PEG INDUZ A MATURAÇÃO DE CALOS EMBRIOGÊNICOS DE Passiflora edulis Sims 'UENF Rio Dourado' PELA MODULAÇÃO DO CONTEÚDO ENDÓGENO DE POLIAMINAS LIVRES E ALTERAÇÕES NO ACÚMULO DIFERENCIAL DE PROTEÍNAS

KALIANE ZAIRA CAMACHO MAXIMIANO DA CRUZ

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO – UENF

> CAMPOS DOS GOYTACAZES – RJ FEVEREIRO – 2022

PEG INDUZ A MATURAÇÃO DE CALOS EMBRIOGÊNICOS DE Passiflora edulis Sims 'UENF Rio Dourado' PELA MODULAÇÃO DO CONTEÚDO ENDÓGENO DE POLIAMINAS LIVRES E ALTERAÇÕES NO ACÚMULO DIFERENCIAL DE PROTEÍNAS

KALIANE ZAIRA CAMACHO MAXIMIANO DA CRUZ

"Tese apresentada ao Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Doutora em Genética e Melhoramento de Plantas."

Orientador: Prof. Dr. Vanildo Silveira

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO – UENF

> CAMPOS DOS GOYTACAZES – RJ FEVEREIRO – 2022

FICHA CATALOGRÁFICA

UENF - Bibliotecas

Elaborada com os dados fornecidos pela autora.

C957 Cruz, Kaliane Zaira Camacho Maximiano da.

PEG INDUZ A MATURAÇÃO DE CALOS EMBRIOGÊNICOS DE Passiflora edulis Sims 'UENF Rio Dourado' PELA MODULAÇÃO DO CONTEÚDO ENDÓGENO DE POLIAMINAS LIVRES E ALTERAÇÕES NO ACÚMULO DIFERENCIAL DE PROTEÍNAS / Kaliane Zaira Camacho Maximiano da Cruz. - Campos dos Goytacazes, RJ, 2022.

106 f. : il. Bibliografia: 54 - 70.

Tese (Doutorado em Genética e Melhoramento de Plantas) - Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Ciências e Tecnologias Agropecuárias, 2022. Orientador: Vanildo Silveira.

1. *Passiflora edulis*. 2. polietilenoglicol. 3. embriogênese somática. 4. análise proteômica. I. Universidade Estadual do Norte Fluminense Darcy Ribeiro. II. Título.

CDD - 631.5233

PEG INDUZ A MATURAÇÃO DE CALOS EMBRIOGÊNICOS DE Passiflora edulis Sims 'UENF Rio Dourado' PELA MODULAÇÃO DO CONTEÚDO ENDÓGENO DE POLIAMINAS LIVRES E ALTERAÇÕES NO ACÚMULO DIFERENCIAL DE PROTEÍNAS

KALIANE ZAIRA CAMACHO MAXIMIANO DA CRUZ

"Tese apresentada ao Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Doutora em Genética e Melhoramento de Plantas."

Aprovada em 21 de fevereiro de 2022

Comissão Examinadora:

Prof. Wagner Campos Otoni (D.Sc. Genética e Melhoramento) - UFV

Virginia Scawalho . / Prof.ª. Virginia Silva Carvalho (D.Sc. Fitotecnia) - UENF

Prof.ª Claudete Santa-Catarina (D.Sc. Biotecnologia) - UENF

Prof. Vanildo Silveira (D.Sc. Biotecnologia) - (UENF) (Orientador)

DEDICATÓRIA

Aos meus pais, Lindomar e Sueli, pois, em meio a uma vida muito humilde e com dois filhos para criar, eles me deram a oportunidade de ser adotada e, a partir de então, se dedicaram e deram o máximo de si para que eu buscasse um futuro digno.

Aos meus irmãos, Maxuel e Maxiane, por não terem desistido de mim na infância e terem me acolhido como irmã deles.

Dedico e ofereço

AGRADECIMENTOS

A DEUS, pela vida e por ela, ter a força necessária para superar todos os obstáculos, sobretudo nestes últimos anos em relação à saúde e, de modo especial, à luta contra a covid-19.

Ao meu orientador, prof. Dr. Vanildo Silveira, pela confiança, pela orientação, pelo apoio e pela paciência exercida nestes seis anos juntos.

À prof.^a Dra. Claudete Santa Catarina, pela colaboração, pelos ensinamentos e conselhos no desenvolvimento deste trabalho.

Aos meus pais, Lindomar e Sueli, por todo amor, apoio, carinho e confiança ao longo de minha vida. São os maiores inspiradores dos meus sonhos.

Ao meu companheiro, Dr. Antônio André da Silva Alencar, por todo amor, carinho, apoio e cuidado comigo, pela paciência nos momentos de provação e pelo auxílio nos trabalhos de análises estatísticas durante o meu doutorado.

Ao Dr. Felipe Astolpho de Almeida e à Dra. Ellen de Moura Vale, pela amizade, pelo companheirismo, pelo auxílio e pelos conselhos na realização de todas as etapas deste processo de doutoramento.

Ao Me. Renan Carrari dos Santos e à Ma. Rosana Gobbi Vettorazzi, pelo companheirismo e pela parceria nas análises histomorfológicas e análises de poliaminas.

A todos os amigos e docentes antigos e atuais e técnicos do LBT, LBCT e BioInt, pelo companheirismo e pela parceria no dia a dia de trabalho nos laboratórios ao longo destes seis anos.

À coordenação e em especial ao Senhor José Daniel Valle de Almeida, secretário do Programa de Pós-Graduação em Genética e Melhoramento de Plantas, pelo profissionalismo e pela dedicação.

Ao Laboratório de Biotecnologia LBT/ CBB/ UENF e à Unidade de Biologia de Unidade Integrativa BioInt/UENF, pelo apoio e suporte na realização deste trabalho.

Ao Laboratório de Biologia Celular e Tecidual LBCT/ CBB/ UENF, pelo suporte nas análises histomorfológicas e de poliaminas.

À CAPES, pela concessão de bolsa de doutorado.

À FAPERJ e ao CNPq, pelo financiamento dos projetos que viabilizaram direta e indiretamente a condução do projeto.

À Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), pela oportunidade de realização deste trabalho e por oferecer um ensino público, gratuito e de qualidade.

Gostaria de agradecer especialmente à ciência do mundo e do Brasil, pois, em meio à pandemia da covid-19, que ceifou tantas vidas, os cientistas buscaram, com todas as forças e a integração de diversos profissionais de diferentes áreas, a solução, que é a vacina. VACINAS SALVAM VIDAS! Obrigada!

O presente trabalho foi realizado com o apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – "Código de Financiamento 001".

SUMÁRIO

LISTA DE FIGURAS	vii
LISTA DE TABELAS	x
LISTA DE ABREVIATURAS	xi
RESUMO	xii
ABSTRACT	xiv
1. INTRODUÇÃO	1
2. OBJETIVOS	4
2.1. Objetivo geral	4
2.2. Objetivos específicos	4
3. REVISÃO DE LITERATURA	5
3.1. Maracujazeiro	5
3.2. Cultura de tecidos vegetais e embriogênese somática	8
3.3. Embriogênese somática em Passiflora sp	13
3.4. Análise endógena de poliaminas livres (PAs)	14
3.5. Proteômica como ferramenta para estudo da embriogênese so	mática16
4. MATERIAL E MÉTODOS	19
4.1. Material vegetal e assepsia das sementes	19
4.2. Indução à embriogênese somática	20
4.3. Experimento de maturação	20
4.4. Análise histomorfológica	21
4.5. Análise de poliaminas endógenas livres (PAs)	22
4.6. Análise de proteômica	23

4.6.1. Extração e quantificação de proteínas totais23
4.6.2. Digestão de proteínas23
4.6.3. Análise de espectrometria de massas24
4.6.4. Análise dos dados25
4.7. Análise estatística27
5. RESULTADOS
5.1. Efeito do PEG na maturação de embriões somáticos28
5.2. Aspectos histomorfológicos de calos embriogênicos maturados com PEG
6%
5.3. O tratamento PEG 6% induziu a mudança dos conteúdos endógenos de
poliaminas (PAs) durante a maturação de embriões somáticos
5.4. O tratamento PEG 6% induziu o acúmulo diferencial de proteínas (DAPs)
durante a maturação de embriões somáticos32
5.5. Enriquecimento de proteínas nos processos biológicos de calos
embriogênicos de P. edulis 'UENF Rio Dourado' nos tratamentos PEG
6%/Controle aos 14 dias de maturação34
6. DISCUSSÃO
6.1. Efeito do PEG na maturação de embriões somáticos43
6.2. PEG 6% induz mudanças nos conteúdos endógenos de PAs durante a
maturação de embriões somáticos44
6.3. PEG 6% induz o acúmulo diferencial de proteínas durante a maturação
de embriões somáticos45
6.3.1 DAPs associadas ao metabolismo energético nas células45
6.3.2 DAPs relacionadas à fotossíntese e respostas ao estímulo da
luz46
6.3.3 DAPs relacionadas aos estresses e enovelamento de proteínas46
6.3.4 DAPs relacionadas à modificação da parede celular47
6.3.5 DAPs associadas ao processo metabólico celular48
7. CONCLUSÕES
8. RESUMO GRÁFICO
9. CONSIDERAÇÕES FINAIS
REFERÊNCIAS BIBLIOGRÁFICAS
ANEXOS

LISTA DE FIGURAS

Figura 6: Aspectos morfológicos de calos embriogênicos de *P. edulis* 'UENF Rio Dourado' durante a maturação. A) calo embriogênico antes dos tratamentos de maturação (tempo 0) apresentando regiões com células meristemáticas (MC) e

Figura 9: Rede de interação proteína-proteína entre as DAPs de calos embriogênicos de *P. edulis* 'UENF Rio Dourado' aos 14 dias de maturação nos tratamentos PEG 6% comparado ao tratamento Controle. A) Proteínas up-acumuladas em PEG 6%/Controle e proteínas únicas no tratamento PEG 6%. B) Proteínas down-acumuladas em PEG 6%/Controle e proteínas únicas no tratamento Controle. Setas verdes indicam os processos biológicos que foram

LISTA DE TABELAS

LISTA DE ABREVIATURAS

- ABA: Ácido abscísico
- 2,4-D: Ácido.2,4-diclorofenoxiacético
- ANOVA: Análise de variância
- **BA**: 6-benziladenina
- MS: Meio de Cultura Murashige e Skoog
- MC: Células meristemáticas
- NMC: Células não meristemáticas
- PAs: Poliaminas
- Put: Putrescina
- **PEG**: Polietilenoglicol
- Spm: Espermina
- Spd: Espermidina
- TDZ: Tidiazuron

RESUMO

CRUZ, Kaliane Zaira Camacho Maximiano da; Universidade Estadual do Norte Fluminense Darcy Ribeiro; fevereiro de 2022; PEG induz a maturação de calos embriogênicos de *Passiflora edulis* Sims 'UENF Rio Dourado' pela modulação do conteúdo endógeno de poliaminas livres e alterações no acúmulo diferencial de proteínas. Orientador: Dr. Vanildo Silveira; Conselheiros: Dra. Virginia Silva Carvalho e Dr. Gonçalo Apolinário de Souza Filho

A cultura do maracujá azedo (*Passiflora edulis* Sims) tem relevância econômica e social e é uma alternativa viável principalmente para a agricultura familiar. O uso da micropropagação pela embriogênese somática oferece propagação clonal em larga-escala de mudas com alta qualidade fitossanitária. No entanto, o maior gargalo para obtenção dessas mudas é no processo de maturação, onde é necessário que o agente osmótico seja capaz de influenciar no desenvolvimento posterior dos embriões somáticos. O objetivo deste trabalho foi avaliar a influência do polietilenoglicol (PEG) na maturação de embriões somáticos associado ao acúmulo diferencial de proteínas e à mudança no conteúdo endógeno de poliaminas (PAs) durante a embriogênese somáticos foi realizada utilizando calos embriogênicos em Meio de Cultura Murashige e Skoog (MS), suplementando com 6% de PEG (PEG 6%) e sem a suplementação com PEG (Controle). O tratamento PEG 6% promoveu significativamente o maior número de embriões somáticos globulares e cotiledonares aos 14 e 28 dias em relação ao tratamento controle. A

maior formação de embriões somáticos induzida por PEG 6% foi associada ao aumento no conteúdo endógeno de Espermina livre (Spm), uma PA com importante papel no processo de maturação durante a embriogênese somática. Análise de proteômica comparativa de PEG 6%/Controle revelou que o tratamento com PEG 6% induziu o acúmulo de proteínas relacionadas (up-acumuladas) ao processo glicolítico, produção de precursores de metabólitos e energia e resposta a estímulos luminosos. Destaquem-se as proteínas enolase (ENO1), triose fosfato isomerase (TPI), ribulose bisfosfato activase carboxilase/oxigenase, cloroplástica (RCA), gliceraldeído-3-fosfato desidrogenase, cloroplástica (GAPCP-1), succinato desidrogenase [ubiquinona] subunidade 1 de flavoproteína, mitocondrial (SDH1-1), piruvato desidrogenase componente E1 subunidade alfa, mitocondrial (IAR4), ATP sintase CF1 subunidade beta (ATPB), malato desidrogenase [NADP], cloroplástica (AT5G58330) e proteína de ligação de clorofila a-b 21, cloroplástica (LHB1B1). As proteínas down-acumuladas foram relacionadas principalmente ao processo metabólico celular a exemplo da enzima málica dependente de NADP (NADP-ME4), fosfoenolpiruvato carboxilase 2 (PPC1), UDP-glicose 6-desidrogenase 1 e 4 (UGD2) e sacarose sintase 2 isoforma X2 (SSA) e a proteína homóloga 48 ciclo de divisão celular (ATCDC48B). O uso do PEG induziu a maturação e o desenvolvimento de embriões somáticos de P. edulis Sims 'UENF Rio Dourado' pelo acúmulo diferencial de proteínas e modulação dos conteúdos endógenos de PAs.

Palavras-chave: *Passiflora edulis*, Polietilenoglicol, embriogênese somática, análise proteômica

ABSTRACT

CRUZ, Kaliane Zaira Camacho Maximiano da; Universidade Estadual do Norte Fluminense Darcy Ribeiro; February 2022; PEG induces maturation of embryogenic callus of *Passiflora edulis* Sims 'UENF Rio Dourado' by modulating endogenous free polyamine contente and changes in differential protein accumulation. Advisor: Dr. Vanildo Silveira; Counselors: Dr. Virginia Silva Carvalho and Dr. Gonçalo Apolinário de Souza Filho.

Sour passion fruit (*Passiflora edulis* Sims) cultivation has economic and social relevance and is an alternative crop mainly for family farms. The use of micropropagation by somatic embryogenesis provides large scale clonal propagation of seedlings with high phytosanitary quality. The major obstacle to obtain these seedlings, however, is in the maturation process, in which the osmotic agent is required to influence the further development of the somatic embryos. This work evaluated the influence of polyethylene glycol (PEG) on the maturation of somatic embryos associated with differential accumulation of proteins and changes in the endogenous polyamines (PAs) content during somatic embryogenesis of *P. edulis* 'UENF Rio Dourado'. The maturation of somatic embryos was carried out by using embryogenic calli in Murashige and Skoog (MS) culture medium with PEG 6% or without the addition of PEG (Control). When compared to the Control treatment, the PEG 6% had significantly increased the number of globular and cotyledonary somatic embryos at 14 and 28 days. The higher somatic embryo formation induced by PEG 6% was associated with an increase in endogenous content of free

spermine (Spm), a PA with an important role in the maturation process of somatic embryogenesis cultures. Comparative proteomic analysis of PEG 6%/Control revealed that PEG 6% treatment induced the up-accumulation of proteins related to the glycolytic process, generation of metabolite precursors and energy, and response to light stimuli. Worth mentioning are the following proteins: enclase ENO1: triosephosphate isomerase (TPI); ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic (RCA); glyceraldehyde-3-phosphate dehydrogenase GAPCP-1, chloroplastic (GAPCP-1); succinate dehydrogenase [ubiquinone] flavoprotein subunit 1, mitochondrial (SDH1-1); pyruvate dehydrogenase E1 component subunit alpha, mitochondrial (IAR4); ATP synthase CF1 beta subunit (PB); malate dehydrogenase [NADP], chloroplastic (AT5G58330); and chlorophyll a-b binding protein 21, chloroplastic (LHB1B1). The downaccumulated proteins were related mainly to the cellular metabolic process, such as the NADP-dependent malic enzyme (NADP-ME4); phosphoenolpyruvate carboxylase 2 (PPC1); UDP-glucose 6-dehydrogenase 1 and 4 (UGD2) and sucrose synthase 2 isoform X2 (SSA) and cell division cycle protein 48 homolog (ATCDC48B). The use of PEG induced the maturation and development of somatic embryos of *P. edulis* Sims 'UENF Rio Dourado' by the differential accumulation of proteins and modulation of endogenous contents of PAs.

Keywords: *Passiflora edulis*, polyethylene glycol, somatic embryogenesis, proteomic analysis

1. INTRODUÇÃO

A cultura do maracujá-azedo (*Passiflora edulis* Sims) está presente em aproximadamente 90% dos pomares brasileiros devido à sua qualidade, ao seu rendimento e à sua preferência pelo consumidor (Viana et al., 2016). No Brasil, há a ocorrência de mais de 100 espécies endêmicas, sendo considerado como um centro de biodiversidade da família Passifloraceae, servindo como alternativa de cultivo viável, principalmente para a agricultura familiar (Faleiro et al., 2019). Sua cultura tem atingido uma produção anual de 700 mil toneladas (IBGE, 2020).

P. edulis 'UENF Rio Dourado' é uma nova cultivar de maracujá-azedo desenvolvida pelo Programa de Genética e Melhoramento de Plantas da Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), que apresenta características adaptadas ao clima do Norte e Noroeste do estado do Rio de Janeiro (Viana et al., 2016).

A propagação convencional de *P. edulis* ocorre via seminífera (Faleiro et al., 2019), no entanto, abordagens de micropropagação baseadas na cultura de tecidos vegetais têm sido desenvolvidas principalmente para a propagação em larga escala, a produção de plantas com maior qualidade fitossanitária, a conservação de germoplasma, o desenvolvimento de protoplasto, a hibridização somática, a transformação genética e o desenvolvimento de sementes sintéticas (Otoni et al., 2013; Ozarowski e Thiem, 2013; Faleiro et al., 2019).

O primeiro estudo utilizando o cultivo *in vitro* de células e tecidos vegetais com *Passiflora* foi relatado por Nakayama (1966) e envolveu a produção de

segmentos de caule de plantas de *Passiflora caerulea*. Depois de alguns anos, estudos de embriogênese somática também foram realizados no gênero *Passiflora* (Otoni et al., 1995; Anthony et al., 1999; Silva et al., 2009; Paim-Pinto et al., 2011; Rosa et al., 2013; da Silva et al., 2015; Prudente et al., 2017).

