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						57 25	80	-4,0	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			С	R' GGGAAATTAAATCGGAAAACG	214	58.61	90	-5.4	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9_2@222.5	104_144428_LG4	т	F: TTCAACAACATCGACGGTTAA		56.70	87	-6.8	-0.2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			MSL	R: CGTGAGCAAAAGAATCCAACT	134	57,23	100	-	-	-4,3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			۸	F: CTCCTTTCTTTCCATTTCAATA	264	53,92	92	-4,4	-	-7,4	
$10_{2}@230.2 3_{5}0045_LO4 \qquad T F: AGCAGCAGGCAGATGTAA \\ R: CTGTTAGAATGGGAGAGCAA \qquad 125 51,64 100 - - -3,9 \\ 52,79 100 - - -3,9 \\ 12_{5}@267.3 5_{2}424137_LG4 \qquad T F: TCCACCAACTAGATGTCATGGT \\ R: GCAATGAATGAGATGAGATAAACGCTG \\ G F: CTGGTACTGTATGCACCATGC \\ R: GCACACTGTCTCTTAGCCCA \\ G F: CTGGTACTGTCTCTTAGCCCA \\ 125 56,32 82 -7,4 -2,9 \\ 57,97 100 - - -5,0 \\ 425 55,84 100 - - -6,0 \\ 425 55,84 100 - - -6,0 \\ C F: GGACCGCCTAATCAGCATGC \\ R: CGCATTGATCTAGCCCATGC \\ T F: CGCTCCGGTTCGTCCGA \\ 487 53,22 77 -9,7 -3,3 -7,9 \\ 7 70,7 -3,3 -7,9 \\ 7 70,7 -7,7 -$	10 2@250.2	5 916349 1 64	~	R: CTATCCTTGAAGCAAAATCCT	204	53,61	100	-	-	CDF	
$11_2@267.3 5_2424137_LG4 \qquad T \begin{array}{c} R: CTGTTAGAATGGGAGAGCAA \\ T R: GCAACTAGATGGGAGAGCAA \\ R: GCAATGAATGAGATGACATGGT \\ G F: CTGGTACTGTATGACACCATGC \\ R: GCACACTGTCTCTTAGCACCATGC \\ R: GCACACTGTCTCTTAGCCCA \\ 12_2@438.2 3370_683_Un \\ 12_2@438.2 3370_683_Un \\ \end{array} \begin{array}{c} T R: CTGTAGACCATGC \\ F: CGCATCGGTTCGTCGACCATGC \\ R: CGCATTGATCTAGCCCATCCA \\ T F: CGCTCCGGTTCGTCCGA \\ T F: CGCTCCGCTA \\ T F: CGCTCCGGTTCGTCCGA \\ T F: CGCTCCGCTA \\ T F: CGCTCCGCTCCGTCCGA \\ T F: CGCTCCGCTCGTCTCTCCCA \\ T F: CGCTCCGCTCCGCTA \\ T F$	10_2@200.2	0_0100+0_LO+	т	F: AGCAGCAGGCAGATGTAA	125	51,64	100	-	-	-39	
$11_2@267.3 5_2424137_LG4 \qquad T F: TCCACCAACTAGATGTCATGGT \\ G F: CTGGTACTGTATGAATGAGATAACGCTG \\ G F: CTGGTACTGTATGCACCATGC \\ R: GCACACTGTCTCTTAGCCCA \\ 12_2@438.2 3370_683_Un \\ 12_2@438.2 3370_683_Un \\ T F: CGCTCCGGTTCGTCCGA \\ T F: CGCTCCGCTCGTCGTCCGA \\ T F: CGCTCCGCTCGTCGTCCGA \\ T F: CGCTCCGCTCGTCG$			•	R: CTGTTAGAATGGGAGAGCAA	120	52,79	100		-	0,0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			т	F: TCCACCAACTAGATGTCATGGT	270	56,77	82	-7,4	-2,9	-5,0	
$\begin{array}{c} G \\ 12_2@438.2 \\ \end{array} \begin{array}{c} 3370_{683}Un \\ \end{array} \begin{array}{c} G \\ T \\ F: GGACCGCTCCGGTTCGTCCGA \\ T \\ F: GGACCGCCTAATCAGCATGC \\ T \\ F: CGCTCCGGTTCGTCCGA \\ T \\ F: CGCTCCGCTCCGCTCCGA \\ T \\ F: CGCTCCGCTCCGCTCCGA \\ T \\ F: CGCTCCGCTCCGCTCCGCA \\ F: CGCTCCGCTCCGCTCCGA \\ F: CGCTCCGCTCCGCCA \\ F: CGCTCCGCTCCGCA \\ F: CGCTCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$	11_2@267.3	5_2424137_LG4				57,97	100	-	-	,	
12_2@438.2 3370_683_Un C F: GGACCGCCTAATCAGCATGC R: CGCATTGATCTAGCCCATCCA 276 62,78 77 -12,7 - -7,6 12_2@438.2 3370_683_Un T F: CGCTCCGGTTCGTCCGA 276 63,22 91 -4,6 - CDF 12_2@438.2 3370_683_Un T F: CGCTCCGGTTCGTCCGA 487 63,22 77 -9,7 -3,3 -7,9	_		G		425	56,32	82	-7,4	-3,2	-6,0	
12_2@438.2 3370_683_Un T F: CGCATTGATCTAGCCCATCCA 276 63,22 91 -4,6 - CDF T F: CGCTCCGGTTCGTCCGA 487 63,22 77 -9,7 -3,3 -7,9						00,04 62,78	77	- _12 7	-	-7.6	
12_2@438.2 3370_683_Un T F: CGCTCCGGTTCGTCCGA 63,22 77 -9,7 -3,3 -7,9			С		276	63 22	01	-12,7	_		
487 = 6,7 = 6,7 = 6,7 = 7,9	12_2@438.2	3370_683_Un	3370_683_Un т	т	F: CGCTCCGGTTCGTCCGA		63 22	77	-97	-3.3	-79
IMI REATGAATCTCTTGGAACCCTATTGGA 55.84 100 CDF		י Tr		Tml R: ATGAATCTCTTGGAACCCTATTGGA		55.84	100	-	-	CDF	