A embriogênese somática é uma via morfogenética análoga à embriogênese zigótica, em que uma única célula ou um pequeno grupo de células são precursoras da formação de embriões (Tautorus et al., 1991). O desenvolvimento dos estádios da embriogênese zigótica e da somática são similares, no entanto, em contraste com a embriogênese zigótica, a embriogênese somática permite a diferenciação em embriões somáticos a partir de um conjunto diversificado de tecidos somáticos (Dodeman et al., 1997).

O desenvolvimento normal e a maturação dos embriões somáticos podem ser considerados um dos principais gargalos que limitam a aplicação comercial da embriogênese somática (Márquez-Martín et al., 2011; Mishra et al., 2012; Vale et al., 2014). Durante a fase de maturação, os embriões somáticos necessitam superar complexas mudanças morfológicas e bioquímicas, como o armazenamento de compostos de reserva (Márquez-Martín et al., 2011), a síntese e mobilização de proteínas, carboidratos e lipídios e as alterações de conteúdos endógenos de poliaminas (PAs) (Silveira et al., 2004).

O PEG tem sido usado como promotor de maturação na embriogênese somática em várias espécies, incluindo *Phoenix dactylifera* (Alkhateeb, 2006), *Carica papaya* (Vale et al., 2014; Almeida et al., 2019; Botini et al., 2021), *Pinus sylvestris* (Salo et al., 2016) e *Cicer arietinum* (Mishra et al., 2012). Ele reduz o potencial osmótico do meio de cultura e induz o estresse hídrico nas culturas embriogênicas; apresenta um alto peso molecular (200 a 35.000 g/mol), não sendo capaz de atravessar a parede celular levando à restrição da absorção de água. Reduz a pressão do turgor do potencial osmótico intracelular (Mishra et al., 2012), simulando a dessecação que ocorre durante a formação das sementes (Vale et al., 2014).

O estresse osmótico induzido pelo PEG pode alterar os conteúdos endógenos de alguns compostos, tais como proteínas e PAs. Assim, estudos que investigam os aspectos fisiológicos, bioquímicos e moleculares associados à competência embriogênica e ao desenvolvimento de células embrionárias podem fornecer um forte potencial para identificar moléculas importantes que podem ser usadas para monitorar o desenvolvimento de embriões somáticos e melhorar o entendimento sobre as particularidades do processo de embriogênese somática (Heringer et al., 2018).

Poliaminas foram relatadas por agirem em muitos processos durante a proliferação e diferenciação celular, incluindo a embriogênese (Pal Bais e Ravishankar, 2002; Silveira et al., 2004). As PAs foram estudadas principalmente como rotas importantes para a regeneração de plantas e como um sistema modelo em potencial para estudar eventos regulatórios da morfogênese de plantas *in vitro* (Yadav e Rajam, 1997).

Mais recentemente, tem-se dado atenção à regulação diferencial de proteínas associadas ao desenvolvimento da embriogênese somática (Aguilar-Hernández e Loyola-Vargas, 2018; Heringer et al., 2018). A análise proteômica tem sido considerada uma poderosa ferramenta para examinar as condições fisiológicas e bioquímicas dos tecidos e órgãos vegetais. A regulação diferencial de proteínas nos estádios de desenvolvimento dos embriões somáticos está intimamente relacionada a vários processos celulares, modificação de parede celular e respostas à defesa (Kumaravel et al., 2020).

Assim, a identificação das proteínas diferencialmente acumuladas associadas ao processo de maturação tornou-se uma importante estratégia para entender os mecanismos moleculares relacionados ao desenvolvimento de embriões somáticos e identificar novos candidatos a biomarcadores que poderiam ser usados para desenvolver estratégias a fim de melhorar os protocolos de embriogênese somática (Isah, 2019; Kumaravel et al., 2020; Botini et al., 2021).

2. OBJETIVOS

2.1. Objetivo geral

O objetivo deste trabalho foi avaliar a influência do PEG na maturação de embriões somáticos associados à acumulação diferencial de proteínas e às mudanças nos conteúdos de poliaminas endógenas (PAs) durante a embriogênese somática de *P. edulis* Sims 'UENF Rio Dourado'.

2.2. Objetivos específicos

- a) Determinar o efeito do uso do PEG na formação de embriões somáticos durante a maturação;
- b) Determinar os feitos do PEG na histodiferenciação de embriões somáticos durante a maturação;
- c) Estudar o efeito dos tratamentos PEG 6% e Controle (Sem PEG) no acúmulo endógeno de poliaminas livres (PAs);
- d) Determinar o efeito do PEG na indução do acúmulo diferencial de proteínas durante a maturação.

3. REVISÃO DE LITERATURA

3.1. Maracujazeiro

A família Passifloraceae é originária da África, porém, é na América Central onde ocorre a maior diversidade de espécies (Muschner et al., 2012) A família é composta por aproximadamente 700 espécies com aproximadamente 520 + pertencentes ao gênero *Passiflora* L. (Ulmer et al., 2004; Vieira et al., 2018). Do total de espécies, 153 são nativas do Brasil (Flora do Brasil, 2017) e aproximadamente 130 espécies apresentam potencial econômico devido aos seus frutos (Carmo et al., 2017).

Em geral, as plantas de maracujazeiro são do tipo trepadeiras herbáceas ou lenhosas, com gavinhas axilares, hermafroditas, dioicas ou andromonoicas. Possuem folhas alternas, com estípulas presentes, às vezes decíduas, ou ausentes, pecíolo com ou sem nectários, e lâmina simples, lobada a inteira, ou composta, com ou sem ocelos. As inflorescências são axilares, cimosas ou racemosas, ou reduzidas a 1-2 flores por nó, com flores períginas ou hipóginas, actinomorfas ou zigomorfas. O fruto é do tipo baga ou cápsula 3-4 valvar. As sementes são comprimidas, ariladas, testa óssea, com embrião grande, endosperma oleaginoso e nuclear (Bernacci et al., 2003).

As plantas de maracujazeiro são consideradas alógamas, com ampla variabilidade genética devido principalmente às características florais e aos grãos

de pólen, que são pesados e pegajosos, dificultando a polinização anemófila (polinização pelo vento) e levando à autoincompatibilidade (Bruckner et al., 1995).

Estudos citológicos têm relatado o número básico de cromossomos para o gênero *Passiflora* como sendo x= 6, enquanto x= 9, x= 10 e x= 12 foram considerados números básicos secundários (Silva, 2011). O conteúdo de DNA 2C de algumas espécies de *Passiflora* varia de 1,83 a 5,86 pg, e o tamanho do genoma, entre 896 e 5.252 Mpb (Souza et al., 2008).

No Brasil, as espécies estão distribuídas entre os gêneros Ancistrothyrsus Harms, Dilkea Mast., Mitostemma Mast. e Passiflora L., sendo este último o principal e o mais representativo no País, com 145 espécies descritas (Flora do Brasil, 2017). O seu cultivo tornou-se expressivo na década de 1990 devido aos investimentos em áreas de produção (Meletti, 2011). Tal fato representou uma alternativa agrícola viável para pequenas propriedades por fornecer um rápido retorno econômico (Meletti, 2011).

Com a valorização no preço dos frutos de maracujá, o mercado que antes era voltado estritamente para a industrialização também aderiu ao de consumo *in natura* (Ferraz e Lot, 2007). No fim da década de 90, a cultura do maracujazeiro apresentou um aumento significativo na produção, seguido por um declínio nas décadas seguintes (Tabela 1). Esse comportamento ocorreu em razão dos grandes prejuízos que alguns estados produtores como São Paulo sofreram por conta da elevada incidência de viroses (Meletti, 2011).

Ano	Área colhida (ha)	Produção até 2000 (frutos/ha) a partir 2001 (t)	Rendimento até 2000 (frutos/ha) a partir de 2001 (t/ha)
1990	25.329	2.643.634	104.372
1995	38.522	3.382.243	87.800
2000	33.428	2.762.808	82.650
2005	35.820	479.813	13.40
2010	62.177	922.334	14.83
2015	51.442	704.369	13.69
2019	41.584	593.429	14.27
2020	46.436	690.364	14.867

Tabela 1: Produção e rendimento de maracujá no Brasil no período de 1980-2020. Adaptado para 2020.

Fonte: IBGE, 2020 – Produção agrícola municipal 2020.

Em decorrência do declínio da produção de frutos, em 1999, o Instituto Agronômico lançou e recomendou aos produtores a utilização de sementes de cultivares híbridas, e isto influenciou no surgimento de várias agroindústrias de sucos em diversos estados do País (Meletti e Maia, 1999).

Com o passar dos anos e com o aumento dos investimentos no Brasil, foi possível observar, em 2016, uma produção de 700 mil toneladas com um rendimento de 14,110 t/ha, com concentração de produção nos estados da Bahia (342.780 toneladas), do Ceará (98.122 toneladas) e de Minas Gerais (39.237 toneladas). Nesse mesmo ano, o estado do Rio de Janeiro esteve no décimo sétimo lugar, com uma produção de 5.956 toneladas (IBGE, 2016).

Já em 2020, o Brasil apresentou uma produção de 690.364 toneladas, e o estado do Rio de Janeiro produziu a quantidade de 319 toneladas, caindo drasticamente a produção quando comparada à dos outros anos (IBGE, 2020), o que leva ainda mais à necessidade de alternativas de propagação para a produção em larga escala no estado.

No mercado comercial, as espécies de maracujazeiro são comumente utilizadas por seus frutos e derivados, também por suas propriedades medicinais e plantas ornamentais (de Melo e Guerra, 2003; Pacheco et al., 2016). O uso do maracujazeiro como planta ornamental se deve à diversidade e ao exotismo de suas folhas, flores e frutas; embora seu valor ornamental ainda seja pouco explorado no Brasil, é altamente valioso nos Estados Unidos e em alguns países da Europa (Abreu et al., 2009). O consumo de *P. edulis* é popular devido à qualidade de seu fruto, ao alto vigor híbrido e à produtividade em comparação a outras espécies de *Passiflora* (Jesus et al., 2017).

O melhoramento genético do maracujazeiro teve seu início nos anos 90, baseando-se na estratégia de seleção massal (Faleiro et al., 2005). Este método consiste na escolha de um grande número de indivíduos com características fenotípicas semelhantes, que são colhidos em conjunto para constituir a geração seguinte (Borém e Fritsche-Neto, 2014).

A seleção massal é um dos métodos mais antigos de melhoramento de plantas. A preservação das plantas mais atraentes ou produtivas pelos primeiros agricultores resultou no aumento da frequência de alelos favoráveis. Assim, a principal finalidade deste método de seleção é o aumento da média geral da população por meio da escolha dos melhores fenótipos (Borém e Fritsche-Neto, 2014).

A eficiência da seleção massal enquadra-se nas características de fácil mensuração e que possuem considerável herdabilidade, como características de formato do fruto, teor de sólidos solúveis totais, produtividade e ao vigor híbrido características importantes para a cultura do maracujazeiro (Faleiro et al., 2005). A partir de então, grupos de pesquisa voltados para o melhoramento do maracujazeiro foram surgindo, como exemplo, o grupo de melhoramento de maracujazeiro-azedo da UENF.

O grupo de melhoramento da Universidade iniciou em 1998 com a coleta de genótipos de *P. edulis* Sims em três distintas regiões produtoras do estado do Rio de Janeiro (Viana et al., 2003). Inicialmente, foram realizados delineamentos genéticos apropriados para a obtenção de progênies. Com base nos resultados, optou-se pela elaboração de um grupo de seleção recorrente intrapopulacional de maracujazeiro-azedo (de Morais Silva et al., 2009).

A seleção recorrente é um dos métodos de melhoramento que se destaca pela sua finalidade, ou seja, aumentar a frequência dos alelos favoráveis nas populações, mantendo seu desempenho médio na expressão do caráter e a variabilidade necessária no decorrer dos ciclos de seleção subsequentes (Heinz et al., 2012).

Em 2015, a UENF registrou, junto ao Ministério da Agricultura, Pecuária e Abastecimento (MAPA), na plataforma do Serviço Nacional de Proteção de Cultivar (SNPC), a cv. 'UENF Rio Dourado', pertencente à espécie *P. edulis*.

A cv. 'UENF Rio Dourado' é caracterizada pela presença de frutos grandes (aproximadamente 76 mm) com um conteúdo de sólidos solúveis de 13,50 º Brix e pH de 3,20. Em termos de produtividade, apresenta um valor médio de 250 frutos, um rendimento de 25 toneladas/hectare e um peso de aproximadamente 175 gramas por fruto (Viana et al., 2016).

3.2. Cultura de tecidos vegetais e embriogênese somática

A cultura de tecidos vegetais é uma ferramenta translacional importante para estudos básicos e aplicados. Sua origem pode ser considerada como fruto dos estudos de Haberlandt, em 1902, que sugeriu a possibilidade do cultivo artificial de embriões a partir de células vegetais, baseado na introdução do conceito de totipotência (Krikorian e Berquam, 1969; Thorpe, 1990).

Durante o período compreendido entre 1940 e 1960, estudos avançados acerca da cultura de tecidos foram realizados, desde a erradicação de vírus — a partir da cultura de meristema, da obtenção de células isoladas e das culturas em suspensão — até a obtenção de células a partir de culturas embrionárias. Nesse período, surgiu a maioria das técnicas utilizadas até os dias atuais (Thorpe, 1990, 2007).

Os trabalhos pioneiros em embriogênese somática foram conduzidos por Steward et al. (1958) e Reinert (1958) observando o desenvolvimento de embriões somáticos em suspensões celulares induzidas a partir de tecidos de raiz de cenoura (*Daucus carota*) (Vasil, 2008) e o desenvolvimento de embriões somáticos em *Oenanthe aquatica* por Harry Waris (Krikorian e Kaarina Simola, 1999) confirmando-se a totipotencialidade das células vegetais (Yang e Zhang, 2010). Nos anos 1990, observou-se uma expansão considerável nos estudos e na aplicação da cultura de tecidos para um número crescente de espécies. Esta técnica foi utilizada no cultivo de cereais, gramíneas, leguminosas, frutas tropicais, oleaginosas, espécies florestais e ornamentais (Thorpe, 2007).

A partir de estudos bioquímicos, citogenéticos e moleculares, a cultura de tecidos vegetais também vem permitindo a melhor compreensão do desenvolvimento vegetal na descoberta de substâncias e enzimas de interesse, que geraram outras demandas de pesquisa, assim como propiciou a utilização da técnica para obtenção de plantas geneticamente transformadas (Thorpe, 2007). Neste contexto, a embriogênese somática tem um importante papel para a regeneração de plantas e propagação em larga escala, além de ajudar na compreensão desses aspectos moleculares e fisiológicos da diferenciação de células (Yang e Zhang, 2010).

A embriogênese somática é uma poderosa ferramenta utilizada na biotecnologia de plantas, principalmente como alternativa para a propagação em massa e a melhoria de culturas para aplicação comercial (Kumar e Van Staden, 2017), pois permite a formação de múltiplos embriões geneticamente idênticos, evitando a espera para a seguinte estação reprodutiva (Smertenko e Bozhkov, 2014). A embriogênese somática mostra-se também como um novo modelo de sistema nos métodos agrícolas tradicionais (Smertenko e Bozhkov, 2014; Kumar e Van Staden, 2017) e para estudos bioquímicos, moleculares, morfológicos e fisiológicos (Castro et al., 2010).

A embriogênese somática é um processo análogo à embriogênese zigótica, mas em que uma única célula ou um pequeno grupo de células vegetativas são precursoras de embriões (Tautorus et al., 1991). Neste processo, ocorre o desenvolvimento e a diferenciação dos embriões somáticos sob condições apropriadas de cultivo *in vitro* (Verdeil et al., 2007; Yang e Zhang, 2010; Guan et al., 2016).

A embriogênese somática pode ser dividida nas fases e/ou etapas: indução em meios suplementados com reguladores de crescimento como auxinas e citocininas; multiplicação e; maturação na ausência de reguladores de crescimento e/ou na presença de ácido abscísico (ABA) e agentes osmóticos (Figura 1) (Guerra et al., 1999).

Um dos estímulos mais documentados na literatura para a indução da embriogênese somática é o uso do regulador de crescimento vegetal ácido.2,4diclorofenoxiacético (2,4-D), uma auxina sintética (Dudits et al., 1991; Thorpe e Stasolla, 2001; Fehér et al., 2003). O estresse como um estímulo submetido à célula no processo de indução pode promover a reprogramação gênica necessária para que células somáticas tornem-se células embriogênicas (Verdeil et al., 2007).

Figura 1: Esquema da modulação da embriogênese somática com ciclo de A) multiplicação e B) ciclo de maturação adaptado de (Steiner et al., 2008).

Outros reguladores de crescimento como a 6-benziladenina (BA) vêm sendo utilizados para a regeneração em embriogênese somática, em baixas taxas ou combinados com outras auxinas, em diversas espécies (Chaudhury e Qu, 2000).

Mudanças de caráter epigenético como metilação do DNA, modificações pós-traducionais de histonas e micro RNA (miRNA) regulam o nível de expressão gênica durante a embriogênese somática (Wang e Wang, 2012; Smertenko e Bozhkov, 2014). A exposição à auxina aumenta os níveis de metilação do DNA, levando à divisão e à desdiferenciação celular (von Aderkas e Bonga, 2000).

Portanto, as mudanças dinâmicas na estrutura da cromatina por metilação do DNA na presença de 2,4-D conduzem à reprogramação gênica em células somáticas e são expressas em centenas de genes especificamente necessários para adquirir a competência embriogênica (Karami e Saidi, 2010). O uso do 2,4-D é importante para a indução da aquisição de competência embriogênica; no entanto, seu efeito residual pode afetar negativamente a maturação de embriões somáticos (Reis et al., 2021). Pré-tratamentos de maturação em meio de cultura sem 2,4-D podem ser necessários e resultam numa maior eficiência para a diferenciação dos embriões somáticos associada a um aumento nos níveis endógenos de ABA e com o acúmulo eficaz de reservas de armazenamento (Reis et al., 2021).

Dois mecanismos são importantes para a formação das células embriogênicas: divisão assimétrica e controle da expansão celular (de Jong et al., 1993). A divisão assimétrica é promovida pelos reguladores de crescimento que alteram a polaridade por interferência no gradiente de pH ou o campo elétrico em torno das células (Smith e Krikorian, 1990); já a capacidade de controle da expansão celular está associada a polissacarídeos da parede celular em relação a enzimas hidrolíticas (de Jong et al., 1993; von Arnold et al., 2002).

Na fase de multiplicação ou proliferação da embriogênese somática em geral, o calo embriogênico é mantido em um meio de cultura semelhante ao usado na indução, e o pH é essencial para manter as culturas nesta fase (von Arnold et al., 2002), pois o pH baixo (ácido) é de alguma forma prejudicial para a produção inicial dos pró-embriões (Smith e Krikorian, 1990).

As culturas embriogênicas de algumas espécies e/ou genótipos podem ser subcultivadas por um longo período, mantendo o seu potencial embriogênico, porém a ocorrência de variação somaclonal aumenta com o cultivo prolongado. Dessa forma, as culturas embriogênicas não devem ultrapassar o período de seis meses de cultivo, sendo que, a partir do estabelecimento das células embriogênicas, é possível criopreservá-las para estudos futuros (von Arnold et al., 2002). Sucessivos subcultivos de calos embriogênicos de cana-de-açúcar em meio de cultura com 2,4-D resultam na diminuição da competência embriogênica, além da redução dos níveis de PAs, que são consideradas fatores importantes para a manutenção da competência embriogênica (Passamani et al., 2020).

A ontogênese dos embriões somáticos representa um passo importante para a organização e o desenvolvimento embrionário (von Arnold et al., 2002). A fase de maturação é marcada pelas alterações morfológicas e bioquímicas, com a expansão dos órgãos de armazenamento e os cotilédones. Concomitantemente, ocorre a repressão da germinação e a aquisição de tolerância à dessecação (Thomas, 1993). O período da maturação e a qualidade dos embriões somáticos são fatores limitantes para que ocorra a conversão dos embriões somáticos em plântulas (Guan et al., 2016).

As substâncias mais usadas para promover a maturação de embriões somáticos são o ABA, os agentes osmóticos como o PEG, os carboidratos e o carvão ativado (Thorpe, 1990; Pan e Van Staden, 1998; von Arnold et al., 2002; Lakshmanan et al., 2005). Nesta fase, é importante que o agente osmótico seja capaz de influenciar o desenvolvimento posterior dos embriões somáticos, possibilitando que a desidratação não afete o sucesso da germinação do embrião (von Arnold et al., 2002).

O ABA é um agente importante para o estímulo à maturação, provocando mudanças morfológicas no padrão de expressão gênica e no metabolismo de substâncias de reserva (Salajova et al., 1999), o que leva ao desenvolvimento normal dos embriões somáticos e à sua conversão em plântula em várias espécies (Stasolla e Yeung, 2003).

O PEG é um agente osmótico não plasmolizante, que apresenta alta densidade e não penetra nas células vegetais (Svobodová et al., 1999). Em suma, a adição no meio de cultura reduz a disponibilidade de água, simulando as condições de desenvolvimento do embrião zigótico, que promove a diferenciação celular (Stasolla e Yeung, 2003).

3.3. Embriogênese somática em Passiflora sp.

O primeiro relato sobre a indução da embriogênese somática no gênero *Passiflora* sp. foi por meio do estabelecimento de suspensões celulares derivadas de explantes foliares de *Passiflora giberti* suplementados com picloram (Otoni et al., 1995). Essas suspensões celulares obtidas foram utilizadas para estabelecer um protocolo de regeneração a partir de protoplastos isolados (Otoni et al., 1995; Anthony et al., 1999). Posteriormente, embriões zigóticos de *P. cincinnata* foram utilizados como explante para a obtenção de embriões somáticos utilizando combinações de 2,4-D e BA (Silva et al., 2009).

Outros trabalhos empregando o protocolo proposto por Silva et al. (2009) foram realizados com diferentes intuitos, mostrando evidências histoquímicas e histocitológicas de *P. cincinnata* (Rocha et al., 2012), estudo de comparação das respostas morfogenéticas em diferentes espécies de *Passiflora* sp. (*P. edulis* população Araguari "FB100", *P. alata, P. crenata, P. foetida, P. giberti* (Rosa et al., 2014) e estudos para a obtenção de embriões somáticos nos diferentes estádios de desenvolvimento até a regeneração em plantas de *P. miniata* e *P. speciosa* (Ferreira et al., 2015).

Para o estudo de embriogênese somática da espécie *P. edulis*, alguns trabalhos encontrados na literatura propuseram um protocolo de regeneração como o uso de embriões zigóticos de três populações de Araguari "FB100", "FB200" e "FB300", os quais foram submetidos a altas concentrações de 2,4-D combinado com BA e obtiveram a indução em embriões somáticos (Paim-Pinto et al., 2011). Outra proposta foi usar embriões zigóticos da população "FB300" e submetê-los a diferentes concentrações de picloram, BA e tidiazuron (TDZ), o que possibilitou a indução de embriões somáticos até o estádio globular. Posteriormente, os autores caracterizaram a evolução histoquímica e análise histomorfológica nesse estádio. Observaram a formação de estruturas arredondas e organizadas, citoplasma denso e alta porção nuclear apoiando a presença de embriões globulares. Ao mesmo tempo, durante a evolução histoquímica, puderam observar que compostos proteicos de reserva são utilizados para a formação desses embriões globulares (da Silva et al., 2015).

3.4. Análise endógena de poliaminas livres (PAs)

As PAs são compostos policatiônicos e alifáticos de baixo peso molecular que carregam cargas positivas de átomos de nitrogênio, possibilitando a interação eletrostática com macromoléculas como o DNA, RNA, fosfolipídios, componentes de parede celular e proteínas (Wallace et al., 2003; Baron e Stasolla, 2008).

As PAs ocorrem na forma livre ou conjugada e estão presentes em todos os organismos, como bactérias, animais, fungos e plantas, sendo responsáveis pela mediação de processos celulares e fisiológicos (Baron e Stasolla, 2008). Estão implicadas em processos celulares como transcrição, processamento de RNA, remodelação da cromatina, tradução de mRNA, ativação de proteínas e mudanças na membrana celular (Kakkar e Sawhney, 2002; Wallace et al., 2003; Baron e Stasolla, 2008).

Entre as PAs, as Putrescina (Put), Espermidina (Spd) e Spm são as mais encontradas em plantas (Kusano et al., 2008), sendo sugeridas por terem um papel importante na morfogênese, no desenvolvimento de órgãos, na embriogênese zigótica e na somática, na senescência foliar e na resposta a estresses bióticos e abióticos (Kumar et al., 1997; Silveira et al., 2004; Santa-Catarina et al., 2007; Kusano et al., 2008; Silveira et al., 2013).

As PAs foram localizadas no citoplasma e em organelas, como vacúolos, mitocôndrias e cloroplastos (Kumar et al., 1997; Kusano et al., 2008). Nas plantas, a síntese das PAs é iniciada a partir da síntese da Put por meio das enzimas arginina descarboxilase (ADC) e ornitina descarboxilase (ODC). A Put passa a receber a adição de um grupo de aminopropil da S-adenosil-metionina (SAM) pela enzima SAM descarboxilase (SAMDC) e convertida em Spd por ação da enzima Spd sintase (SPDS), e outro grupo adicionado Spd originará a Spm pela ação da enzima Spm sintase (Kumar et al., 1997; Kusano et al., 2008) (Figura 2).

Figura 2: Biossíntese de PAs em plantas (*setas verdes*), em animais (*setas vermelhas*) e em bactérias (*setas azuis*). Adaptado de Kusano et al. (2008).

Estudos iniciais de PAs mostraram que elevados níveis de poliaminas (Put e Spd) foram encontrados mais em embriões somáticos do que nas culturas embriogênicas (Feirer et al., 1984; Baron e Stasolla, 2008). Além disso, níveis de ADC e ODC foram maiores em células embriogênicas capazes de formar embriões somáticos do que em células não embriogênicas de cenoura (Loukanina e Thorpe, 2008).

Em outro trabalho, níveis endógenos de PAs foram relacionados com a capacidade embriogênica dos calos de cana-de-açúcar, levando a observar a importância dessas moléculas na embriogênese somática e na aquisição da competência das células em formar embriões (Silveira et al., 2013).

Em *Pinus*, a análise endógena de PAs mostrou que a Put participa na proliferação celular, enquanto a Spd desempenha um papel duplo agindo como protetor contra o estresse e um supressor de crescimento quando estas células não estiverem prontas para o crescimento proliferativo (Vuosku et al., 2012).

Além disso, o uso exógeno de Put também foi analisado em cana-de-açúcar e mostrou que as culturas embriogênicas sob influência da Put no meio de maturação induziu o aumento do número de embriões somáticos (Reis et al., 2016).

3.5. Proteômica como ferramenta para estudo da embriogênese somática

O termo proteômica foi definido pela primeira vez por Mark Wilkins, em 1994, na primeira reunião de Eletroforese 2-DE em Siena, Itália (Wasinger et al., 1995), e refere-se ao campo de estudo dos proteomas, que, por sua vez, corresponde ao conjunto de proteínas expressas em um determinado organismo, célula ou tecido específico, em um dado momento e submetido a alguma determinada condição (Wasinger et al., 1995; Wilkins et al., 1996; Wilkins et al., 1996).

A análise proteômica fornece os elementos necessários para o estudo das propriedades das proteínas (nível de expressão, modificações pós-traducionais, interações etc.) e para a avaliação sistemática da expressão proteica em tecidos expostos a uma série de diferentes estados fisiológicos, como patológico e saudável, tratado e não tratado, resistente e não resistente a condições susceptíveis (Wasinger et al., 1995).

Desse modo, a proteômica visa estudar qualitativa e quantitativamente os proteomas, bem como os tipos de modificação, interações e funções de uma determinada proteína e/ou um conjunto de proteínas (di Palma et al., 2012).

Tecnologias em análises de proteômica vêm determinando com precisão os caráteres quantitativo e qualitativo dos perfis de proteínas de um organismo específico fornecendo uma ampla análise do estado bioquímico de uma determinada célula, bem como suas mudanças ao longo do processo de desenvolvimento (Chen e Harmon, 2006).

Vários mecanismos estão envolvidos na regulação da síntese proteica (Figura 3), sendo que, durante a síntese proteica, modificações pós-transcricionais e póstraducionais podem regular a expressão espacial e temporal e a conformação de proteínas, modulando classes distintas de proteínas, que, bioquímica e estruturalmente, podem desempenhar diferentes papéis nas vias metabólicas e na composição proteômica de um organismo (Balbuena et al., 2011).

Figura 3: Mecanismos de Controle que atuam na síntese proteica onde um único gene dá origem a múltiplas conformações proteicas e diferentes funções. Adaptado de (Balbuena et al., 2011).

Desde 2000, diversas técnicas em proteômica de plantas vêm surgindo, a começar pelo sistema de eletroforese bidimensional (2-DE), que separa proteínas pelo seu ponto isoelétrico e peso molecular, até as digestões de proteínas seguidas pela espectrometria de massas (Heringer et al., 2018).

Estudos de proteômicos mostram que é possível observar grupos proteicos exclusivos durante o processo de embriogênese somática, como proteínas reguladas apenas em calos embriogênicos e/ou calos não embriogênicos (Heringer et al., 2018). Nesses grupos, é possível destacar proteínas relacionadas a diferentes processos biológicos, como estresse e desintoxicação, proteínas de síntese hormonal e transdução de sinais, metabolismo de carboidratos, metabolismo energético, proteínas de transporte celular, metabolismo de lipídeos e formação de parede celular (Heringer et al., 2018).

Proteínas relacionadas ao estresse e à desintoxicação são frequentemente associadas à embriogênese somática devido aos altos níveis dessas proteínas influenciarem a reprogramação genética, a desdiferenciação celular e a indução dos embriões somáticos (Fehér, 2015; Zhao et al., 2015). Como tais, existemas famílias de proteínas de choque térmico (HSPs) e proteínas cognatas de choque térmico (HCPs), sendo estas, chaperonas moleculares responsáveis pela manutenção da homeostase celular tanto para o crescimento ótimo quanto para as condições de estresse (Rodziewicz et al., 2014).

O aumento da abundância dessas proteínas (HSPs) em células embriogênicas sugere intensas atividades de enovelamento de proteínas sintetizadas ou o reenovelamento de proteínas danificadas e instáveis, o que pode estar relacionado à condição de estresse associada ao processo de cultivo *in vitro* (Heringer et al., 2018).

Outra classe de proteínas abundantes em estudos proteômicos são as abundantes na embriogênese tardia (LEAs), também relacionadas com a condição de estresse, como dessecação, baixa temperatura, luz e estresse osmótico (Heringer et al., 2018). Essas proteínas normalmente são observadas nos estádios finais de desenvolvimento da semente durante a fase de dessecação da embriogênese zigótica (Amara et al., 2014).

Estudos proteômicos associados à embriogênese somática vêm sendo abordados para compreender os aspectos de desenvolvimento durante a embriogênese somática em diferentes espécies, como *Cyclamen persicum* (Bian et al., 2010; Rode et al., 2012), *C. papaya* (Vale et al., 2014; Vale et al., 2018; Almeida et al., 2019; Botini et al., 2021; Vale et al., 2021), cana-de-açúcar (Heringer et al., 2015; Reis et al., 2016; Heringer et al., 2017; Passamani et al., 2018; Almeida et al., 2020; Passamani et al., 2020; Reis et al., 2021; Xavier et al., 2022), entre outras.

Estudos proteômicos com associação à embriogênese somática em *Passiflora* ainda não foram encontrados na literatura, sendo assim um aspecto importante a ser estudado devido à importância socioeconômica desta cultura.
4. MATERIAL E MÉTODOS

4.1. Material vegetal e assepsia das sementes

Sementes maduras de maracujá-azedo P. edulis cv. 'UENF Rio Dourado' (Figura 3 A) foram obtidas a partir de coleta de frutos maduros na Unidade Experimental da UENF em Itaocara – Ilha Barra do Pomba (21º40' S, 42º04' W e altitude de 76 m). Os tegumentos externos das sementes foram removidos com auxílio de minimorsa e bisturi para facilitar a posterior retirada dos embriões zigóticos, como descrito por Silva et al. (2009). As sementes sem os tegumentos (Figura 3 B) foram desinfestadas superficialmente em câmara de fluxo laminar mediante a imersão em álcool etílico 70% (v/v) por 1 minuto, em seguida, em hipoclorito de sódio comercial a (2 - 2,5% cloro ativo) por 25 minutos, acrescido de duas gotas do agente dispersante Tween-20 a 0,1% (v/v) a cada 100 mL⁻¹ de solução. Posteriormente, as sementes foram submetidas a quatro enxágues consecutivos em água destilada e autoclavada e mantidas overnight em água destilada estéril, de acordo com Silva et al. (2009). A retirada dos embriões zigóticos das sementes foi realizada em câmara de fluxo laminar. Os embriões zigóticos (Figura 3 C) foram excisados com auxílio de pinça e bisturi e inoculados no meio de indução.

Figura 4: Sementes do maracujá-azedo *P. edulis* Sims 'UENF Rio Dourado'. A) Semente com tegumento. B) Semente sem tegumento utilizada para a desinfestação. C) Embrião zigótico excisado a partir da semente. *Barras*: (A-B) 0,2 mm; (C): 0,1mm.

4.2. Indução à embriogênese somática

Embriões zigóticos excisados de sementes maduras de *P. edulis* 'UENF Rio Dourado' foram inoculados em placas de Petri (90 mm x 15 mm) contendo 20 mL de meio de cultura com sais básicos de MS (Murashige e Skoog, 1962) suplementados com 100 mg L⁻¹ de myo-inositol, 30 g L⁻¹ de sacarose, 20 μ M de 2,4-D, 5 μ M de BA e 2 g L⁻¹ de Phytagel[®] (Cruz, 2018). O pH do meio de cultura foi ajustado a 5.7 antes do uso do Phytagel[®] e autoclavado a 121 °C por 15 minutos. As placas de Petri contendo os embriões zigóticos foram mantidas em sala de cultivo armazenadas em B.O.D com temperatura de 25 °C ± 1 e no escuro por 45 dias.

Após os 45 dias, os calos embriogênicos foram separados de acordo com sua aparência friável e amarelada (da Silva et al., 2015; Cruz, 2018). Com o objetivo de multiplicar as culturas, os calos embriogênicos foram transferidos para novos meios de cultura nas mesmas condições descritas anteriormente e subcultivados a cada 21 dias em B.O.D no escuro por 3 ciclos.

4.3. Experimento de maturação

Três calos (300 mg de matéria fresca-MF cada) foram inoculados em placa de Petri (90 mm x 15 mm) contendo 20 mL de meio MS suplementados com 30 g L⁻¹ de sacarose, 2 g L⁻¹ de Phytagel[®], 100 mg L⁻¹ de myo-inositol e dois tratamentos de maturação: Controle (sem adição de PEG) e PEG 6% (suplementado com 60 g L⁻¹ de PEG 3350). O experimento foi conduzido com 7 repetições, sendo que cada

placa continha 3 calos embriogênicos. As culturas foram mantidas em sala de crescimento a 25 °C \pm 1 no escuro por sete dias. Após isso, as placas foram transferidas para o claro em fotoperíodo de 16 h com o uso de lâmpadas LED (TLED 20 W WmB) a 55 µmol m⁻² s⁻¹ por 28 dias.

As etapas para obtenção da embriogênese somática em *P. edulis* 'UENF Rio Dourado' a partir de sementes maduras podem ser visualizadas no organograma abaixo (Figura 5).

Figura 5: Organograma contendo as etapas da embriogênese somática de *P*. *edulis* 'UENF Rio Dourado'.

4.4. Análise histomorfológica

Calos embriogênicos mantidos nos tratamentos de maturação PEG 6% e Controle, aos 14 dias de cultivo, foram fixados em solução de fixação contendo 2.5% de glutaraldeído e 4% de formaldeído diluído em 0.1 M (pH 7.2) de tampão de cacodilato de sódio e armazenados em temperatura ambiente por 48 h. As amostras foram desidratadas com um aumento de série etanólica (30, 50, 70, 90 e 100%) por duas vezes em cada concentração, em intervalos de 12 h de descanso entre as trocas. Subsequentemente, as amostras foram infiltradas em solução 1:1 (v/v) de historesina® e 100% de etanol por 24 h e, depois, em historesina 100% por 48 h. Cortes de (5 μm) foram realizados utilizando microtomo e armazenados em lâminas com 8 a 10 cortes por lâminas e, depois, corados com solução aquosa de azul de toluidina a 1%. Os cortes foram observados em microscópio eletrônico Axio Imager.M2 microscope com o programa AxioVision 4.8. As imagens foram obtidas pela câmera AxioCam MR3 acoplada ao equipamento.

4.5. Análise de poliaminas endógenas livres (PAs)

Para a determinação de poliaminas endógenas livres, o procedimento foi realizado de acordo com Santa-Catarina et al. (2006).Três repetições biológicas de (200 mg de MF cada) foram maceradas com 1,2 mL de ácido perclórico (PCA) a 5% (v/v) e mantidas no gelo por 1 h; em seguida, foram centrifugadas a 16.000 x *g* por 20 min a 4 °C. O pellet foi ressuspendido em 100 µL de PCA a 5% centrifugado nas condições já citadas, e os dois sobrenadantes das amostras respectivas contendo as PAs foram misturados. A seguir, as PAs livres foram dansiladas. Para tanto, 40 µL da amostra de PAs foram misturados com 100 µL de cloreto de dansil (5 mg mL⁻¹ em acetona - 1,8 mM), 50 µL de solução saturada de bicarbonato de sódio (NaHCO3) e 20 µL de 1,7 - diaminoheptano (DAH) 0,05 mM em acetona gelada 100%, que foi utilizado como padrão interno. Após a mistura, as amostras foram incubadas no escuro por 50 min a 70 °C. O excesso de cloreto de dansil foi removido pela adição de 25 µL de solução de prolina (100 mg mL⁻¹) com posterior incubação por 30 min no escuro em temperatura ambiente.