				тр		P	arâmetros	s de qualid	ade
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
13 3@337.2	70,00000,1,00	Т	F: GATGTCCTTTTTCAGCTAAATA R: AACCCTCAAGAAAGATGTAGA	121	51,84 50.91	87 100	-6,3 -	-0,8 -	-5,5
DF_8	72_26362_LG3	С	F: CATAATGTGTGTTCCATGTTAC R: ACCACTTCCACTCTGAAATT	252	50,58 50.83	90 88	-5,4 -6.4	- -0.2	-4,5
14 3@357.5		T MSL	F: GATAGAGAGAGAGAGAGAGGGT R: ATTCCTTCTCATTTCTTTCC	221	50,33 50,32	100 100	-	-	-4,7
NFC_7; NFT_9	60_794585_LG3	A MSL	F: ACACATACACACACACGCT R: AATCCTTCTAACGCAAATAA	138	48,42 50,22	100 100	-	-	-
15 4@40.0	50,00047,100	С	F: TTAACTCAGGCTGGACTGTAAG R: GGCTTGGGTTGTGTTCTAAT	444	54,48 54,31	91 100	-4,8	-	-4,5
DF9	58_39617_LG6	т	F: AGTCACATGTTTGGGTCCTT R: GTCTCTTTTCATCCCATTCC	308	53,89 53,36	85 100	-8,1 -	-	-8,1 CDF
16_4@105.0	1400 405 Lb	A SBQ	F: GAAGAGCACATATATATGTGTA R: TGTGATGGTATGAGGTTT	138	45,19 44,55	52 100	-20,3 -	-7,7 -	-5,2
ESP_2; TSS_8	1163_495_011	С	F: TGGCTGAGAATGATTTAG R: CACAGACAAAACACACAA	214	45,43 43,40	92 100	-4,4	-	-4,9
17 4@1475	157 202256 1.06	А	F: GCATCAGGAAAGCAGTCA R: CGGGAGTCGTAAGATCACTA	243	51,43 52,64	100 91	- -4,6	-	-3,9
17_4@147.5	137_292230_EG0	G	F: TCGAAAGAAACAGCTGGTC R: TTAATCACCTTTTGGTTTGC	104	53,17 53,26	79 91	-11,2 -4,8	-	-6,2
18 1@350.0	52 200146 1 66	С	F: CCTTTTTACTTCCCCCTGAC R: TGCTTTTAATATGGGTGGCT	303	55,70 55,38	100 91	- -4,8	-	-
10_4@300.0	J2_200140_LG0	Т	F: AAAGCAAGGTGAAAACATCAA R: ACTCCACTACTCAAAGCCTCC	457	55,31 55,27	91 100	-4,5 -	-0,1 -	-5,7

			тр		Р	arâmetros	Parâmetros de qualidad				
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer		
		т	F: ACACCTTGGCACACGCAT	209	57,17	100	-	-	-6.6		
19 5@186.5	61 214386 LG7	•	R: CGTCCGAGAGAAGGAGAAAGA	200	58,71	99	-	-0,5	0,0		
	С	F: GGGTTACGATGCTGAGAACAAG	433	59,15	92	-4,3	-	-			
					58,65 52 /3	100	-	-			
		G	R' CATGGTGAAAGCCCTAGC	496	52,43 53 41	90	-5.4	-	-		
20_6@80.0	65_1189099_Un		F: CAGGTGCCATGAAACAAA	040	52.44	90	-5.4	-			
		A	R: TTCTCAAGGAGTATCAAACGG	219	54,74	100	-	-	-		
		G	F:								
21 6@167.5 415_39913_LG9	Ŭ	R:									
	SMP	А	F: D.								
			R. F: CAGTGTTGCTCGTGATTC		48 60	100	-	-			
		G	R: GTTTCAAAGGCTGTCCAT	294	49.78	100	-	-	-		
22_6@173.7	112_654_LG9	^	F: CTCATGGATAACATTCCCA	04.0	50,66	86	-6,0	-1,8	E 4		
		A	R: AATCTGAGTACATTTCAAAAGC	218	51,39	91	-4,9	-	-5,1		
		G	F: TTTCGGGCTATAACAGACAG	165	53,22	93	-3,4	-	-5.1		
23_6@432.5	53 1092396 LG9	Ū	R: TCATCTCTGGTTCTTCTCCCTT	100	52,96	100	-	-	0,1		
NDF_5		С		330	51,76	100	-	-	-5,7		
					54 13	00 79	-0,3 -0 1	-23			
		G	R: GCATTGGCTGCTGTAGAAG	469	54.03	99	-	-0.7	-4,5		
24_7@135.0	17_1312447_LG8	^	F: CTGGACAGAGAGTGGATGAAA	167	54,72	100	-	-			
		A	R: CACGACCAAACGCATATTT	167	54,31	90	-4,9	-0,6	-		

				тр	-	Pa	arâmetros	de qualida	ide
QTL	SNP ID	Alelo	Sequência dos SNAPs	(pb)	Tm	Rat.	Self Dimer	Hairpin	Cross Dimer
		C	F: ATTTTTCCTATCGCATAC	170	47,35	93	-3,4	-	-6.6
25_7@155.0	2686 1623 Un	U	R: AGTTGACTTGGGAAGATAG	179	45,86	100	-	-	-0,0
AP_19	2000_1020_011	т	F: CATATTACGATACCTGCAA	432	46,61	85	-8,0	-	-6.1
		•	R: GATACAAGCATAAAGACTCAC	102	46,65	100	-	-	0,1
		Т		470	55,61	81	-10,4	-	-
26_8@102.5	146_267983_Un				58,01	100	-	-	
	А		243	57,20	100	-13,1	-	-6,6	
			F: TGCTTTGGTACACGCATACAGA		62 44	93	-3.6	_	-72
27 8@127.5		С	R [·] TGCCGATGGATTACTGCGTTT	135	62,95	100	-	-	CDF
FE 13	731_3422_Un	-	F: TGCCATGCATCCAGGCAA		61.95	75	-10.0	-5.0	-7.2
		I	R: GGTAGCCCCAATACGAAGTCCA	216	62,96	100	-	-	CDF
		т	F: CCGACCAGCCATTGTTTTA		56,80	100	-	-	_
28 0@1103	26 161/023 1 61	I	R: GACCGTTTTGCTTGACACTG		56,28	100	-	-	-
20_9@110.5	20_1014925_001	C	F: TTTGTTGAGACTTGCAGAGGTC		57,10	87	-7,0	-	-6 1
		U	R: CCATAGAGTGTTGAAGCAGCC		57,50	100	-	-	0,1
29 9@138.6		G	F: AATCGGTTAGTGGGGGGACGTC	305	62,58	81	-10,4	-	-
NFC_15;	24415_38221_Un				63,20	100	-	-	7.0
COMP_14		А		176	63,35	99	-	-0,3	-7,8 CDE
			R. AGGAGGUTTUTGGGTGGAAG		02,21 52.50	100	-4,5	-0,3	CDF
30 9@169 5		С	R. TGTAAATCTATGGTTGGGGT	279	52,05	100	_	_	-
NFC 16	36_1367348_LG1	G	F' TGGATGTATGCACACATAGAC	CACATAGAC	51.09	89	-5.4	-0.9	
		MSL	R: CTCAACTGCTTATGCTCCTT	461	52,33	100	-	-	-5,6

APÊNDICE O — Genes identificados em uma região de 434 kpb em relação ao SNP 9_366188_LG5, associado ao QTL TSS_11_8@50.0 (%Var = 15,30) identificado em população segregante F_2 de mamão.

Gene locus	DESCRIÇÃO
LOC110821437	protein dehydration-induced 19 homolog 4-like
LOC110821406	two-component response regulator ARR2
LOC110821366	COBRA-like protein 7
LOC110821204	extensin-3
LOC110821396	GATA transcription factor 15-like
LOC110821380	importin subunit alpha-2
LOC110821286	uncharacterized protein
LOC110821285	zinc finger protein 7-like
LOC110821284	uncharacterized protein
LOC110821465	transcription factor MYB111
LOC110821495	AMSH-like ubiquitin thioesterase 3
LOC110821417	putative pentatricopeptide repeat-containing protein
LOC110821364	serine/threonine-protein phosphatase 4 regulatory subunit 3
LOC110821365	outer envelope pore protein 16-2, chloroplastic
LOC110821494	zinc finger CCHC domain-containing protein 10
LOC110821224	DNA-directed RNA polymerases II, IV and V subunit 9B
LOC110821283	bromodomain and WD repeat-containing protein 1
LOC110821246	basic leucine zipper 1-like
LOC110821245*	bifunctional TENA-E protein
LOC110821244	nicotianamine synthase-like
LOC110821243	DELLA protein RGL2-like
LOC110821242	ubiquitin-conjugating enzyme E2 32
LOC110821241	INO80 complex subunit B
LOC110821534	universal stress protein PHOS32
LOC110821535	aldehyde dehydrogenase 22A1
LOC110821533	uncharacterized protein
LOC110821480	peptidyl-prolyl cis-trans isomerase CYP21-4
LOC110821282	probable N-acetyltransferase HLS1-like
LOC110821463	protein high chlorophyll fluorescent 107
LOC110821339	FIP1[III]-like protein
LOC110821281	TPD1 protein homolog 1-like
LOC110821217	receptor-like protein kinase ANXUR2
LOC110821552	uncharacterized protein
LOC110821399	ATP-citrate synthase beta chain protein 2
LOC110821280	phytochrome B-like
LOC110821369	probable serine/threonine-protein kinase DDB_G0282963
LOC110821219	huntingtin-interacting protein K
LOC110821279	glycine-rich cell wall structural protein-like
LOC110821536	putative ubiquitin-conjugating enzyme E2 38
LOC110821347	probable protein phosphatase 2C 42
LOC110821446	uncharacterized protein