As PAs dansiladas foram particionadas com 200 µL de tolueno, e 175 µL da fase apolar (orgânica) que contém as PAs foram coletadas, secas sob jato de nitrogênio e ressuspendidas em 175 µL de acetonitrila absoluta. A identificação e quantificação das PAs foi realizada por cromatografia líquida de alta eficiência (HPLC) com coluna C18 de fase reversa de 5 µm. Como solvente, foram utilizados: acetonitrila 10% em água, pH 3,5 ajustado com HCI 1N (solvente A) e acetonitrila absoluta (solvente B). A mudança na proporção da solução B em relação à solução A definiu o gradiente de corrida. O gradiente de acetonitrila absoluta (solução B) foi programado para 65% durante os primeiros 10 min; de 65 a 100%, entre 10 e 13 min; e 100% até 21 min, com fluxo de 1 mL min⁻¹ a 40 °C. O detector de fluorescência foi ajustado para excitação a 340 nm e emissão em 510 nm. Foram injetados 20 µL da solução dansilada. As áreas dos picos e os tempos de retenção

de cada PA foram avaliados por comparação com PAs padrão em concentrações conhecidas: Put, Spd e Spm.

4.6. Análise de proteômica

4.6.1. Extração e quantificação de proteínas totais

Amostras de calos embriogênicos aos 14 dias de maturação nos tratamentos Controle e PEG 6% foram coletadas para a análise de proteômica.

O tampão de extração de proteínas consistiu em 7 M de ureia, 2 M de tioureia, 2% de triton X-100, 1% de ditiotreitol (DTT), 1 mM de fluoreto de fenilmetanossulfonil (PMSF) e o coquetel completo de inibidores de protease. Três amostras biológicas (300 mg MF cada amostra) foram pulverizadas usando um almofariz e pilão em nitrogênio líquido, em microtubos. Em seguida, foi adicionado 1 mL de tampão de extração ao pó da amostra. As amostras foram agitadas durante 30 min a 4 °C e centrifugadas a 16.000 x *g* durante 20 min a 4 °C. Os sobrenadantes foram coletados, e a concentração de proteínas foi determinada com a utilização do kit 2-D Quant kit.

4.6.2. Digestão de proteínas

Antes da etapa de digestão com tripsina, as amostras das proteínas foram precipitadas usando a metodologia de metanol/clorofórmio para remover qualquer interferente das amostras (Nanjo et al., 2012). Após a precipitação das proteínas, as amostras foram ressuspendidas em solução de ureia/tioureia (7 M/2 M). A digestão das proteínas foi realizada usando a metodologia de preparação de amostras auxiliada por filtro (FASP), como descrito por Wisniewski et al. (2009) com modificações por (Reis et al., 2021).

Antes de iniciar o procedimento de digestão, um teste de integridade foi feito para verificar se havia unidades de filtro danificadas, de acordo com Hernandez-Valladares et al. (2016), portanto, apenas as unidades adequadas foram utilizadas. Depois disso, alíquotas de proteína foram adicionadas às unidades de filtro Microcon-30 kDa, lavadas com 200 µL de bicarbonato de amônio 50 mM (solução A) e centrifugadas a 10.000 x *g* por 15 min em 25 °C (todos os passos seguintes de centrifugação foram realizados nesta condição) (Lipecka et al., 2016).

Esta etapa foi repetida mais uma vez para remoção completa da ureia antes da redução das proteínas. Em seguida, foram adicionados 100 µL de DTT 50 mM refrigerado feito em solução A, suavemente agitados em vórtex e incubados por 20 min a 60 °C (1 min agitando a 650 rpm e 4 min em repouso). Subsequentemente, adicionaram-se 200 µL 8 M de ureia e bicarbonato de amônio 50 mM (solução B) e centrifugaram-se durante 15 min. Para a alquilação das proteínas, foram adicionados 100 µL de iodoacetamida 50 mM refrigerada, preparados em solução B, foram agitadas suavemente em vórtex e incubadas por 20 min a 25 °C no escuro (1 min agitando a 650 rpm e 19 min em repouso). Em seguida, foram adicionados 200 µL de solução B e centrifugados por 15 min. Este passo foi repetido mais uma vez.

A seguir, foram adicionados 200 μ L de solução A e centrifugados por 15 min. Este passo foi repetido duas vezes. Na última lavagem, permaneceram, aproximadamente, 50 μ L de amostra. Para a digestão das proteínas, foram adicionados 25 μ L de RapiGest a 0,2% (v/v) e 25 μ L de solução de tripsina (1:100 enzima: proteína); foram agitados suavemente em vórtex e incubados durante 16 h a 37 °C (1 min agitando a 650 rpm e 4 min de repouso).

Para a eluição dos peptídeos, as unidades de filtragem foram transferidas para novos microtubos e centrifugadas durante 10 min. Em seguida, foram adicionados 50 μ L de solução A e centrifugados por 15 min. Este passo foi repetido mais uma vez. Para precipitação do RapiGest e inibição da tripsina, adicionaramse 5 μ L de ácido trifluoroacético a 15% (TFA), agitados suavemente em vórtex e incubados durante 30 min a 37 °C. Logo depois, as amostras foram centrifugadas durante 15 min, e os sobrenadantes, recolhidos e secos sob vácuo. Os peptídeos foram ressuspendidos em 100 μ L de solução contendo 50 mM de bicarbonato de amônio a 95%, acetonitrila a 5% e ácido fórmico a 0,1%. Os peptídeos resultantes foram quantificados utilizando um NanoDrop 2000c a A205 nm.

4.6.3. Análise de espectrometria de massas

A espectrometria de massas foi realizada utilizando um cromatógrafo líquido de ultraeficiência (UPLC) nanoAcquity acoplado a um espectrômetro de massas híbrido quadrupolo-tempo de voo (Q-TOF) SYNAPT G2 *Si.* As corridas consistiram em três repetições biológicas de 1 μ g de proteínas digeridas. Durante a separação, as amostras foram carregadas no nanoAcquity em uma coluna de limpeza M-Class Symmetry C18 5 μ m (180 μ m × 20 mm) a 5 μ L min⁻¹ durante 3 min e, depois na coluna analítica de fase reversa nanoAcquity M-Class HSS T3 1,8 μ m (75 μ m × 150 mm) a 400 nL min⁻¹, com uma temperatura da coluna no forno programada para 45 °C.

Para a eluição dos peptídeos, foi utilizado um gradiente binário, com fase móvel A consistindo em água e 0,1% de ácido fórmico, e fase móvel B composta de acetonitrila e 0,1% de ácido fórmico. A eluição do gradiente foi iniciado a 5% de B, aumentando de 5% de B para 40% de B até 91,12 min e de 40% B para 99% de B até 95,12 min, sendo mantida em 99% até 99,12 min, diminuindo, então, para 5% de B até 101,12 min e mantida 5% de B até o final da corrida aos 117,00 min.

A espectrometria de massa foi realizada em modo positivo e de resolução (modo V), 35.000 FWHM, com mobilidade iônica; (HDMS^E) e em modo de aquisição de dados independente (DIA). A separação da mobilidade iônica utilizou uma rampa de velocidade da onda IMS começando com 800 m s⁻¹ e terminando com 500 m s⁻¹; a energia de colisão de transferência aumentou de 25 V para 55 V no modo de alta energia; e tensões cone e capilares de 30 V e 3000 V, respectivamente. O nano fluxo de gás foi de 0,5 bar e do gás de purga foi de 150 L h⁻¹, e temperatura de fonte foi de 100 °C. Nos parâmetros TOF, o tempo de varredura foi definido em 0,6 s no modo contínuo com um intervalo de massa de 50 a 2000 Da. Utilizou-se como calibrador externo o [Glu1]- fibrinopeptídeo B humano a 100 fmol μ L⁻¹, e a aquisição de massa padrão foi realizada a cada 30 s. A aquisição do espectro de massa foi feita pelo software MassLynx v4.0.

4.6.4. Análise dos dados

O processamento dos espectros e banco de referência foram realizados utilizando os softwares ProteinLynx Global SERVER (PLGS) v.3.02 e ISOQuant (Distler et al., 2014; Distler et al., 2016). Na análise do PLGS, utilizaram-se os seguintes parâmetros: Apex3D de 150 contagens como limite de baixa energia, 50 contagens como limite de energia elevada e 750 contagens como limite de intensidade; duas clivagens perdidas; no mínimo três fragmentos de íon por

peptídeo; no mínimo sete fragmentos de íon por proteína; no mínimo dois peptídeos por proteína; carbamidometil (C) como modificação fixa e oxidação (M) e fosforil (STY) como modificações variáveis; a taxa de falsas descobertas (FDR) para identificação de peptídeos e proteínas foi ajustada para um máximo de 1%, com peptídeos com, no mínimo, seis aminoácidos.

Os dados proteômicos foram processados no banco de dados de Glycine max (ID: UP000008827) do UniProt (https://www.uniprot.org) no PLGS, e a quantificação foi realizada usando o software ISOQuant v.1.7 utilizando configurações e algoritmos descritos anteriormente (Distler et al., 2014; Distler et al., 2016). A quantificação foi estimada por meio da abordagem TOP3 (Silva et al., 2006), seguida pelo processo de normalização multidimensional implementado no ISOQuant (Distler et al., 2014). Depois da análise dos dados no ISOQuant, para assegurar a qualidade dos resultados, foram definidos os seguintes parâmetros de refinamento: apenas proteínas presentes ou ausentes (para proteínas excluídas) nas três repetições biológicas foram levadas em conta para análise de acúmulo diferencial na comparação PEG 6%/Controle. As proteínas que apresentaram significância no teste t (bicaudal; p < 0.05) foram consideradas como diferencialmente acumuladas (DAP) como up-acumuladas para proteínas que tiveram o Log₂ de Fold Change (FC) maior que 0,6, e down-acumuladas as que tiveram o Log₂ de FC menor que -0.6. Depositaram-se os dados de proteômica MS no repositório público PRIDE (Perez-Riverol et al., 2019) identificado com o código PXD031175.

Finalmente, as proteínas foram submetidas à caracterização funcional pelo software OmicsBox (https://www.biobam.com). Sequências com processos biológicos não identificados pelo OmicsBox foram complementadas manualmente com as ferramentas de BLAST do UniProt e NCBI (https://www.ncbi.nlm.nih.gov). As redes de interação previstas foram construídas utilizando homólogos de *Arabidopsis thaliana* identificados através de uma busca na ferramenta STRING (https://string-db.org) seguida por análise no software Cytoscape (versão 3.9) (Shannon et al., 2003). Os acessos referentes a proteínas reguladas em cada tratamento foram usados como referência de entrada de dados para a análise de enriquecimento. O teste hipergeométrico com correção de Bonferroni step down foi utilizado para avaliar as categorias do enriquecimento dos processos biológicos a partir do banco de dados de *A. thaliana*.

4.7. Análise estatística

Todos os experimentos foram realizados usando o delineamento inteiramente casualizado (DIC). Os dados de PAs foram transformados por raiz quadrada (x+0,5). Analisaram-se os dados por meio da análise de variância (ANOVA) (p < 0.05) seguidos pela análise do teste de Student-Newman-Keuls (SNK) usando o ambiente R (R Core Team 2014).

5. RESULTADOS

5.1. Efeito do PEG na maturação de embriões somáticos

Foi observado um efeito significativo do PEG na maturação de embriões somáticos de *P. edulis* 'UENF Rio Dourado' (Tabela 2; Figura 6). Calos embriogênicos maturados sob o tratamento PEG 6% mostraram maior número de embriões somáticos nos estádios globular e cotiledonar em comparação com os calos embriogênicos maturados no tratamento Controle aos 14 e 28 dias de maturação (Tabela 2).

Morfologicamente, calos embriogênicos submetidos à maturação no tratamento PEG 6% (Fig. 6D-E) apresentaram aspecto mais compacto do que os embriogênicos no tratamento Controle (Fig. 6 B-C). Calos embriogênicos apresentaram diferenciação de embriões somáticos na superfície do calo, como também estádios globulares (Figura. 6 F) e cotiledonares (Figura 6 G).

Tabela 2: Número de embriões somáticos (por placa) de *P. edulis* 'UENF Rio Dourado' nos estádios globular e cotiledonar de calos embriogênicos nos tratamentos Controle e PEG 6%.

		PE	G		
Estádio de — desenvolvimento	0% (Controle)		6%		
	14 dias	28 dias	14 dias	28 dias	
Globular	6,9 Bb	19,7 Ba	20,6 Ab	45,1 Aa	
Cotiledonar	0,0 Ab	20,7 Ba	3,3 Ab	33,7 Aa	

*Letras maiúsculas indicam as diferenças significativas entre os tratamentos de maturação no mesmo tempo de cultivo. Letras minúsculas mostram as diferenças significativas nos diferentes tempos de cultivo dentro do mesmo tratamento. Médias seguidas pela mesma letra não diferem estatisticamente entre si, de acordo com o teste Student-Newman-Keuls (SNK) test (p < 0.05). (n = 7; CV_{Globular} = 19.35%; CV_{Cotiledonar} = 38.53%).

Figura 6: Aspectos morfológicos de calos embriogênicos de *P. edulis* 'UENF Rio Dourado' durante a maturação. A) calo embriogênico antes dos tratamentos de maturação (tempo 0) apresentando regiões com células meristemáticas (MC) e regiões com células não meristemáticas (NMC). B) calo embriogênico no tratamento Controle aos 14 dias de maturação. C) calo embriogênico no tratamento Controle aos 28 dias de maturação mostrando uma pequena porção de embriões cotiledonares. D) calo embriogênico no tratamento PEG 6% aos 14 dias de maturação mostrando várias pontuações verdes (*setas*) indicando a presença de embriões no estádio globular de maturação. E) calo embriogênico no tratamento PEG 6% aos 28 dias de maturação com a presença de várias porções com embriões no estádio cotiledonar de maturação. F) embrião somático globular isolado. G) embrião cotiledonar isolado. *Barras*: (A-E) 0,1 mm; (F-G) 0,2 mm.

5.2. Aspectos histomorfológicos de calos embriogênicos maturados com PEG 6%

Aos 14 dias de maturação no tratamento de maturação PEG 6%, os calos embriogênicos de *P. edulis* apresentaram porções diferentes de tecidos (Figura 7A); algumas partes com aparência mais compacta, coloração amarelada e estrutura mais organizada (Figura 7 B); e, em algumas partes, o calo menos compacto, com uma aparência esponjosa ou uma massa mucilaginosa e transparente (Figura 7C). A análise histomorfológica mostrou que o aspecto mais compacto do calo embriogênico é composto por células com características meristemáticas (MC), pequenas e isodiamétricas, com núcleo proeminente e citoplasma denso (Figura 7D). Células com aspecto mais mucilaginoso mostraram células do tipo não meristemáticas (NMC) com células mais alongadas e uma grande porção de vacúolo (Figura 7D).

O desenvolvimento de embriões somáticos ocorreu a partir das porções com células meristemáticas (MC) dos calos embriogênicos de *P. edulis*. Aos 14 dias de maturação, foi observada, nos calos embriogênicos, a formação de embriões somáticos nos estádios iniciais de desenvolvimento, principalmente na periferia do calo (Figura 7E), notando a presença de embriões globulares (Figura 7F) e cordiformes (Figura 7G).

Figura 7: Aspectos morfológicos e histomorfológicos de calos embriogênicos de *P. edulis* submetidos à maturação no tratamento PEG 6%, aos 14 dias. A) calo embriogênico mostrando ambos os tipos de células, meristemáticas (MC) e células não meristemáticas (NMC); B) MC; C) NMC; D) histomorfologia de calo embriogênico mostrando as porções de MC (*seta amarela*) e NMC (*seta preta*). E) calo embriogênico mostrando a porção MC da qual os embriões se diferenciam na periferia do calo. F) embrião somático globular; G) embrião somático cordiforme (*asterisco amarelo*).

5.3. O tratamento PEG 6% induziu a mudança dos conteúdos endógenos de poliaminas (PAs) durante a maturação de embriões somáticos

Os conteúdos de PAs livres foram afetados pelos tratamentos de maturação (PEG 6% ou Controle) durante a maturação (Figura 8). Calos embriogênicos do tratamento PEG 6% apresentaram um nível significativamente mais elevado do conteúdo de PAs totais livres (Figura 8A) aos 28 dias de cultivo. O tratamento com PEG 6% induziu um conteúdo consideravelmente maior de Spm livre (Figura 8C) nos calos embriogênicos em comparação com aqueles que foram incubados no tratamento para os dois tempos de cultivo. Também foi observada uma redução expressiva nos conteúdos endógenos de Spm para ambos os tratamentos, aos 14

e 28 dias de cultivo. Os níveis de Spd livre não mostraram alterações significativas (Figura 8D).

Figura 8: Conteúdo endógeno de poliaminas livres (PAs) em calos embriogênicos *de P. edulis* 'UENF Rio Dourado' aos 14 e 28 dias de maturação nos tratamentos Controle (sem PEG) e PEG 6%. **A)** PAs Totais. **B)** Put. **C)** Spm. **D)** Spd. Letras maiúsculas indicam diferenças significativas entre os tratamentos dentro do mesmo tempo de cultura. Letras minúsculas indicam diferenças significativas entre os dias de cultivos dentro do mesmo tratamento. Médias seguidas pela mesma letra não diferem significativamente entre si, de acordo com o teste SNK (Student-Newman-Keuls) test (p < 0.05); (n = 3; CV_{PAs Totais} = 5.30%; CV_{Put} = 7.67%; CV_{Spm} = 16.10%; CV_{Spd} = 8.81%).

5.4. O tratamento PEG 6% induziu o acúmulo diferencial de proteínas (DAPs) durante a maturação de embriões somáticos

A análise de proteômica comparativa de calos embriogênicos aos 14 dias de maturação permitiu a identificação de um total de 514 proteínas (Anexo 1). A comparação entre calos embriogênicos maturados com PEG 6% em comparação com o tratamento Controle (sem PEG) mostrou um total de 51 proteínas diferencialmente acumuladas (DAPs) com 15 proteínas up-acumuladas, 20 proteínas down-acumuladas, 14 proteínas únicas para PEG 6% e 2 proteínas únicas para o tratamento Controle (Tabela 3).

Considerando as DAPs durante a maturação de calos embriogênicos, foram observadas proteínas relacionadas ao desenvolvimento da embriogênese somática como up-acumuladas as proteínas enolase (ENO1; I1L3K7); proteína de choque térmico 80 (HSP81-3; I1M6E1); gliceraldeído-3-fosfato desidrogenase GAPCP1, cloroplástica (GAPCP-1; I1MM44); 6-fosfogluconato desidrogenase descarboxilase 3 isoforma A (AT3G02360; I1N6I4); superóxido dismutase [Mn], mitocondrial (MSD1; A5JVZ7); enzima E1 ativadora de ubiquitina 1 (UBA1; A0A0R0EWS1); proteína peptidil-prolil cis-trans-isomerase CYP19-3 (ROC2; A0A0R4J318); proteína RAS RABE1 c-like (AT5G59840; I1LK56); proteína provável frutoquinase-6, cloroplástica (AT1G66430; K7M8F8); glutamato descarboxilase (GAD5; I1MQM4); malato desidrogenase [NADP], cloroplástica (I1LCM5; AT5G58330); proteína predita inibidora de pectinesterase/pectinesterase 41 (AT2G47550; I1NBU8); ATP sintase CF1 subunidade beta (ATPB; Q2PMV0) e HSP70-HSP90 proteína de organização 1 (HOP2, Q43468) (Tabela 3).