Gene locus	DESCRIÇÃO
LOC110821493	60S ribosomal protein L7a-1
LOC110821499	calmodulin
LOC110821498	DNA replication complex GINS protein SLD5
LOC110821524	transcription factor bHLH148-like
LOC110821391	40S ribosomal protein S21-2
LOC110821261	flowering time control protein FCA-like
LOC110821262	probable WRKY transcription factor 48
LOC110821264	LOW QUALITY PROTEIN: peroxidase 40
LOC110821453	probable prefoldin subunit 3
LOC110821453	probable prefoldin subunit 3

APÊNDICE P — Genes identificados em uma região de 400 kpb em relação ao SNP 163_297115_LG4, associado ao QTL FE_4_2@350.0 (%Var = 22,28) identificado em população segregante F_2 de mamão.

Gene locus	DESCRIÇÃO
LOC110807708	protein NRT1/ PTR FAMILY 5.5
LOC110807709	lactosylceramide 4-alpha-galactosyltransferase-like
LOC110807710	RNA polymerase II C-terminal domain phosphatase-like 2
LOC110807712	putative tRNA (cytidine(32)/guanosine(34)-2'-O)-methyltransferase
LOC110807714	probable aquaporin PIP1-2
LOC110807715	sulfoquinovosyl transferase SQD2
LOC110807716	mitochondrial inner membrane protease subunit 2
LOC110807718	26S proteasome non-ATPase regulatory subunit 7 homolog A-like
LOC110807720	putative serine/threonine-protein kinase
LOC110807721	histone H2B-like
LOC110807724	uncharacterized acetyltransferase At3g50280
LOC110807725	uncharacterized LOC110807725
LOC110807726	josephin-like protein
LOC110807729	putative protein TPRXL
LOC110807731	uncharacterized LOC110807731
LOC110807732	type I inositol polyphosphate 5-phosphatase 8
LOC110807733	putative uncharacterized protein DDB_G0274405
LOC110807734	chlorophyll a-b binding protein CP29.1, chloroplastic
LOC110807735	glycerol-3-phosphate 2-O-acyltransferase 6

APÊNDICE Q — Genes identificados em uma região de 400 kpb em relação ao SNP 14_1604543_LG1, associado ao QTL FI_14_10@17.5 (%Var = 17,89) identificado em população segregante F₂ de mamão

Gene locus	DESCRIÇÃO
LOC110820225	probable galacturonosyltransferase 13
LOC110820303	membrane-anchored ubiquitin-fold protein 1
LOC110820125	chaperone protein ClpB3, chloroplastic-like
LOC110820126	pentatricopeptide repeat-containing protein
LOC110820127	uncharacterized protein
LOC110820264	EID1-like F-box protein 2
LOC110820128	
LOC110820113	LOW QUALITY PROTEIN: uncharacterized protein
LOC110820114	uncharacterized protein
LOC110820266	uncharacterized protein
LOC110820129	cyclic nucleotide-gated ion channel 2-like
LOC110820270	cyclic nucleotide-gated ion channel 2
100110820224	phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein-
200110020224	tyrosine-phosphatase PTEN1
LOC110820104	probable ubiquitin conjugation factor E4
LOC110820307	tRNA (guanosine(18)-2'-O)-methyltransferase
100110820223	probable mitochondrial saccharopine dehydrogenase-like
200110020225	oxidoreductase
LOC110820222	pentatricopeptide repeat-containing protein
LOC110820134*	serine/threonine-protein kinase STE7 homolog
LOC110820299	
LOC110820115	uncharacterized protein
LOC110820221	transmembrane protein 230
LOC110820220	SNF1-related protein kinase catalytic subunit alpha KIN10
LOC110820090	ethylene-responsive transcription factor CRF6-like
LOC110820258	
LOC110820149	glutamate receptor 2.5-like
LOC110820219	uncharacterized protein
LOC110820130	uncharacterized protein
LOC110820286	CSC1-like protein HYP1
LOC110820285	ARF guanine-nucleotide exchange factor GNOM-like

APÊNDICE R — Genes identificados em uma região de 25,7 kpb em relação ao SNP 731_3422_Un, associado ao QTL FE_13_8@127.5 (%Var = 22,00) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110817639	LEC14B homolog
LOC110817659	pentatricopeptide repeat-containing protein At2g30780
LOC110817676	gibberellin receptor GID1B-like

APÊNDICE S — Genes identificados em uma região de 18,5 kpb em relação ao SNP 1183_495_Un, associado ao QTL ESP_2_4@112.5 (%Var = 20,03) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110812430	DNA excision repair protein ERCC-1
LOC110812438	E3 ubiquitin-protein ligase ATL6-like
LOC110812448	uncharacterized LOC110812448

APÊNDICE T — Genes identificados em uma região de 219 kpb em relação ao SNP 77_19179_LG2, associado ao QTL NFC_2_1@101.2 (%Var = 20,06) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110812474	uncharacterized LOC110812474
LOC110812476	uncharacterized LOC110812476
LOC110812479	pathogen-related protein-like
LOC110812492	uroporphyrinogen decarboxylase 1, chloroplastic
LOC110812493	polynucleotide 3'-phosphatase ZDP
LOC110812494	protein DOG1-like 4
LOC110812495	anaphase-promoting complex subunit 6
LOC110812520	pathogen-related protein-like
LOC110812522	axial regulator YABBY 5-like
LOC110812535	protein LIGHT-DEPENDENT SHORT HYPOCOTYLS 7
LOC110812537	alpha-1,3/1,6-mannosyltransferase ALG2
LOC110812540	uncharacterized LOC110812540
LOC110812551	tubby-like F-box protein 7
LOC110812557	axial regulator YABBY 5-like
LOC110812558	multiprotein-bridging factor 1b
LOC110812569	EP1-like glycoprotein 2
LOC110812576	uncharacterized LOC110812576

APÊNDICE U — Genes identificados em uma região de 467,6 kpb em relação ao SNP 157_123015_LG6, associado ao QTL FE_8_4@154.9 (%Var = 23,22) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110807906	pentatricopeptide repeat-containing protein At4g14190, chloroplastic
LOC110807907	non-specific lipid-transfer protein 1-like
LOC110807908	uncharacterized LOC110807908
LOC110807912	protein TIC 22-like, chloroplastic
LOC110807913	xyloglucan endotransglucosylase/hydrolase 2
LOC110807914	peptidyl-prolyl cis-trans isomerase FKBP62-like
LOC110807915	15-cis-phytoene desaturase, chloroplastic/chromoplastic
LOC110807916	uncharacterized LOC110807916
LOC110807917	crocetin glucosyltransferase, chloroplastic
LOC110807918	non-specific lipid-transfer protein 1-like
LOC110807920	non-specific lipid-transfer protein 1-like
LOC110807921	non-specific lipid-transfer protein 1-like
LOC110807922	protein transport protein SEC23
LOC110807923	protein TIC 22-like, chloroplastic
LOC110807924	protein PRD1
LOC110807928	selenium-binding protein 1-like
LOC110807929	adenosylhomocysteinase
LOC110807930	probable glucan endo-1,3-beta-glucosidase A6
LOC110807931	probable acyl-activating enzyme 16, chloroplastic
LOC110807932	protein RALF-like 24
LOC110807933	splicing regulatory glutamine/lysine-rich protein 1
LOC110807935	receptor-like kinase TMK4
LOC110807938	probable xyloglucan galactosyltransferase GT14
LOC110807940	flavonoid 3',5'-hydroxylase 2-like
LOC110807941	non-specific lipid-transfer protein 1-like
LOC110807946	uncharacterized LOC110807946
LOC110807948	transcription factor bHLH78-like
LOC110807949	heat stress transcription factor A-5
LOC110807950	DNA topoisomerase 3-beta
LOC110807951	DNA repair protein RAD50
LOC110807952	serine hydroxymethyltransferase 4
LOC110807954	Werner Syndrome-like exonuclease
LOC110807955	UDP-glucuronate 4-epimerase 6
LOC110807956	glycine-rich RNA-binding protein 2, mitochondrial-like
LOC110807957*	kinesin-like protein KIN-12B
LOC110807958	cysteine proteinase inhibitor B
LOC110807959	40S ribosomal protein S8-like
LOC110807961	calcium-dependent protein kinase 34
LOC110807962	pentatricopeptide repeat-containing protein At4g14050, mitochondrial
LOC110807966	probable xyloglucan galactosyltransferase GT14

Gene locus	DESCRIÇÃO
LOC110807967	rhodanese-like/PpiC domain-containing protein 12, chloroplastic
LOC110807968	histidine protein methyltransferase 1 homolog
LOC110807969	COP9 signalosome complex subunit 8
LOC110807971	splicing factor 3B subunit 6-like protein
LOC110807909	ABC transporter G family member 23
LOC110807911	uncharacterized LOC110807911
LOC110807925	hydroxyproline O-arabinosyltransferase 3-like
LOC110807926	uncharacterized LOC110807926
LOC110807934	rho GTPase-activating protein 7
LOC110807936	protein CLT1, chloroplastic
LOC110807939	uncharacterized LOC110807939
LOC110807942	annexin D8
LOC110807944	protein PATRONUS 2
LOC110807960	non-specific phospholipase C2
LOC110807964	protein SMG7
LOC110807965	AT-hook motif nuclear-localized protein 17-like