Adicionalmente, proteínas únicas no tratamento PEG 6% relacionadas ao desenvolvimento da embriogênese somática foram observadas, como a proteína ativadora de ribulose bifosfato carboxilase/oxigenase, cloroplástica (RCA; D4N5G3); triosefosfato isomerase, citosólica (TPI; A0A368UHG1); proteína ribossomal 60S L12 (AT2G37190; I1LZ47); proteína de ligação luminal 5 (BIP2; I1KPN3); proteína de ligação de clorofila a-b 21, cloroplástica (LHB1B1; P09755); proteína chaperonina CPN60-2, mitocondrial (HSP60; I1LAL4); tubulina tipo cadeia alfa-3 (TUA5; K7KXN7); proteína D tipo 14-3-3 isoforma X1 (AT2G42590; K7LWG5); Enzima tipo ponte de berberina 21 (AT4G20840; I1L0D6 e I1L0H7); flavoproteína succinato desidrogenase [ubiquinona] subunidade 1, mitocondrial (SDH1-1; I1J8W0) e a proteína piruvato desidrogenase componente E1 subunidade alfa, mitocondrial (IAR4; I1N1B9) (Tabela 3).

Em relação a proteínas down-acumuladas na comparação PEG 6%/Controle, algumas delas relacionadas ao desenvolvimento da embriogênese somática também foram observadas, como a proteína homóloga 48 ciclo de divisão celular (ATCDC48B; P54774); 5-metiltetrahidropteril glutamato homocisteína metiltransferase (ATMS1; I1LXY2); proteína de choque térmico 70 kDa (HSP70-B;

A0A0R0FY49); proteína inibidora de dissociação de nucleotídeo guanina 2 (GDI2; A0A0R0K398); superoxidase dismutase [Mn], mitocondrial (MSD1; I1JYA9); pectinesterase 2 (AT2G45220; I1J7T0); glutamato descarboxilase 1 (GAD; I1JHT1); UDP-glicose 6-desidrogenase 1 (UGD2; I1LWR5); UDP- glucose6desidrogenase 4 (UGD2; I1J5Y9); Enzima málica dependente de NADP (NADP-ME4; I1J4J8); chaperonina CPN60-2, mitocondrial (HSP60; A0A0R4J656); glutamato desidrogenase 1 (GDH1; Q5F2M9); frutoquinase-2 isoforma B (AT3G59480; I1LQD7); fosfoenolpiruvato carboxilase 2 (PPC1; Q6Q2Z8); proteína fator de elongação TU, cloroplástica (RABE1b; A0A0R0FCD2); aminopeptidase M1 isoforma X2 (APM1; I1JTY8); sacarose sintase 2 isoforma X2 (SSA; A0A0R0G163); proteína de resposta hipersensitiva induzida 2 (AT1G69840; I1LWI3); proteína mitocondrial di carboxilase/ tri carboxilase transportadora DTC (AT5G19760; I1KSD7) e a proteína ATP-dependente 6-fosfofrutoquinase 3 (PFK3; I1KV07) e as proteínas peroxidase 16 (AT2G18980; A0A0R0GAY5) e peptidil-prolil cis-trans isomerase (ROC3; A0A0R0H9T5) como únicas para o tratamento Controle (Tabela 3). A partir da identificação dessas DAPs, uma análise de enriquecimento foi realizada para observar os processos biológicos nas quais essas proteínas foram inseridas.

5.5. Enriquecimento de proteínas nos processos biológicos de calos embriogênicos de *P. edulis* 'UENF Rio Dourado' nos tratamentos PEG 6%/Controle aos 14 dias de maturação

A rede de processos biológicos enriquecidos pelo STRING para proteínas up-acumuladas e únicas no tratamento PEG 6% resultou no enriquecimento dos principais processos, como processo glicolítico e metabolismo de ATP, com proteínas como ENO1, GAPCP-1, ATPB, TPI e IAR4, geração de precursor de metabólitos e de energia com as proteínas como AT3G02360, AT5G59840, AT5G58330, TPI, SDH1-1, IAR4 e resposta a estímulos luminosos com as proteínas LHB1B1 e RCA (Figura 9A; Tabela 3). As proteínas down-acumuladas e únicas no tratamento Controle foram enriquecidas principalmente para o processo metabólico celular, com as proteínas ATCDC48B, UGD2, NADP-ME4, PPC1 e SSA (Figura 9B; Tabela 3).

Outros processos biológicos elucidados pelo GO (Gene Ontology) no UniProt mostram que proteínas up-acumuladas em calos embriogênicos maturados com PEG 6% em relação ao tratamento Controle tiveram processos como a modificação de parede celular com a proteína pectinesterase (AT5G27870), o processo de enovelamento de proteínas e resposta a estresse com as proteínas HSP81-3, HSP60 e HOP2. Já as proteínas down-acumuladas foram observadas em processos biológicos como o processo metabólico da sacarose (proteína SSA), o ciclo do ácido tricarboxílico (proteína PPC1), as proteínas transporte (GDI2) e o processo de metabolismo de malato (NADP-ME4) (Tabela 3).

Figura 9: Rede de interação proteína-proteína entre as DAPs de calos embriogênicos de *P. edulis* 'UENF Rio Dourado' aos 14 dias de maturação nos tratamentos PEG 6% comparado ao tratamento Controle. **A)** Proteínas up-acumuladas em PEG 6%/Controle e proteínas únicas no tratamento PEG 6%. **B)** Proteínas down-acumuladas em PEG 6%/Controle e proteínas únicas no tratamento Controle. Setas verdes indicam os processos biológicos que foram aumentados nas proteínas up-acumuladas. Setas vermelhas indicam os processos biológicos que foram diminuídos nas proteínas down-acumuladas. *Asterisco preto* indica proteínas únicas no tratamento PEG 6%, e *Asterisco branco* indica proteína única no tratamento controle. A análise foi realizada usando o software Cytoscape, pacote STRING contrastando com os ortólogos do banco de *A. thaliana*.

Tabela 3: Proteínas diferencialmente acumuladas (DAPs) aos 14 dias de maturação sob os tratamentos de PEG 6% comparado ao tratamento Controle (sem PEG) em calos embriogênicos de *P. edulis* 'UENF Rio Dourado'.

Acesso	Descrição	Orthologo em <i>Arabidopsis</i> (STRING Mapping)	Processo biológico
UP- ACUMUL	ADAS		
I1L3K7	Enolase	ENO1	ATP metabolic process, Glycolytic process, Carbohydrate metabolic process
I1M6E1	Heat shock cognate protein 80	HSP81-3	Protein folding, Response to temperature stimulus, cellular process
I1MM44	Glyceraldehyde-3-phosphate dehydrogenase GAPCP1, chloroplastic	GAPCP-1	ATP metabolic process, Glycolytic process, Carbon fixation in photosynthetic organisms, carbohydrate metabolic process
I1N6I4	6-phosphogluconate dehydrogenase, decarboxylating 3 isoform A	AT3G02360	Generation of precursor and metabolites energy, Carbohydrate metabolic process, Phosphate-containing compound metabolic process
A0A0R0EWS1	Ubiquitin-activating enzyme E1 1	UBA1	Response to metal ion, cellular metabolic process, response to cadmium ion
11LK56	Ras-related protein RABE1c-like isoform X2	AT5G59840	Generation of precursor and metabolites energy, Carbohydrate metabolic process
I1LCM5	Malate dehydrogenase [NADP], chloroplastic	AT5G58330	Generation of precursor and metabolites energy, Carbohydrate metabolic process
I1NBU8	Putative pectinesterase/pectinesterase inhibitor 41	AT2G47550	Cell wall modification

Acesso	Descrição	Orthologo em <i>Arabidopsis</i> (STRING Mapping)	Processo biológico
UP- ACUMUL	ADAS		
Q2PMV0	ATP synthase CF1 beta subunit	ATPB(PB)	ATP metabolic process
Q43468	HSP70-HSP90 organizing protein 1	HOP2	Protein folding, Stress response
A5JVZ7	Superoxide dismutase [Mn], mitochondrial	MSD1	Response to metal ion, cellular metabolic process
A0A0R4J318	Peptidyl-prolyl cis-trans isomerase CYP19-3	ROC2	Response to metal ion, Protein folding, cellular metabolic process
K7M8F8	Probable fructokinase-6, chloroplastic	AT1G66430	Cellular metabolic process, Carbohydrate metabolic process, phosphate- containing compound metabolic process
I1MQM4	Glutamate decarboxylase	GAD5	Glutamate metabolic process
A0A0R0JER2	Peptidyl-prolyl cis-trans isomerase CYP40-like	SQN	Protein folding, cellular metabolic process

Acesso	Descrição	Orthologo em <i>Arabidopsis</i> (STRING Mapping)	Processo biológico
DOWN-ACUN	IULADAS		
P54774	Cell division cycle protein 48 homolog	ATCDC48B	Cellular metabolic process
I1LXY2	5- methyltetrahydropteroyltriglutamate homocysteine methyltransferase	ATMS1	Amino-acid biosynthesis Methionine biosynthesis
A0A0R0FY49	Heat shock 70 kda protein	HSP70b	Protein folding
A0A0R0K398	Guanosine nucleotide diphosphate dissociation inhibitor 2	GDI2	Protein transport, Small GTPase mediated signal transduction
I1J7T0	Pectinesterase 2	AT2G45220	Cell wall modification, Pectin catabolic process
I1LWR5	UDP-glucose 6-dehydrogenase 1	UGD2	Cellular metabolic process
I1J5Y9	UDP-glucose 6-dehydrogenase 4	UGD2	Cellular metabolic process
I1J4J8	NADP-dependent malic enzyme	NADP-ME4	Cellular metabolic process, Malate metabolic process, Pyruvate metabolic process
Q6Q2Z8	Phosphoenolpyruvate carboxylase 2	PPC1	Cellular metabolic process, Carbon fixation, Tricarboxylic acid cycle
I1JTY8	Aminopeptidase M1 isoform X2	APM1	Proteolysis

Acesso	Descrição	Orthologo em <i>Arabidopsis</i> (STRING Mapping)	Processo biológico
DOWN-ACUM	ULADAS		
A0A0R0G163	Sucrose synthase 2 isoform X2	SSA	Cellular metabolic process, Sucrose metabolic process
I1LWI3	Hypersensitive-induced response protein-like protein 2	AT1G69840	Unknow (Binding)
I1KSD7	Mitochondrial dicarboxylate/tricarboxylate transp.DTC	AT5G19760	Transport
I1KV07	ATP-dependent 6- phosphofructokinase 3	PFK3	Cellular metabolic process, Gycolysis
I1JYA9	Superoxide dismutase [Mn], mitochondrial	MSD1	Response to metal ion, cellular metabolic process
I1JHT1	Glutamate decarboxylase 1	GAD	Response to metal ion, Cellular metabolic process
A0A0R4J656	Chaperonin CPN60-2, mitochondrial	HSP60	Response to metal ion, Cellular metabolic process
Q5F2M9	Glutamate dehydrogenase 1	GDH1	Response to metal ion, Cellular metabolic process
I1LQD7	Fructokinase-2 isoform B	AT3G59480	Cellular metabolic process
A0A0R0FCD2	Elongation factor Tu, chloroplastic	RABE1b	Cellular metabolic process

Acesso	Descrição	Orthologo em Arabidopsis (STRING Mapping)	Processo biológico
ÚNICAS PEG	6%		
D4N5G3	Ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic	RCA	Response to temperature stimulus, Response to light stimulus
A0A368UHG1	Triosephosphate isomerase, cytosolic	TPI	ATP metabolic process, Generation of precursor metabolites and energy, Glycolityc process
I1LZ47	60S ribosomal protein L12	AT2G37190	Cellular metabolic process, Response to temperature stimulus
I1KPN3	Luminal-binding protein 5	BIP2	Response to metal ion, Protein folding, Cellular metabolic process
P09755	Chlorophyll a-b binding protein 21, chloroplastic	LHB1B1	Photosynthesis, light harvesting in photosystem I, response to light stimulus
K7KXN7	Tubulin alpha-3 chain-like	TUA5	Cellular process, Microtubule-based process
K7LWG5	14-3-3-like protein D isoform X1	AT2G42590	Protein DNA binding
I1L0D6	Berberine bridge enzyme-like 21	AT4G20840	Oxidative stress
I1J8W0	Succinate dehydrogenase [ubiquinone] flavoprotein subunit 1, mitochondrial	SDH1-1	ATP metabolic process, Generation of precursor metabolites energy, Phosphatic containing compound metabolic process

Acesso	Descrição	Orthologo em <i>Arabidopsis</i> (STRING Mapping)	Processo biológico
ÚNICAS PEG	6%		
I1N1B9	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	IAR4	ATP metabolic process, Generation of precursor metabolites and energy, Glycolytic process, Carbohydrate metabolic process
I1L0H7	Berberine bridge enzyme-like 21	AT4G20840	Oxidative stress
I1KMW7	Pectinesterase/pectinesterase inhibitor	AT5G27870	Cell wall modification, Pectin catabolic process.
I1LAL4	Chaperonin CPN60-2, mitochondrial	HSP60	Protein folding, Cellular metabolic process, Response to cadmium ion
Q43467	Elongation factor Tu, chloroplastic	RABE1b	Cellular metabolic process
ÚNICAS CON	TROLE		
A0A0R0GAY5	Peroxidase 16	AT2G18980	Response to oxidative stress
A0A0R0H9T5	Peptidyl-prolyl cis-trans isomerase	ROC3	Protein folding

6. DISCUSSÃO

6.1. Efeito do PEG na maturação de embriões somáticos

O uso do PEG 6% promoveu número significativamente maior de embriões somáticos na fase cotiledonar que o tratamento Controle (Tabela 2). O PEG tem sido usado com sucesso na maturação de embriões somáticos em outras espécies, como *Panax ginseng* (Langhansova et al., 2004), *Picea abies* (Hudec et al., 2016), *C. papaya* (Heringer et al., 2013; Vale et al., 2018) e *Ebenopsis ebano* (Ibarra-López et al., 2021). O elevado peso molecular e as características das moléculas de PEG faz com que este agente osmótico não consiga adentrar nas células vegetais. Assim sendo, quando adicionado ao meio de cultura de maturação, leva à restrição de absorção de água e redução da pressão do turgor celular, reduzindo o potencial osmótico intracelular e, finalmente, simulando uma situação de dessecação (Misra et al., 1993; Vale et al., 2018).

A presença de um gradiente osmótico é uma característica das sementes em desenvolvimento que favorece a movimentação da água e a histodiferenciação do embrião zigótico (Stasolla e Yeung, 2003). O efeito do PEG mimetiza naturalmente a ocorrência natural do estresse hídrico nas sementes durante a fase tardia dos estádios de maturação. O estresse causado pelo PEG também está associado à indução de síntese de ABA, essencial para a diferenciação de embriões somáticos (Stasolla e Yeung, 2003; Bohanec et al., 2010). Nossos resultados mostram que o PEG 6% pode ser um tratamento eficiente no processo de maturação permitindo a otimização de protocolos de embriogênese somática de *P. edulis* 'UENF Rio Dourado'. Calos embriogênicos maturados em PEG 6% mostraram alta proporção de calos compactos que apresentaram MC (Figura 6). Essas células pequenas e isodiamétricas, com citoplasma denso, originam embriões somáticos (Figura 7D). Em contraste, calos com porções não embriogênicas apresentaram células maiores, alongadas e altamente vacuoladas que estavam dispersas no calo (Figura 7D). Durante os ciclos de subcultivos, é possível separar calos embriogênicos de calos não embriogênicos pelas características morfológicas, como mostrado na embriogênese de cana-de-açúcar (Silveira et al., 2013). A presença de células MC e NMC no mesmo calo foi observada em diversos sistemas de plantas (Fehér et al., 2003; Silveira et al., 2013), incluindo outras espécies da família Passifloraceae (Silva et al., 2009; Paim-Pinto et al., 2011; da Silva et al., 2015).

A presença de células não embriogênicas pode estar associada à produção e secreção de moléculas no meio de cultura, que podem ser importantes para aquisição da competência embriogênica (Hecht et al., 2001). Essas moléculas podem então ser percebidas por outras células, que podem se tornar competentes e se desenvolver em embriões somáticos (Pennell et al., 1992; Santa-Catarina et al., 2004; Silveira et al., 2013). Nesse sentido, a presença de células não embriogênicas dentro de calos embriogênicos pode ser relevante para o desenvolvimento de embriões somáticos de *P. edulis*.

6.2. PEG 6% induz mudanças nos conteúdos endógenos de PAs durante a maturação de embriões somáticos

Além das mudanças morfológicas, os fatores genéticos e bioquímicos também são importantes para entender a embriogênese somática nas plantas (Karami e Saidi, 2010). Entre as moléculas bioquímicas frequentemente associadas à embriogênese somática, as PAs têm sido relatadas como potenciais marcadores para a aquisição da competência embriogênica (Santa-Catarina et al., 2004; Silveira et al., 2013). Os níveis mais altos de Spm nos calos embriogênicos tratados com PEG 6% em comparação com o tratamento Controle (Figura 8C) indicam que

esta PA tem papel relevante na embriogênese somática de *P. edulis* 'UENF Rio Dourado'.

Em calos embriogênicos de cana-de-açúcar, altos níveis de Spm e Spd foram associados à aquisição da competência embriogênica que permite a maturação de embriões somáticos (Silveira et al., 2013). Outros estudos como o uso exógeno de PAs na maturação de calos embriogênicos de *P. edulis* 'UENF Rio Dourado' devem ser desenvolvidos para verificar os efeitos das PAs exógenas na maturação e no desenvolvimento de embriões somáticos.

6.3. PEG 6% induz o acúmulo diferencial de proteínas durante a maturação de embriões somáticos

As abordagens proteômicas têm sido cada vez mais usadas para estudar os processos bioquímicos e moleculares associados à embriogênese somática (Campos et al., 2017; Heringer et al., 2018). Os resultados da análise proteômica comparativa entre calos embriogênicos submetidos à maturação nos tratamentos PEG 6% e Controle foram discutidos com base nas DAPs e nas proteínas únicas e sua relação com o desenvolvimento de embriões somáticos em *P. edulis* 'UENF Rio Dourado'.

6.3.1 DAPs associadas ao metabolismo energético nas células

A glicólise tem sido considerada um processo central no desenvolvimento de embriões somáticos e sementes em diferentes espécies (Carrari e Fernie, 2006; Fait et al., 2006; Xu et al., 2012), especialmente no processo de maturação (Xu et al., 2012; Ge et al., 2014).