APÊNDICE V — Genes identificados em uma região de 400 kpb em relação ao SNP 18_1663218_LG5, associado ao QTL NNSF_10_8@227.5 (%Var = 16,23) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110819409	histone deacetylase complex subunit SAP18
LOC110819421	transcription factor TCP9
LOC110819447	lysophospholipid acyltransferase LPEAT2
LOC110819457	polygalacturonate 4-alpha-galacturonosyltransferase-like
LOC110819479	pentatricopeptide repeat-containing protein At2g44880
LOC110819494	CRS2-associated factor 1, mitochondrial
LOC110819528*	SPX domain-containing membrane protein At4g22990-like
LOC110819531	peroxisome biogenesis protein 16
LOC110819559	subtilisin-like protease SBT4.14
LOC110819560	subtilisin-like protease SBT4.14
LOC110819561	maturase K-like
LOC110819563	extensin-3-like
LOC110819564	phospholipase D beta 1-like
LOC110819602	ATPase GET3
LOC110819614	subtilisin-like protease SBT1.1
LOC110819619	ubiquitin-related modifier 1 homolog 2

APÊNDICE W — Genes identificados em uma região de 433 kpb em relação ao SNP 129_404685_LG2, associado ao QTL ESP_1_1@347.4 (%Var = 17,36) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110809025	COMPASS-like H3K4 histone methylase component WDR5A
LOC110809026	inactive LRR receptor-like serine/threonine-protein kinase BIR2
LOC110809028	pentatricopeptide repeat-containing protein At3g49710
LOC110809029	uncharacterized protein At3g49720
LOC110809031	leucine-rich repeat receptor-like serine/threonine-protein kinase
LOC110809036	tubulin alpha chain
LOC110809037	DUF21 domain-containing protein At2g14520-like
LOC110809040	probable sphingolipid transporter spinster homolog 2
LOC110809051	uncharacterized LOC110809051
LOC110809052	probable starch synthase 4, chloroplastic/amyloplastic
LOC110809053	probable sphingolipid transporter spinster homolog 2
LOC110809054	kinesin-like protein KIN-8B
LOC110809055	pentatricopeptide repeat-containing protein At3g24000
LOC110809056	transcription factor bHLH25-like
LOC110809057	probable hexokinase-like 2 protein
LOC110809058	uncharacterized LOC110809058
LOC110809060	protein CROWDED NUCLEI 4
LOC110809061	transcription factor RAX3-like
LOC110809062	GTP-binding protein At3g49725, chloroplastic
LOC110809063	AP2-like ethylene-responsive transcription factor ANT
LOC110809064	(E,E)-geranyllinalool synthase-like
LOC110809067	tRNA-dihydrouridine(20) synthase [NAD(P)+]-like
LOC110809068	protein RMD5 homolog A-like
LOC110809069	pentatricopeptide repeat-containing protein At3g49740
LOC110809070	putative pentatricopeptide repeat-containing protein At5g65820
LOC110809071	squalene epoxidase 3-like
LOC110809076	phosphoenolpyruvate carboxykinase (ATP)-like
LOC110809077	uncharacterized LOC110809077
LOC110809078	EPIDERMAL PATTERNING FACTOR-like protein 2
LOC110809080	probable xyloglucan endotransglucosylase/hydrolase protein 6
LOC110809083	dentin sialophosphoprotein-like
LOC110809084	cysteine desulfurase, mitochondrial
LOC110809086	malate dehydrogenase, glyoxysomal
LOC110809087	lysosomal Pro-X carboxypeptidase
LOC110809088	transcription factor bHLH25-like
LOC110809089	1-aminocyclopropane-1-carboxylate synthase 9-like
LOC110809090	branched-chain amino acid aminotransferase 2, chloroplastic-like
LOC110809098*	cytochrome c oxidase subunit 6a, mitochondrial
LOC110809100	homeobox-leucine zipper protein HAT22-like
LOC110809101	E3 ubiquitin-protein ligase FANCL
LOC110809103	ubiquitin-conjugating enzyme E2 1-like

APÊNDICE X — Genes identificados em uma região de 400 kpb em relação ao SNP 79_225223_LG2, associado ao QTL NNSF_2_1@303.8 (%Var = 16,38) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110812349	uncharacterized protein At4g10930
LOC110812353	probable inactive ATP-dependent zinc metalloprotease FTSHI 1, chloroplastic
LOC110812357	uncharacterized LOC110812357
LOC110812358	protein ABIL2-like
LOC110812371	3-oxoacyl-[acyl-carrier-protein] synthase I, chloroplastic-like
LOC110812379	uncharacterized LOC110812379
LOC110812388	26S proteasome non-ATPase regulatory subunit 8 homolog A
LOC110812392	uncharacterized protein slp1

APÊNDICE Y — Genes identificados em uma região de 400 kpb em relação ao SNP 14_561074_LG1, associado ao QTL NNSF_11_10@5.0 (%Var = 16,31) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110820087	THO complex subunit 7A-like
LOC110820095	AAA-ATPase ASD, mitochondrial-like
LOC110820100	putative rRNA methyltransferase YlbH
LOC110820102	uncharacterized protein YtfP
LOC110820103	mitochondrial import inner membrane translocase subunit PAM16 like 2-like
LOC110820105	uncharacterized LOC110820105
LOC110820106*	putative pentatricopeptide repeat-containing protein At3g28640
LOC110820119	probable serine/threonine-protein kinase PIX7
LOC110820136	uncharacterized LOC110820136
LOC110820137	AP2-like ethylene-responsive transcription factor At1g79700
LOC110820139	beta-glucuronosyltransferase GlcAT14B-like
LOC110820145	auxin efflux carrier component 8
LOC110820152	protein CLP1 homolog
LOC110820155	serine/threonine-protein kinase D6PKL2
LOC110820171	uncharacterized WD repeat-containing protein alr3466-like
LOC110820202	probable pectate lyase 19
LOC110820203	plasma membrane ATPase 2-like
LOC110820204	pentatricopeptide repeat-containing protein At5g39980, chloroplastic
LOC110820207	probable prolyl 4-hydroxylase 7
LOC110820260	uncharacterized LOC110820260
LOC110820269	thioredoxin H2
LOC110820273	V-type proton ATPase subunit d2
LOC110820275	probable inactive receptor kinase At1g27190
LOC110820276	uncharacterized LOC110820276
LOC110820280	plant cysteine oxidase 2
LOC110820290	uncharacterized LOC110820290
LOC110820300	type IV inositol polyphosphate 5-phosphatase 7-like