Em nosso trabalho, foram identificadas várias proteínas glicolíticas upacumuladas e exclusivas em calos embriogênicos no tratamento de PEG 6% em comparação ao tratamento Controle, tais como ENO1, GAPCP-1, ATPB, TPI e IAR4, que modulam a via glicolítica. Na glicólise, as células vegetais modificam carboidratos em energia pela ATP, essencial para gerar metabólitos intermediários que modulam a biossíntese de moléculas de níveis intra e extracelular exigidos pelas células (Aguilar-Hernández e Loyola-Vargas, 2018). Durante os processos de desenvolvimento, a célula requer um suprimento de energia maior para a nova formação de embriões, e as proteínas da via glicolítica estão associadas ao desenvolvimento de embriões somáticos e competência embriogênica em diferentes espécies como cana-de-açúcar (Heringer et al., 2015), *Zea mays* (Varhaníková et al., 2014) e *C. papaya* (Vale et al., 2014; Almeida et al., 2019).

Em nosso trabalho, a proteína TPI foi identificada como única no tratamento PEG 6%. A TPI é uma enzima glicolítica essencial para a glicólise, principalmente para a geração de energia (Zhou et al., 2009; Zhao et al., 2015) e é associada aos estádios iniciais de formação de embriões somáticos em calos embriogênicos (Xu et al., 2012; Zhao et al., 2015; Almeida et al., 2019) e na resposta ao tratamento de PEG durante a maturação (Vale et al., 2014).

6.3.2 DAPs relacionadas à fotossíntese e respostas ao estímulo da luz

Em nosso estudo, identificamos proteínas relacionadas à fotossíntese em calos embriogênicos maturados com PEG 6% aos 14 dias de maturação (Figura 9), incluindo as proteínas RCA e LHB1B1 (Tabela 3; Figura 9 A). A diferenciação inicial dos tecidos fotossintéticos durante a embriogênese somática parece estar associada à expressão coordenada dos genes *rblc*, *lhcb* e *por* em embriões torpedo-tardio (Sato-Nara et al., 2004). Assim, as proteínas relacionadas à fotossíntese que se acumulam diferencialmente em calos embriogênicos maturados com PEG 6% em comparação ao tratamento Controle foram relevantes para a possível diferenciação do aparato fotossintético.

6.3.3 DAPs relacionadas aos estresses e enovelamento de proteínas

A rede de interação proteína-proteína identificou as proteínas HOP2, HSP81-3 e HSP60 como sendo relacionadas à resposta ao estresse. A resposta ao estresse é um grupo de proteínas comum recorrente que é regulado em culturas embriogênicas e está ligada à indução da formação de embriões somáticos (Heringer et al., 2018).

À medida que o PEG atua como um agente osmótico que causa estresse osmótico, a identificação de proteínas up-acumuladas poderia ser associada à resposta ao estresse em calos embriogênicos de *P. edulis* tratados com PEG 6%. As proteínas de resposta ao estresse são frequentemente relatadas na divisão de células ou tecidos, entre as quais proteínas heat-shock (HSPs) foram mais representativas em calos embriogênicos (Zhao et al., 2015). As proteínas HSP têm sido identificadas durante a embriogênese somática de *Vitis vinifera* (Zhang et al., 2009), *C. papaya* (Vale et al., 2014), cana-de-açúcar (Reis et al., 2016), *Larix principis-rupprechtii* (Zhao et al., 2015) e *A . angustifolia* (Fraga et al., 2016). Nesse sentido, o aumento do acúmulo de proteínas HSP em calos embriogênicos de *P. edulis* tratados com PEG sugere a relevância dessas proteínas para o processo de maturação nesta espécie.

Outra proteína que foi única no tratamento PEG 6% foi a 14-3-3 (AT2G42590; K7LWG5) (Tabela 3). A proteína 14-3-3 é uma proteína de ligação fosfoserina/fosfotreonina altamente conservada que regula uma ampla gama de proteínas alvo em todos os eucariotos e podem desempenhar papéis importantes na resposta ao estresse ambiental, metabólico e nutricional (Roberts et al., 2002; Zhao et al., 2015). Trabalhando com tecidos embriogênicos e não embriogênicos da conífera *Larix principis-rupprechtii*, foi observada a regulação da síntese de ATP pela proteína 14-3-3, sugerindo um mecanismo de células de plantas para adaptação a mudanças ambientais, como suplementação de nutrientes, especialmente reguladores de planta exógenos durante a embriogênese somática (Zhao et al., 2015).

6.3.4 DAPs relacionadas à modificação da parede celular

Em nosso trabalho, observamos uma pectinesterase (AT5G27870; I1KMW7) up-acumulada em calos embriogênicos no tratamento PEG 6% em comparação ao tratamento Controle, sugerindo seu envolvimento no desenvolvimento de embriões somáticos durante o processo de maturação, possivelmente modulando a biossíntese e a expansão da parede celular.

A transição de calos embriogênicos para embriões somáticos de mandioca foi associada à expressão diferencial de genes envolvidos na hidrólise de polissacarídeos de parede celular e precursores de pectinoesterase (Ma et al., 2015). Pectinoesterases são enzimas pectinolíticas que hidrolisam a ligação glicosídica da substância de pectina da parede celular (Kohli et al., 2015; Kumaravel et al., 2020) e pode catalisar a desesterificação da pectina em pectato e metanol da parede celular rígida, produzindo blocos de grupos carboxílicos que podem interagir com íons de cálcio, formando um gel de pectato (Micheli, 2001; Ma et al., 2015).

A enzima pectinesterase pode auxiliar no afrouxamento da parede celular, degradando a pectina, o que pode resultar na expansão da células durante a maturação e eventual desenvolvimento do embrião somático (Kumaravel et al., 2020).

6.3.5 DAPs associadas ao processo metabólico celular

Entre as proteínas DAPs, algumas proteínas relacionadas ao processo metabólico celular, como as proteínas ATCDC48B, UGD2, NADP-ME4, PPC1 e SSA, foram down-acumuladas nos calos embriogênicos maturados com o tratamento PEG 6% quando comparado ao tratamento Controle (Tabela 3; Figura 9B). A proteína PPC1 identificada como down em nosso trabalho também foi identificada no trabalho de Noah et al. (2013) quando compararam a embriogênese somática inicial com a embriogênese zigótica de *Theobroma cacao* L. A proteína fosfoenolpiruvato carboxilase apresentou uma abundância nos embriões zigóticos em relação aos somáticos (Noah et al., 2013).

A proteína PPC1 é uma enzima que catalisa o fosfoenolpiruvato para produzir oxaloacetato (OAA) (Chollet et al., 1996). Estas enzimas sempre foram relacionadas com a fotossíntese, mas, na última década, um aumento de estudos tem mostrado que a proteína PPC1 tem apresentado um aumento na abundância em condições fotossintéticas, especialmente em sementes, pois essas enzimas usam o HCO₃. liberado pela respiração para produzir oxaloacetato, que é convertido em aspartato, malato e outros intermediários do ciclo de TCA (Leblová et al., 1991; Golombek et al., 1999; O'Leary et al., 2011; Noah et al., 2013). Em geral, os níveis mais altos do ciclo de TCA e enzimas de fosforilação oxidativa em embriões somáticos sugerem uma maior via de respiração aeróbica (Noah et al., 2013).

Em nosso estudo, a PPC1 foi acumulada em calos embriogênicos maturados no tratamento PEG 6% em comparação ao tratamento controle, sugerindo que essa enzima esteja modulando a conversão de oxaloacetato em intermediários do ciclo de TCA e pela maior captura de energia para conseguir passar pelo processo de desenvolvimento de embriões.

Em estudos futuros, recomendamos uma análise metabólica para verificar se a presença e ausência do PEG 6% influência nos níveis de intermediários do ciclo de TCA relacionados à respiração celular, porque agora verificamos que a PPC1 pode ser uma indicação de que, na ausência do PEG 6% (controle), o calo embriogênico pode estar concentrando esforços na respiração celular para produzir mais energia necessária para formar embriões somáticos do que no tratamento com PEG 6% na embriogênese somática de *P. edulis* 'UENF Rio Dourado'.

7. CONCLUSÕES

A partir dos resultados obtidos acerca da maturação da embriogênese somática em *P. edulis* 'UENF Rio Dourado' e análises de histomorfologia proteômicas de PAs, foi possível obter as seguintes conclusões:

- a) O uso do PEG 6% promoveu significativamente a maturação de embriões somáticos de *P. edulis* 'UENF Rio Dourado', aumentando os números de embriões somáticos nos estádios globular e cotiledonar em comparação ao tratamento Controle (sem PEG).
 - b) Histomorfologicamente, calos embriogênicos apresentaram porções de MC e NMC, onde os embriões se desenvolveram nas regiões MC.
 - c) Regiões MC apresentaram células pequenas e isodiamétricas, núcleo proeminente e citoplasma denso, onde foi permitido observar a formação dos estádios iniciais de desenvolvimento, principalmente na parte periférica dos calos.
 - d) O tratamento com PEG 6% aumentou significativamente os conteúdos endógenos de Spm nos calos embriogênicos, o que foi relacionado ao maior desenvolvimento de embriões somáticos durante o processo de maturação.
 - e) Calos embriogênicos no tratamento PEG 6% quando comparado ao tratamento Controle mostrou um acúmulo de proteínas relacionadas

principalmente ao processo glicolítico e resposta a estímulos luminosos, necessários para o desenvolvimento de embriões somáticos.

f) Este é o primeiro relato mostrando o desenvolvimento de embriões somáticos para *P. edulis* 'UENF Rio Dourado'.

8. RESUMO GRÁFICO

9. CONSIDERAÇÕES FINAIS

No presente estudo, foi possível demonstrar o efeito positivo do uso do tratamento PEG 6% na maturação de embriões somáticos de *P. edulis* 'UENF Rio Dourado'. Adicionalmente, foi observado que os calos apresentaram características meristemáticas MC e não meristemáticas NMC presentes em distintas regiões de um mesmo tecido. Verificou-se que o aumento da Spm endógena está relacionado à adição do PEG 6% e que proteínas principalmente da via glicolítica e reação à estímulos luminosos podem estar ligadas ao desenvolvimento de embriões somáticos iniciais aos 14 dias de maturação.

Com isso, sugerimos os seguintes pontos como busca para melhores respostas futuras: análises do nível de auxinas durante a fase de multiplicação e nível de ABA na fase de maturação; análises morfológicas e histoquímicas da competência embriogênica a partir dos ciclos de multiplicação; análises do uso de poliaminas exógenas comparando-o com o uso do PEG 6% na maturação de calos embriogênicos; análises também do perfil de proteínas diferencialmente acumuladas nos outros tempos, 0 contrastando com o tempo 14 e 28 dias de maturação; análises do perfil metabólico a partir do proteínas identificadas relacionadas ao metabolismo energético e ciclo de TCA. Por fim, realização da validação do perfil de genes para as proteínas identificadas em nosso estudo e análise do perfil de genes que são relacionados à embriogênese somática aplicando ao estudo com a espécie *P. edulis* 'UENF Rio Dourado'.

REFERÊNCIAS BIBLIOGRÁFICAS

- Abreu, P.P., et al. (2009) Passion flower hybrids and their use in the ornamental plant market: perspectives for sustainable development with emphasis on Brazil. *Euphytica* 166(3):307-315.
- Aguilar-Hernández, V., Loyola-Vargas, V.M. (2018) Advanced proteomic approaches to elucidate somatic embryogenesis. *Frontiers in plant science* 9:1658.
- Alkhateeb, A. (2006) Somatic embryogenesis in date palm (*Phoenix dactylifera* L.) cv. Sukary in response to sucrose and polyethylene glycol. *Biotechnology* 5(4):466-470.
- Almeida, F.A., et al. (2020) Label-free quantitative Phosphoproteomics reveals signaling dynamics involved in Embryogenic competence Acquisition in Sugarcane. *Journal of Proteome Research* 19(10):4145-4157.
- Almeida, F.A., et al. (2019) LED lamps enhance somatic embryo maturation in association with the differential accumulation of proteins in the *Carica papaya* L.'Golden'embryogenic callus. *Plant Physiology and Biochemistry* 143:109-118.
- Amara, I., et al. (2014) Insights into late embryogenesis abundant (LEA) proteins in plants: from structure to the functions. *American Journal of Plant Sciences* 5(22):3440.
- Anthony, P., et al. (1999) Protoplast isolation, culture, and plant regeneration from *Passiflora. In*: Hall, H. (ed) Plant Cell Culture Protocols. Totowa: Humana Press, p. 169-181.
- Balbuena, T.S., et al. (2011) Challenges in proteome analyses of tropical plants. Brazilian Journal of Plant Physiology 23(2):91-104.
- Baron, K., Stasolla, C. (2008) The role of polyamines during *in vivo* and *in vitro* development. *In Vitro Cellular & Developmental Biology-Plant* 44(5):384-395.
- Bernacci, L., et al. (2003) Passifloraceae. *Flora fanerogâmica do estado de São Paulo* 3:247-274.
- Bian, F., et al. (2010) Proteomic analysis of somatic embryogenesis in *Cyclamen persicum* Mill. *Plant Molecular Biology Reporter* 28(1):22-31.
- Bohanec, B., et al. (2010) Effect of activated charcoal, abscisic acid and polyethylene glycol on maturation, germination and conversion of *Aesculus hippocastanum* androgenic embryos. *African Journal of Biotechnology* 9(25):3786-3793.
- Borém, A., Fritsche-Neto, R. (2014) Biotechnology and Plant Breeding: Applications and Approaches for Developing Improved Cultivars. 1 ed., San Diego: Academic Press, 1-272p.
- Botini, N., et al. (2021) Stage-specific protein regulation during somatic embryo development of Carica papaya L.'Golden'. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1869(2):140561.
- Bruckner, C., et al. (1995) Self-incompatibility in passion fruit (*Passiflora edulis* Sims). *Acta Horticulture* 370:45-58.

- Campos, N.A., et al. (2017) Somatic embryogenesis in coffee: the evolution of biotechnology and the Integration of omics technologies offer great opportunities. *Frontiers in plant science* 8:1-12.
- Carmo, T.V.B., et al. (2017) Genetic Diversity in accessions op *Passiflora cincinnata* Mast. based on morphoagronomic descriptors and molecular markers. *Revista Caatinga* 30(1):68-77.
- Carrari, F., Fernie, A.R. (2006) Metabolic regulation underlying tomato fruit development. *Journal of Experimental Botany* 57(9):1883-1897.
- Castro, L.M.d., et al. (2010) Embriogênese somática a partir de calos de cultivares de laranja doce. *Ciência Rural* 40:1831-1834.
- Chaudhury, A., Qu, R. (2000) Somatic embryogenesis and plant regeneration of turftype bermudagrass: Effect of 6-benzyladenine in callus induction medium. *Plant cell, tissue and organ culture* 60(2):113-120.
- Chen, S., Harmon, A.C. (2006) Advances in plant proteomics. *Proteomics* 6(20):5504-5516.
- Chollet, R., et al. (1996) Phospho enol pyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. *Annual review of plant biology* 47(1):273-298.
- Cruz, K.Z.C.M. (2018) Indução e controle da embriogênese somática em Passiflora edulis Sims, cultivar 'UENF Rio Dourado'. Universidade Estadual do Norte Fluminense - Darcy Ribeiro UENF. (Master's degree), Universidade Estadual do Norte Fluminense - Darcy Ribeiro UENF, 62p.
- da Silva, G.M., et al. (2015) Histochemical evaluation of induction of somatic embryogenesis in *Passiflora edulis* Sims (Passifloraceae). In Vitro Cellular & Developmental Biology-Plant 51(5):539-545.
- de Jong, A.J., et al. (1993) Early events in higher-plant embryogenesis. *Plant Molecular Biology* 22(2):367-377.

- de Melo, N.F., Guerra, M. (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Annals of Botany 92(2):309-316.
- de Morais Silva, M.G., et al. (2009) Seleção recorrente intrapopulacional no maracujazeiro amarelo: alternativa de capitalização de ganhos genéticos. *Ciência e Agrotecnologia* 33(1):170-176.
- di Palma, S., et al. (2012) Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. *Journal of Proteomics* 75(13):3791-3813.
- Distler, U., et al. (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. *Nature methods* 11(2):167-170.
- Distler, U., et al. (2016) Label-free quantification in ion mobility–enhanced dataindependent acquisition proteomics. *Nature protocols* 11(4):795-812.
- Dodeman, V.L., et al. (1997) REVIEW ARTICLE: Zygotic embryogenesis versus somatic embryogenesis. *Journal of experimental botany* 48(8):1493-1509.
- Dudits, D., et al. (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells *in vitro*. *J Cell Sci* 99(3):473-482.
- Fait, A., et al. (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. *Plant physiology* 142(3):839-854.
- Faleiro, F.G., et al. (2005) Germoplasma e melhoramento genético do maracujazeirodesafios da pesquisa. Maracujá: germoplasma e melhoramento genético. Planaltina: Embrapa Cerrados:187-210.
- Faleiro, F.G., et al. (2019) Advances in passion fruit (*Passiflora* spp.) propagation. *Revista Brasileira de Fruticultura* 41(2)

- Fehér, A. (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. *Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms* 1849(4):385-402.
- Fehér, A., et al. (2003) Transition of somatic plant cells to an embryogenic state. *Plant cell, tissue and organ culture* 74(3):201-228.
- Feirer, R.P., et al. (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. *Science* 223(4643):1433-1435.
- Ferraz, J., Lot, L. (2007) Fruta para consumo in natura tem boa perspectiva de renda. Anuário da Agricultura Brasileira. São Paulo: FNP Consultoria:387-388.
- Ferreira, D.A.T., et al. (2015) Embryogenic potential of immature zygotic embryos of Passiflora: a new advance for *in vitro* propagation without plant growth regulators. Plant Cell Tissue and Organ Culture 122(3):629-638.
- Flora do Brasil (2017) Passifloraceae. 2017. Disponível em: <</p>
 <<u>http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB182</u> >. Acesso em: 11 de fevereiro.
- Fraga, H.P.F., et al. (2016) DNA methylation and proteome profiles of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures as affected by plant growth regulators supplementation. *Plant cell, tissue, and organ culture* 2016 v.125 no.2(no. 2):pp. 353-374.
- Ge, X., et al. (2014) iTRAQ protein profile differential analysis between somatic globular and cotyledonary embryos reveals stress, hormone, and respiration involved in increasing plantlet regeneration of *Gossypium hirsutum* L. *Journal of proteome research* 14(1):268-278.
- Golombek, S., et al. (1999) Phosphoenolpyruvate carboxylase in developing seeds of *Vicia faba* L.: gene expression and metabolic regulation. *Planta* 208(1):66-72.
- Guan, Y., et al. (2016) Application of Somatic Embryogenesis in Woody Plants. *Frontiers in plant science* 7:938.