APÊNDICE Z — Genes identificados em uma região de 400 kpb em relação ao SNP 65_485044_Un, associado ao QTL NNSF_6_6@105.0 (%Var = 21,85) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110813331	uncharacterized LOC110813331
LOC110813339	transcription factor TCP19-like
LOC110813340	transcription factor PCF2-like
LOC110813341	transcription factor TCP21-like
LOC110813342	P-loop NTPase domain-containing protein LPA1 homolog 1
LOC110813343	acyl-acyl carrier protein thioesterase ATL3, chloroplastic-like
LOC110813345	acyl-acyl carrier protein thioesterase ATL3, chloroplastic-like
LOC110813346	uncharacterized LOC110813346
LOC110813347	uncharacterized LOC110813347
LOC110813348	chaperone protein dnaJ 15
LOC110813349	zinc finger protein BRUTUS-like
LOC110813370	RNA polymerase I termination factor
LOC110813371	phosphatidylinositol N-acetylglucosaminyltransferase subunit A
LOC110813381	ruBisCO large subunit-binding protein subunit alpha
LOC110813387	4-coumarateCoA ligase-like 7
LOC110813388	lactoylglutathione lyase
LOC110813391	probable protein phosphatase 2C 15
LOC110813393	nicotinamide adenine dinucleotide transporter 1, chloroplastic
LOC110813396	uncharacterized LOC110813396
LOC110813401	uncharacterized LOC110813401
LOC110813402	universal stress protein A-like protein
LOC110813404	4-coumarateCoA ligase-like 7
LOC110813405	high affinity nitrate transporter 2.6-like
LOC110813410	uncharacterized LOC110813410
LOC110813416	uncharacterized LOC110813416
LOC110813418	cell division cycle protein 48 homolog
LOC110813423	protein NtpR-like
LOC110813428	uncharacterized LOC110813428
LOC110813429	leaf rust 10 disease-resistance locus receptor-like protein kinase-like
LOC110813430	protein ROOT INITIATION DEFECTIVE 3
LOC110813431	protein-lysine methyltransferase METTL21D
LOC110813444	high affinity nitrate transporter 2.4
LOC110813445	transcription factor RAX2-like
LOC110813450	zinc finger protein GIS3
LOC110813455	transcription factor bHLH/5
LOC110813459	probable leucine-rich repeat receptor-like protein kinase At1g68400
LOC110813461	405 ribosomai protein S20-2
LOC110813470	transcription factor SPATULA
LOC110813471	reticuion-like protein B8
LOC110813472	pentatricopeptide repeat-containing protein At2g28050
LUUIIU0I34/4	
	alpha-L-Iucosidase 1
LUCT10813476	DEAD-box ATP-dependent RIVA nelicase 42

APÊNDICE AA — Genes identificados em uma região de 467,6 kpb em relação ao SNP 157_169542_LG6, associado ao QTL DC_6_4@152.5 (%Var = 17,65) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110807906	pentatricopeptide repeat-containing protein At4g14190, chloroplastic
LOC110807907	non-specific lipid-transfer protein 1-like
LOC110807908	uncharacterized LOC110807908
LOC110807912	protein TIC 22-like, chloroplastic
LOC110807913	xyloglucan endotransglucosylase/hydrolase 2
LOC110807914	peptidyl-prolyl cis-trans isomerase FKBP62-like
LOC110807915	15-cis-phytoene desaturase, chloroplastic/chromoplastic
LOC110807916*	uncharacterized LOC110807916
LOC110807917	crocetin glucosyltransferase, chloroplastic
LOC110807918	non-specific lipid-transfer protein 1-like
LOC110807920	non-specific lipid-transfer protein 1-like
LOC110807921	non-specific lipid-transfer protein 1-like
LOC110807922	protein transport protein SEC23
LOC110807923	protein TIC 22-like, chloroplastic
LOC110807924	protein PRD1
LOC110807928	selenium-binding protein 1-like
LOC110807929	Adenosylhomocysteinase
LOC110807930	probable glucan endo-1,3-beta-glucosidase A6
LOC110807931	probable acyl-activating enzyme 16, chloroplastic
LOC110807932	protein RALF-like 24
LOC110807933	splicing regulatory glutamine/lysine-rich protein 1
LOC110807935	receptor-like kinase TMK4
LOC110807938	probable xyloglucan galactosyltransferase GT14
LOC110807940	flavonoid 3',5'-hydroxylase 2-like
LOC110807941	non-specific lipid-transfer protein 1-like
LOC110807946	uncharacterized LOC110807946
LOC110807948	transcription factor bHLH78-like
LOC110807949	heat stress transcription factor A-5
LOC110807950	DNA topoisomerase 3-beta
LOC110807951	DNA repair protein RAD50
LOC110807952	serine hydroxymethyltransferase 4
LOC110807954	Werner Syndrome-like exonuclease
LOC110807955	UDP-glucuronate 4-epimerase 6
LOC110807956	glycine-rich RNA-binding protein 2, mitochondrial-like
LOC110807957	kinesin-like protein KIN-12B
LOC110807958	cysteine proteinase innibitor B
LOC110807959	40S ribosomal protein S8-like
LOC110807961	calcium-dependent protein kinase 34
LOC110807962	pentatricopeptide repeat-containing protein At4g14050, mitochondrial
LOC11080/966	probable xylogiucan galactosyltransferase G I 14
	modanese-like/PpiC domain-containing protein 12, chioroplastic
	nisticine protein metnyitransferase 1 nomolog
	COPS signalosome complex subunit 8
	Splicing factor 3B subunit 6-like protein
LOC110807909	ABC transporter G family member 23

Gene locus	DESCRIÇÃO
LOC110807911	uncharacterized LOC110807911
LOC110807925	hydroxyproline O-arabinosyltransferase 3-like
LOC110807926	uncharacterized LOC110807926
LOC110807934	rho GTPase-activating protein 7
LOC110807936	protein CLT1, chloroplastic
LOC110807939	uncharacterized LOC110807939
LOC110807942	annexin D8
LOC110807944	protein PATRONUS 2
LOC110807960	non-specific phospholipase C2
LOC110807964	protein SMG7
LOC110807965	AT-hook motif nuclear-localized protein 17-like

APÊNDICE BB — Genes identificados em uma região de 292 kpb em relação ao SNP 27_92703_LG7, associado ao QTL DC_7_5@285.0 (%Var = 24,38) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110817752	homeobox-DDT domain protein RLT1
	putative leucine-rich repeat receptor-like serine/threonine-protein
LOCITOTITIO	kinase At2g14440
LOC110817779	probable ubiquitin-conjugating enzyme E2 24
LOC110817780	probable ubiquitin-conjugating enzyme E2 24
LOC110817806	protein E6-like
LOC110817807	uncharacterized LOC110817807
	protein NUCLEAR FUSION DEFECTIVE 6,
	chloroplastic/mitochondrial-like
LOC110817810	triose phosphate/phosphate translocator TPT, chloroplastic
LOC110817824	vesicle-fusing ATPase
LOC110817834	uncharacterized protein At4g28440-like
LOC110817845	uncharacterized LOC110817845
LOC110817846	uncharacterized LOC110817846
LOC110817847	linoleate 13S-lipoxygenase 3-1, chloroplastic-like
LOC110817852	uncharacterized LOC110817852
LOC110817868	ethylene-responsive transcription factor 12
LOC110817902	uncharacterized LOC110817902
LOC110817911	pentatricopeptide repeat-containing protein At5g04780-like
LOC110817912*	MACPF domain-containing protein NSL1
LOC110817922	TMV resistance protein N-like
LOC110817923	glycogen phosphorylase 1-like
LOC110817957	50S ribosomal protein L21, mitochondrial
LOC110817958	dnaJ protein homolog 1-like
LOC110817968	ethylene-responsive transcription factor 4

APÊNDICE CC — Genes identificados em uma região de 400 kpb em relação ao SNP 126_371146_Un, associado ao QTL AP_15_5@230.6 (%Var = 22,02) identificado em população segregante F_2 de mamão

Gene locus	DESCRIÇÃO
LOC110809244	uncharacterized LOC110809244
LOC110809245	F-box/LRR-repeat protein 15
LOC110809246	small nuclear ribonucleoprotein E-like
LOC110809247	uncharacterized LOC110809247
LOC110809249	probable 28S rRNA (cytosine-C(5))-methyltransferase
LOC110809250	17.1 kDa class II heat shock protein-like
LOC110809251	omega-amidase, chloroplastic
LOC110809254	uncharacterized LOC110809254
LOC110809258	thermospermine synthase ACAULIS5
LOC110809259	uncharacterized LOC110809259
LOC110809262	transcription factor MYB114-like
LOC110809263	cytokinin dehydrogenase 7
LOC110809264	protein BIG GRAIN 1-like B
LOC110809265	mechanosensitive ion channel protein 10
LOC110809271	transcription factor MYB114-like
LOC110809272	serine/threonine-protein kinase STY46-like
LOC110809273	uncharacterized LOC110809273
LOC110809274	probable WRKY transcription factor 50
LOC110809275	uncharacterized LOC110809275
LOC110809277	copper-transporting ATPase PAA2, chloroplastic
LOC110809278	NAD(P)H-quinone oxidoreductase subunit U, chloroplastic
LOC110809279	peroxisome biogenesis factor 10
LOC110809280	ylmG homolog protein 2, chloroplastic
LOC110809282	40S ribosomal protein S3-3-like
LOC110809283	trihelix transcription factor GTL1-like
LOC110809284	17.1 kDa class II heat shock protein-like