- Guerra, M., et al. (1999) Embriogênese somática e sementes sintéticas. *Cultura de tecidos e transformação genética de plantas* 2:533-568.
- Hecht, V., et al. (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. 127(3):803-816.
- Heinz, R., et al. (2012) Seleção de progênies de meio-irmãos de milho para eficiência no uso de nitrogênio. *Revista Ciência Agronômica* 43(4)
- Heringer, A.S., et al. (2015) Label-free quantitative proteomics of embryogenic and non-embryogenic callus during sugarcane somatic embryogenesis. *PloS one* 10(6):23.
- Heringer, A.S., et al. (2017) Comparative proteomics analysis of the effect of combined red and blue lights on sugarcane somatic embryogenesis. Acta Physiologiae Plantarum 39(52):14.
- Heringer, A.S., et al. (2018) Insights from proteomic studies into plant somatic embryogenesis. *Proteomics* 18(5-6):1700265.
- Heringer, A.S., et al. (2013) Polyethylene glycol effects on somatic embryogenesis of papaya hybrid UENF/CALIMAN 01 seeds. *Theoretical and Experimental Plant Physiology* 25(2):116-124.
- Hernandez-Valladares, M., et al. (2016) Reliable FASP-based procedures for optimal quantitative proteomic and phosphoproteomic analysis on samples from acute myeloid leukemia patients. *Biological Procedures Online* 18(1):1-10.
- Hudec, L., et al. (2016) Norway spruce embryogenesis: changes in carbohydrate profile, structural development and response to polyethylene glycol. *Tree physiology* 36(5):548-561.
- Ibarra-López, A., et al. (2021) In vitro somatic embryogenesis of Texas ebony (*Ebenopsis ebano* [Berland.] Barneby & JW Grimes). *In Vitro Cellular & Developmental Biology-Plant*:1-12.

- IBGE (2016) Produção brasileira de maracujá em 2016. 2016. Disponível em: <</p>
 <u>http://www.cnpmf.embrapa.br/Base_de_Dados/index_pdf/dados/brasil/maracuja</u>
 <u>/b1_maracuja.pdf</u> >. Acesso em: 22-09.
- Produção Agrícola Lavoura Permanente (2020) https://cidades.ibge.gov.br/brasil/pesquisa/15/0. Accessed 28/01/2022
- Produção agrícola Permante 2020 (2020) https://cidades.ibge.gov.br/brasil/pesquisa/15/0?ano=2020. Accessed 25-10-2021
- Isah, T. (2019) Proteome study of somatic embryogenesis in *Nothapodytes nimmoniana* (J. Graham) Mabberly. *3 Biotech* 9(4):1-23.
- Jesus, O.N.d., et al. (2017) Importance of the characterization of genetic resources of passion fruit. *In*: Jesus, O.N.D., Oliveira, E.J.D., Faleiro, F.G., Soares, T.L., Girardi, E.A. (eds) Illustrated morpho-agronomic descriptors for *Passiflora* spp. Brasília: Embrapa, vol 1, p. 9-17.
- Kakkar, R.K., Sawhney, V.K. (2002) Polyamine research in plants a changing perspective. *Physiologia Plantarum* 116(3):281-292.
- Karami, O., Saidi, A. (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. *Molecular biology reports* 37(5):2493-2507.
- Kohli, P., et al. (2015) Pectin methylesterases: a review. 5(5):1.
- Krikorian, A., Berquam, D.L. (1969) Plant cell and tissue cultures: the role of Haberlandt. *The Botanical Review* 35(1):59-67.
- Krikorian, A.D., Kaarina Simola, L. (1999) Totipotency, somatic embryogenesis, and Harry Waris (1893–1973). *Physiologia Plantarum* 105(2):347-354.
- Kumar, A., et al. (1997) Recent advances in polyamine research. *Trends in Plant Science* 2(4):124-130.

- Kumar, V., Van Staden, J. (2017) New insights into plant somatic embryogenesis: an epigenetic view. *Acta Physiologiae Plantarum* 39(9):194.
- Kumaravel, M., et al. (2020) Proteomic analysis of somatic embryo development in *Musa* spp. cv. Grand Naine (AAA). *Scientific reports* 10(1):1-12.
- Kusano, T., et al. (2008) Polyamines: essential factors for growth and survival. *Planta* 228(3):367-381.
- Lakshmanan, P., et al. (2005) Sugarcane biotechnology: the challenges and opportunities. *In Vitro Cellular and Developmental Biology-Plant* 41(4):345-363.
- Langhansova, L., et al. (2004) Polyethylene glycol and abscisic acid improve maturation and regeneration of *Panax ginseng* somatic embryos. *Plant cell reports* 22(10):725-730.
- Leblová, S., et al. (1991) Regulation of the activity of phosphoenolpyruvate carboxylase isolated from germinating maize (*Zea mays* L.) seeds by some metabolites. *Biologia plantarum* 33(1):66-74.
- Lipecka, J., et al. (2016) Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP). *Proteomics* 16(13):1852-1857.
- Loukanina, N., Thorpe, T.A. (2008) Arginine and ornithine decarboxylases in embryogenic and non-embryogenic carrot cell suspensions. *In Vitro Cellular & Developmental Biology - Plant* 44(1):59-64.
- Ma, Q., et al. (2015) Transition from somatic embryo to friable embryogenic callus in cassava: dynamic changes in cellular structure, physiological status, and gene expression profiles. 6(824)
- Márquez-Martín, B., et al. (2011) Water relations in culture media influence maturation of avocado somatic embryos. *Journal of Plant Physiology* 168(17):2028-2034.

- Meletti, L.M.M. (2011) Avanços na cultura do maracujá no Brasil. *Revista Brasileira de Fruticultura* 33(SPE1):83-91.
- Meletti, L.M.M., Maia, M.L. (1999) *Maracujá: produção e comercialização*. Instituto Agronômico,
- Micheli, F. (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. *Trends Plant Sci* 6(9):414-419.
- Mishra, S., et al. (2012) Changes in protein pattern during different developmental stages of somatic embryos in *Chickpea*. *Biologia plantarum* 56(4):613-619.
- Misra, S., et al. (1993) Effect of abscisic acid, osmoticum, and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. *Annals of Botany* 71(1):11-22.
- Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. *Physiologia Plantarum* 15(3):473-497.
- Muschner, V.C., et al. (2012) Phylogeny, biogeography and divergence times in *Passiflora* (Passifloraceae). *Genetics and molecular biology* 35(4):1036-1043.
- Nanjo, Y., et al. (2012) Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. *Journal of Proteome Research* 11(1):372-385.
- Noah, A.M., et al. (2013) Comparative proteomic analysis of early somatic and zygotic embryogenesis in *Theobroma cacao* L. *Journal of Proteomics* 78:123-133.
- O'Leary, B., et al. (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. *Biochemical Journal* 436(1):15-34.

- Otoni, W., et al. (1995) Somatic hybridization of the *Passiflora* species, *P. edulis* f. flavicarpa Degener. and *P. incarnata* L. *Journal of Experimental Botany* 46(7):777-785.
- Otoni, W., et al. (2013) Organogenesis and somatic embryogenesis in passionfruit *Passiflora* sps. *In*: Aslam J, Srivastava, O., Sharma, M. (eds) Somatic embryogenesis and gene expression. 1 ed., New Delhi: Narosa Publishing House, p. 1-17.
- Ozarowski, M., Thiem, B. (2013) Progress in micropropagation of *Passiflora* spp. to produce medicinal plants: a mini-review. *Revista Brasileira de Farmacognosia* 23(6):937-947.
- Pacheco, G., et al. (2016) *In vitro* conservation of *Passiflora* A review. *Scientia Horticulturae* 211:305-311.
- Paim-Pinto, D.L.P., et al. (2011) Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (*Passiflora edulis* Sims) genotypes. *Plant Cell, Tissue and Organ Culture* 107(3):521-530.
- Paim-Pinto, D.L.P., et al. (2011) Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (*Passiflora edulis* Sims) genotypes. *Plant Cell, Tissue and Organ Culture (PCTOC)* 107(3):521-530.
- Pal Bais, H., Ravishankar, G.A. (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. *Plant cell, tissue and organ culture* 69(1):1-34.
- Pan, M., Van Staden, J. (1998) The use of charcoal in *in vitro* culture–A review. *Plant* growth regulation 26(3):155-163.
- Passamani, L.Z., et al. (2018) Embryogenic competence acquisition in sugarcane callus is associated with differential H+ pump abundance and activity. *Journal of proteome research*

- Passamani, L.Z., et al. (2020) Long-term culture with 2, 4-dichlorophenoxyacetic acid affects embryogenic competence in sugarcane callus via changes in starch, polyamine and protein profiles. *Plant cell, tissue and organ culture* 140(2):415-429.
- Pennell, R.I., et al. (1992) Identification of a transitional cell state in the developmental pathway to carrot somatic embryogenesis. *J Cell Biol* 119(5):1371-1380.
- Perez-Riverol, Y., et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. *Nucleic Acids Research* 47:442-450.
- Prudente, D.O., et al. (2017) Characterization of the formation of somatic embryos from mature zygotic embryos of *Passiflora ligularis* Juss. *Plant Cell, Tissue and Organ Culture* 131(1):97-105.
- R Core Team 2014 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: < <u>http://www.R-project.org/</u>. >.
- Reis, R.S., et al. (2016) Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. *Journal of Proteomics* 130:170-179.
- Reis, R.S., et al. (2021) Pretreatment free of 2, 4-dichlorophenoxyacetic acid improves the differentiation of sugarcane somatic embryos by affecting the hormonal balance and the accumulation of reserves. *Plant Cell, Tissue and Organ Culture (PCTOC)* 145(1):101-115.
- Reis, R.S., et al. (2021) Pretreatment free of 2, 4-dichlorophenoxyacetic acid improves the differentiation of sugarcane somatic embryos by affecting the hormonal balance and the accumulation of reserves. *Plant Cell, Tissue and Organ Culture* 145(1):101-115.

- Roberts, M.R., et al. (2002) 14-3-3 proteins and the response to abiotic and biotic stress. *Plant Molecular Biology* 50(6):1031-1039.
- Rocha, D.I., et al. (2012) Somatic embryogenesis of a wild passion fruit species *Passiflora cincinnata* Masters: histocytological and histochemical evidences. *Protoplasma* 249(3):747-758.
- Rode, C., et al. (2012) From callus to embryo: a proteomic view on the development and maturation of somatic embryos in *Cyclamen persicum*. *Planta* 235(5):995-1011.
- Rodziewicz, P., et al. (2014) Influence of abiotic stresses on plant proteome and metabolome changes. *Acta Physiologiae Plantarum* 36(1):1-19.
- Rosa, Y.B.C.J., et al. (2013) A *Passiflora* homolog of a D-type cyclin gene is differentially expressed in response to sucrose, auxin, and cytokinin. *Plant Cell, Tissue and Organ Culture* 115(2):233-242.
- Rosa, Y.B.C.J., et al. (2014) Species-dependent divergent responses to *in vitro* somatic embryo induction in *Passiflora* spp. *Plant cell, tissue and organ culture* 120(1):69-77.
- Salajova, T., et al. (1999) Initiation of embryogenic tissues and plantlet regeneration from somatic embryos of *Pinus nigra* Arn. *Plant Science* 145(1):33-40.
- Salo, H.M., et al. (2016) Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis. *Tree physiology* 36(3):392-402.
- Santa-Catarina, C., et al. (2004) SERK Gene Homolog Expression, Polyamines and Amino Acids Associated with Somatic Embryogenic Competence of Ocotea catharinensis Mez. (Lauraceae). Plant cell, tissue and organ culture 79(1):53-61.
- Santa-Catarina, C., et al. (2006) IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of *Ocotea catharinensis*. *Plant Growth Regulation* 49: 237–247.

- Santa-Catarina, C., et al. (2007) Polyamine and nitric oxide levels relate with morphogenetic evolution in somatic embryogenesis of *Ocotea catharinensis*. *Plant cell, tissue and organ culture* 90(1):93-101.
- Sato-Nara, K., et al. (2004) Expression of photosynthesis-related genes and their regulation by light during somatic embryogenesis in *Daucus carota*. *Planta* 219(1):23-31.
- Shannon, P., et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Research* 13(11):2498-2504.
- Silva, J.C., et al. (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. *Molecular & Cellular Proteomics* 5(1):144-156.
- Silva, M.L., et al. (2009) A novel regeneration system for a wild passion fruit species *Passiflora cincinnata* Mast. based on somatic embryogenesis from mature zygotic embryos. *Plant cell, tissue and organ culture* 99(1):47-54.
- Silveira, V., et al. (2013) Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. *Plant cell, tissue and organ culture* 114(3):351-364.
- Silveira, V., et al. (2004) Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of *Pinus taeda*. *Plant Cell Tissue and Organ Culture* 76(1):53-60.
- Silveira, V., et al. (2004) Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of *Pinus taeda*. *Plant Cell, Tissue and Organ Culture* 76(1):53-60.
- Silveira, V., et al. (2013) Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. *Plant Cell Tissue and Organ Culture* 114

- Smertenko, A., Bozhkov, P.V. (2014) Somatic embryogenesis: life and death processes during apical-basal patterning. *Journal of Experimental Botany* 65(5):1343-1360.
- Smith, D.L., Krikorian, A.D. (1990) Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium: evaluation of the effects of pH, ethylene and activated charcoal. *Plant cell reports* 9(1):34-37.
- Souza, M.M., et al. (2008) Cytogenetic studies in some species of Passiflora L.(Passifloraceae): a review emphasizing Brazilian species. Brazilian Archives of Biology and Technology 51(2):247-258.
- Stasolla, C., Yeung, E.C. (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. *Plant cell, tissue and organ culture* 74(1):15-35.
- Steiner, N., et al. (2008) Araucaria angustifolia biotechnology. Functional Plant Science and Biotechnology 2(1):20-28.
- Svobodová, H., et al. (1999) Somatic embryogenesis in Norway spruce: anatomical study of embryo development and influence of polyethylene glycol on maturation process. *Plant Physiology and Biochemistry* 37(3):209-221.
- Tautorus, T., et al. (1991) Somatic embryogenesis in conifers. *Canadian Journal of Botany* 69(9):1873-1899.
- Thomas, T.L. (1993) Gene expression during plant embryogenesis and germination: an overview. *The Plant Cell* 5(10):1401.
- Thorpe, T.A. (1990) The current status of plant tissue culture Developments in crop science. Elsevier, vol 19, p. 1-33.
- Thorpe, T.A. (2007) History of plant tissue culture. *Molecular biotechnology* 37(2):169-180.

- Thorpe, T.A., Stasolla, C. (2001) Somatic embryogenesis Current trends in the embryology of angiosperms. Springer, p. 279-336.
- Ulmer, T., et al. (2004) *Passiflora*: passionflowers of the world. *Portland, Or.: Timber Press 430p.-illus., col. illus.. ISBN* 881926485
- Vale, E.M., et al. (2014) Comparative proteomic analysis of somatic embryo maturation in *Carica papaya* L. *Proteome science* 12(1):37.
- Vale, E.M., et al. (2018) Morphological analyses and variation in carbohydrate content during the maturation of somatic embryos of *Carica papaya*. *Physiology and Molecular Biology of Plants*:1-11.
- Vale, E.M., et al. (2021) Mitochondrial proteomics reveals new insights into embryogenic competence acquisition in Carica papaya L. callus. *Journal of Proteomics* 252:104434.
- Varhaníková, M., et al. (2014) Comparative quantitative proteomic analysis of embryogenic and non-embryogenic calli in maize suggests the role of oxylipins in plant totipotency. *Journal of Proteomics* 104:57-65.
- Vasil, I.K. (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. *Plant Cell Reports* 27(9):1423-1440.
- Verdeil, J.-L., et al. (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? *Trends in Plant Science* 12(6):245-252.
- Viana, A.P., et al. (2016) UENF Rio Dourado: a new passion fruit cultivar with high yield potential. *Crop Breeding and Applied Biotechnology* 16(3):250-253.
- Viana, A.P., et al. (2003) Simple and canonic correlation between agronomical and fruit quality traits in yellow passion fruit (*Passiflora edulis* f. flavicarpa) populations. *Crop Breeding and Applied Biotechnology* 3(2):133-140.

- Vieira, L.M., et al. (2018) Protocol for somatic embryogenesis in *Passiflora cincinnata* Mast.(Passifloraceae) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Springer, p. 253-265.
- von Aderkas, P., Bonga, J.M. (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. *Tree physiology* 20(14):921-928.
- von Arnold, S., et al. (2002) Developmental pathways of somatic embryogenesis. *Plant cell, tissue and organ culture* 69(3):233-249.
- Vuosku, J., et al. (2012) Polyamine metabolism during exponential growth transition in Scots pine embryogenic cell culture. *Tree physiology* 32(10):1274-1287.
- Wallace, H.M., et al. (2003) A perspective of polyamine metabolism. *Biochemical Journal* 376(1):1-14.
- Wang, Q.-M., Wang, L. (2012) An evolutionary view of plant tissue culture: somaclonal variation and selection. *Plant cell reports* 31(9):1535-1547.
- Wasinger, V.C., et al. (1995) Progress with gene-product mapping of the Mollicutes: *Mycoplasma genitalium. Electrophoresis* 16(1):1090-1094.
- Wilkins, M.R., et al. (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and arnino acid analysis. *Nature Biotechnology* 14(1):61-65.
- Wilkins, M.R., et al. (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. *Biotechnology and genetic engineering reviews* 13(1):19-50.
- Wisniewski, J.R., et al. (2009) Universal sample preparation method for proteome analysis. *Nature Methods* 6(5):359-362.
- Xavier, L.R., et al. (2022) Integrative proteomics and phosphoproteomics reveals phosphorylation networks involved in the maintenance and expression of

embryogenic competence in sugarcane callus. *Journal of Plant Physiology* 268:153587.

- Xu, H., et al. (2012) Proteomic analysis of embryo development in rice (*Oryza sativa*). *Planta* 235(4):687-701.
- Yadav, J.S., Rajam, M.V. (1997) Spatial distribution of free and conjugated polyamines in leaves of Solanum melongena L. associated with differential morphogenetic capacity: efficient somatic embryogenesis with putrescine. *Journal of Experimental Botany* 48(8):1537-1545.
- Yang, X., Zhang, X. (2010) Regulation of somatic embryogenesis in higher plants. *Critical Reviews in Plant Science* 29(1):36-57.
- Zhang, J., et al. (2009) Stress response proteins' differential expression in embryogenic and non-embryogenic callus of *Vitis vinifera* L. cv. Cabernet Sauvignon—a proteomic approach. *Plant Science* 177(2):103-113.
- Zhao, J., et al. (2015) iTRAQ-based comparative proteomic analysis of embryogenic and non-embryogenic tissues of Prince Rupprecht's larch (*Larix principisrupprechtii* Mayr). *Plant Cell, Tissue and Organ Culture (PCTOC)* 120(2):655-669.
- Zhou, S., et al. (2009) Aluminum induced proteome changes in tomato cotyledons. *Plant signaling & behavior* 4(8):769-772.

ANEXOS

Anexo 1 Lista completa de proteínas identificadas aos 14 dias de maturação sob os tratamentos de PEG 6% comparado ao tratamento Controle (sem PEG) (PEG 6%/Controle) em calos embriogênicos de *P. edulis* 'UENF Rio Dourado'.

Acesso	Descrição	Ortologo em <i>Arabidopsis</i>	Peptídeos	Média La	bel-Free	t-Test PEG	Log₂ Fold Change	Acúmulo diferencial
		(STRING)		Controle	PEG 6% 6	6%/Controle	6%/Controle	6%/Controle
I1N6I4	6-phosphogluconate dehydrogenase, decarboxylating 3 isoform A	AT3G02360	17	35078	54825	0,04340	0,64	UP
Q2PMV0	ATP synthase CF1 beta subunit	ATPB	3	19024	34338	0,02165	0,85	UP
11L3K7	enolase	ENO1	19	2353	4309	0,00085	0,87	UP
I1MQM4	Glutamate decarboxylase	GAD5	6	13180	29106	0,00249	1,14	UP
I1MM44	glyceraldehyde-3-phosphate dehydrogenase GAPCP1, chloroplastic	GAPCP-1	14	36609	83067	0,00019	1,18	UP
I1M6E1	heat shock cognate protein 80	HSP81-3	34	31545	102925	0,00003	1,71	UP
Q43468	hsp70-Hsp90 organizing protein 1	Hop2	2	32733	58329	0,01003	0,83	UP
I1LCM5	malate dehydrogenase [NADP], chloroplastic	AT5G58330	4	22123	48087	0,00938	1,12	UP
A0A0R4J318	Peptidyl-prolyl cis-trans isomerase CYP19-3	ROC2	4	24878	39993	0,02836	0,68	UP
A0A0R0JER2	peptidyl-prolyl cis-trans isomerase CYP40-like	SQN	2	58738	145578	0,04003	1,31	UP
K7M8F8	probable fructokinase-6, chloroplastic	AT1G66430	5	19011	38530	0,01542	1,02	UP
I1NBU8	putative pectinesterase/pectinesterase inhibitor 41	AT2G47550	2	44566	70467	0,00085	0,66	UP
11LK56	ras-related protein RABE1c-like isoform X2	AT5G59840	6	47350	76254	0,03776	0,69	UP
A5JVZ7	superoxide dismutase [Mn], mitochondrial	MSD1	5	56503	178018	0,00161	1,66	UP
A0A0R0EWS1	ubiquitin-activating enzyme E1 1	UBA1	18	1148	2213	0,00115	0,95	UP
	14.2.2 like protein Disoform X1	A+2a/2500	2	0	52002			Única PEG
N/LWGJ		AI2942030	5	0	55005	-	-	6%
I1LZ47	60S ribosomal protein L12	AT2G37190	7	0	23555	-	-	Única PEG 6%
11L0D6	berberine bridge enzyme-like 21	AT4G20840	2	0	14598	-	-	Única PEG 6%
I1L0H7	berberine bridge enzyme-like 21	AT4G20840	3	0	6958	-	-	Única PEG 6%
I1LAL4	chaperonin CPN60-2, mitochondrial	HSP60	30	0	70710	-	-	Única PEG 6%
P09755	Chlorophyll a-b binding protein 21, chloroplastic	LHB1B1	6	0	2542	-	-	Única PEG 6%
Q43467	elongation factor Tu, chloroplastic	RABE1b	6	0	58531	-	-	Única PEG 6%

Acesso	Descrição	Ortologo em Arabidopsis	Peptídeos	Média La	bel-Free	t-Test PEG	t-Test Log₂ Fold PEG PEC	
		(STRING)		Controle	PEG 6%	6%/Controle	PEG 6%/Controle	PEG 6%/Controle
I1KPN3	Luminal-binding protein 5	BIP2	29	0	131381	-	-	Única PEG 6%
I1KMW7	pectinesterase/pectinesterase inhibitor	AT5G27870	2	0	1312	-	-	Única PEG 6%
I1N1B9	pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	IAR4	7	0	7612	-	-	Única PEG 6%
D4N5G3	Ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic	RCA	8	0	4581	-	-	Única PEG 6%
I1J8W0	succinate dehydrogenase [ubiquinone] flavoprotein subunit 1, mitochondrial	SDH1-1	10	0	2998	-	-	Única PEG 6%
A0A368UHG1	triosephosphate isomerase, cytosolic	TPI	7	0	3755	-	-	Única PEG 6%
K7KXN7	tubulin alpha-3 chain-like	TUA5	3	0	3562	-	-	Única PEG 6%
A0A0R0H9T5	peptidyl-prolyl cis-trans isomerase	ROC3	7	2170	0	-	-	Única Control
AUAURUGAYS	peroxidase 16	A12G18980	4	21817	0	-	-	Unica Control
I1LXY2	methyltransferase	ATMS1	17	26219	13597	0,00165	-0,95	DOWN
I1JTY8	aminopeptidase M1 isoform X2	APM1	8	24850	12374	0,03184	-1,01	DOWN
11KV07	ATP-dependent 6-phosphofructokinase 3	PFK3	3	37511	11809	0,00364	-1,67	DOWN
P54774	cell division cycle protein 48 homolog	AtCDC48B	43	33021	11401	0,01202	-1,53	DOWN
A0A0R4J656	chaperonin CPN60-2, mitochondrial	HSP60	24	139112	78062	0,03633	-0,83	DOWN
A0A0R0FCD2	elongation factor Tu, chloroplastic	RABE1b	5	25675	3350	0,02433	-2,94	DOWN
I1LQD7	Fructokinase-2 isoform B	A13G59480	4	80524	45743	0,02252	-0,82	DOWN
I1JHI1	glutamate decarboxylase 1	GAD	6	80922	43909	0,00432	-0,88	DOWN
	giutamate denydrogenase i	GDH1	4	24001	14400	0,00624	-0,73	DOWN
	guanosine nucleolide diphosphale dissociation inhibitor 2	GDIZ Hon70h	9	70120	32023	0,04504	-0,95	DOWN
	Hupersepsitive-induced response protein-like protein 2	AT1C608/0	10	/0129	29100	0,01590	-1,27	
I1KSD7	mitochondrial dicarboxylate/tricarboxylate transporter DTC	AT5G19760	2	17626	20400	0.04336	-0,07	
11.14.18	NADP-dependent malic enzyme	NADP-MF4	7	18850	12326	0.00116	-0.61	DOWN
11J7T0	pectinesterase 2	AT2G45220	7	120682	60831	0.04204	-0.99	DOWN
Q6Q2Z8	phosphoenolpyruvate carboxylase 2	PPC1	18	11396	4347	0,00599	-1,39	DOWN

Access	Deserieão	Ortologo em	Pontídoco	Média La	bel-Free	t-Test	Log₂ Fold Change	Acúmulo diferencial
Acesso	Descrição	(STRING)	repliceos	Controle	PEG 6%	6%/Controle	PEG 6%/Controle	PEG 6%/Controle
A0A0R0G163	sucrose synthase 2 isoform X2	SSA	7	197773	94478	0,01635	-1,07	DOWN
I1JYA9	Superoxide dismutase [Mn], mitochondrial	MSD1	6	129338	43176	0,00426	-1,58	DOWN
I1LWR5	UDP-glucose 6-dehydrogenase 1	UGD2	9	7589	3455	0,01045	-1,14	DOWN
I1J5Y9	UDP-glucose 6-dehydrogenase 4	UGD2	11	75550	47082	0,04809	-0,68	DOWN
I1KIE7	(+)-neomenthol dehydrogenase	-	3	135193	105334	0,27180	-0,36	Unchanged
B0M1B1	(S)-2-hydroxy-acid oxidase GLO1 isoform X1	-	15	123291	95820	0,01689	-0,36	Unchanged
I1K9V8	14-3-3-like protein	-	15	63555	42185	0,01578	-0,59	Unchanged
Q96450	14-3-3-like protein A	-	17	287469	309561	0,47183	0,11	Unchanged
Q96451	14-3-3-like protein B	-	7	108837	116862	0,63390	0,10	Unchanged
A0A0R0F2Z4	2,3-bisphosphoglycerate-independent phosphoglycerate mutase	-	13	332802	283244	0,03914	-0,23	Unchanged
K7KRH2	26S proteasome non-ATPase regulatory subunit 1 homolog A-like	-	3	65430	79846	0,35897	0,29	Unchanged
I1M1N6	26S proteasome non-ATPase regulatory subunit 14 homolog	-	4	75199	89158	0.06419	0,25	Unchanged
I1LS70	26S proteasome non-ATPase regulatory subunit 2 homolog A	-	6	72367	73279	0,92842	0,02	Unchanged
A0A0R0JQT2	26S proteasome non-ATPase regulatory subunit 6 homolog	-	4	60083	55180	0,67403	-0,12	Unchanged
C6T763	26S proteasome non-ATPase regulatory subunit 8 homolog A	-	2	48168	72126	0,22083	0,58	Unchanged
I1MXZ0	26S proteasome regulatory subunit 10B homolog A	-	14	52965	56070	0,66411	0,08	Unchanged
A0A0R4J439	26S proteasome regulatory subunit 4 homolog A	-	9	48989	42154	0,51482	-0,22	Unchanged
I1LBA2	26S proteasome regulatory subunit 6A homolog	-	14	117915	127846	0,85620	0,12	Unchanged
A0A0R0EW30	26S proteasome regulatory subunit 6B homolog	-	13	63266	73182	0,40360	0,21	Unchanged
I1JS67	26S proteasome regulatory subunit 7	-	12	65939	70819	0,16452	0,10	Unchanged
A0A0R4J3Y6	26S proteasome regulatory subunit 8 homolog A	-	10	72759	67305	0,65257	-0,11	Unchanged
11N5R6	2-methylene-furan-3-one reductase	-	2	115828	99654	0,47199	-0,22	Unchanged
I1MDV8	3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ	-	4	161897	127751	0,37985	-0,34	Unchanged
A0A0R0EJP3	3-ketoacyl-CoA thiolase 2, peroxisomal	-	10	54277	49878	0,18649	-0,12	Unchanged
I1NEH4	3-ketoacyl-CoA thiolase 2, peroxisomal	-	9	161462	163548	0,90572	0,02	Unchanged
Q9M4R7	3-oxoacyl-[acyl-carrier-protein] synthase 3 A, chloroplastic	-	2	47172	39312	0,32983	-0,26	Unchanged
I1LGD6	40S ribosomal protein S10-1	-	7	178218	120292	0,14915	-0,57	Unchanged
C6SWG3	40S ribosomal protein S15	-	2	14978	14486	0,91942	-0,05	Unchanged
K7L353	40S ribosomal protein S17-4	-	4	81337	62833	0,61315	-0,37	Unchanged
A0A0R0EC54	40S ribosomal protein S18	-	2	58745	34471	0,32448	-0,77	Unchanged
C6SZ18	40S ribosomal protein S28	-	5	121920	145513	0,00900	0,26	Unchanged

Acesso	Descrição	Ortologo em Arabidonsis	Pentídeos	Média La	bel-Free	t-Test PFG	Log₂ Fold Change	Acúmulo diferencial
100000	Decenyue	(STRING)	rophaeee	Controle	PEG 6%	6%/Controle	PEG 6%/Controle	PEG 6%/Controle
I1MQB5	40S ribosomal protein S3-3	-	12	149244	122349	0,30106	-0,29	Unchanged
I1JFW6	40S ribosomal protein S5	-	8	150915	143562	0,67621	-0,07	Unchanged
A0A0R0J3D8	40S ribosomal protein SA	-	9	222021	282228	0,21537	0,35	Unchanged
A0A0R0FQE0	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	-	16	4984	4621	0,39008	-0,11	Unchanged
I1JWK3	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	-	24	149297	179921	0,02764	0,27	Unchanged
I1LXY1	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	-	25	298891	324844	0,44890	0,12	Unchanged
I1MW49	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	-	27	301408	292118	0,60008	-0,05	Unchanged
K7KNT9	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	-	22	260117	189744	0,10481	-0,46	Unchanged
I1MKZ0	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase 1 isoform B	-	24	204819	186875	0,34060	-0,13	Unchanged
K7MPL5	60S acidic ribosomal protein P0	-	2	218003	154834	0,28359	-0,49	Unchanged
P50346	60S acidic ribosomal protein P0	-	9	155713	202683	0,22046	0,38	Unchanged
A0A0R0H4Q2	60S ribosomal protein L11	-	3	80525	61775	0,39859	-0,38	Unchanged
C6TMB5	60S ribosomal protein L12	-	11	124114	184631	0,00160	0,57	Unchanged
I1L8V8	60S ribosomal protein L12	-	7	155577	109781	0,00355	-0,50	Unchanged
I1KWM7	6-phosphogluconate dehydrogenase, decarboxylating 3	-	19	253837	179699	0,07329	-0,50	Unchanged
A0A0R0K737	6-phosphogluconate dehydrogenase, decarboxylating 3, chloroplastic	-	6	47244	52820	0,21018	0,16	Unchanged
I1J8H1	aconitate hydratase 1	-	24	35270	25595	0,25559	-0,46	Unchanged
I1LI48	aconitate hydratase 1	-	27	534902	484851	0,67521	-0,14	Unchanged
I1LRQ4	aconitate hydratase, cytoplasmic	-	35	210199	229627	0,29064	0,13	Unchanged
I1LU53	aconitate hydratase, cytoplasmic	-	22	32477	43748	0,20095	0,43	Unchanged
I1M443	aconitate hydratase, cytoplasmic	-	30	215409	215183	0,99266	0,00	Unchanged
K7KYB2	aconitate hydratase, cytoplasmic	-	28	16546	17861	0,42971	0,11	Unchanged
I1KUG6	actin-101	-	19	230809	213829	0,38859	-0,11	Unchanged
I1JNK9	actin-3	-	23	222183	314257	0,40984	0,50	Unchanged
I1KBG2	actin-7	-	19	327152	278911	0,18022	-0,23	Unchanged
P02580	actin-7 isoform X2	-	17	36185	88107	0,08522	1,28	Unchanged
P02581	actin-97-like	-	15	204927	233789	0,29744	0,19	Unchanged

Acesso	Descrição	Ortologo em Arabidopsis	Acesso	Média La	bel-Free	t-Test PEG	Log ₂ Fold Change	Acúmulo diferencial
	-	(STRING)		Controle	PEG 6% 6	6%/Controle	6%/Controle	6%/Controle
C6SVF1	Actin-depolymerizing factor 2	-	3	71192	88951	0,47944	0,32	Unchanged
I1JPN4	adenosine kinase 2	-	8	116857	116894	0,99839	0,00	Unchanged
I1JPN5	adenosine kinase 2	-	7	49935	34272	0,07722	-0,54	Unchanged
I1K3S5	adenosylhomocysteinase	-	22	308069	336234	0,37746	0,13	Unchanged
C6TBP8	adenylate kinase 4	-	12	198962	238339	0,09208	0,26	Unchanged
I1MJN2	ADP, ATP carrier protein 1, mitochondrial	-	8	168006	155952	0,51438	-0,11	Unchanged
I1J585	ADP-ribosylation factor 1-like isoform X1	-	10	143664	116957	0,15789	-0,30	Unchanged
I1JY29	alcohol dehydrogenase	-	15	1250965	1213626	0,72928	-0,04	Unchanged
A0A0R4J4U4	Alcohol dehydrogenase 1	-	8	346240	237653	0,01904	-0,54	Unchanged
I1MAE6	alcohol dehydrogenase 1	-	5	39272	36107	0,40515	-0,12	Unchanged
I1JP98	alcohol dehydrogenase class-3	-	3	28766	25334	0,37810	-0,18	Unchanged
I1L8I0	alcohol dehydrogenase class-3	-	3	43128	29786	0,16077	-0,53	Unchanged
I1JC17	Aldehyde dehydrogenase family 2 member B7, mitochondrial	-	4	173930	168748	0,73085	-0,04	Unchanged
K7M095	aldehyde dehydrogenase family 2 member B7, mitochondrial- like isoform X2	-	10	314020	317684	0,95850	0,02	Unchanged
I1KQ30	aldehyde dehydrogenase family 2 member C4	-	3	237646	194242	0,51616	-0,29	Unchanged
I1L4H0	aldehyde dehydrogenase family 2 member C4-like	-	3	72646	81292	0,80035	0,16	Unchanged
I1JMY1	alpha-L-arabinofuranosidase 1	-	8	54919	40703	0,10295	-0,43	Unchanged
I1N8L6	alpha-L-arabinofuranosidase 1	-	8	189275	193266	0,85672	0,03	Unchanged
I1MR41	aminomethyltransferase, mitochondrial	-	10	78234	80925	0,90660	0,05	Unchanged
I1K8E3	aminopeptidase M1	-	10	84331	72237	0,54303	-0,22	Unchanged
I1KT27	Annexin D2	-	2	151612	128475	0,63951	-0,24	Unchanged
I1K5P1	Argininosuccinate synthase, chloroplastic	-	4	93001	54425	0,31091	-0,77	Unchanged
I1JUS6	aspartate aminotransferase 1	-	14	430524	430572	0,99891	0,00	Unchanged
I1K999	aspartate aminotransferase 1	-	13	70630	64008	0,25633	-0,14	Unchanged
I1M9F7	aspartate aminotransferase P2, mitochondrial	-	12	140792	163395	0,13218	0,21	Unchanged
I1K5I3	aspartate-semialdehyde dehydrogenase	-	8	63212	92230	0,15459	0,55	Unchanged
Q2PMS8	ATP synthase CF1 alpha subunit	-	8	32164	69333	0,08355	1,11	Unchanged
A0A0R4J4C8	ATP synthase subunit beta, mitochondrial	-	23	637372	656901	0,66880	0,04	Unchanged
I1NFS4	ATP synthase subunit beta, mitochondrial	-	25	19158	20195	0,46394	0,08	Unchanged
Q01915	ATPase subunit 1	-	23	357843	457166	0,01077	0,35	Unchanged
K7MZR8	ATP-citrate synthase alpha chain protein 2	-	2	21666	15125	0,13515	-0,52	Unchanged
I1L0Q8	ATP-citrate synthase beta chain protein 1	-	3	24358	17406	0,04733	-0,48	Unchanged

Acesso	Descrição	Ortologo em <i>Arabidopsis</i>	Acesso	Média La	bel-Free	t-Test PEG	Log₂ Fold Change	Acúmulo diferencial
		(STRING)		Controle	PEG 6% 6	6%/Controle	6%/Controle	6%/Controle
I1L173	ATP-dependent zinc metalloprotease FTSH 2, chloroplastic- like	-	2	341143	213186	0,19816	-0,68	Unchanged
A0A0R0ENW6	Basic 7S globulin	-	5	76213	31662	0,16839	-1,27	Unchanged
I1LC49	Basic 7S globulin	-	7	327898	313253	0,86315	-0,07	Unchanged
A0A0R0G721	berberine bridge enzyme-like 21	-	3	185179	164668	0,24617	-0,17	Unchanged
K7MB53	berberine bridge enzyme-like 21	-	3	10511	7170	0,04296	-0,55	Unchanged
I1J5Z0	Beta-glucosidase 40	-	2	328646	560681	0,25545	0,77	Unchanged
A0A0R0HW00	bifunctional nitrilase/nitrile hydratase NIT4A	-	8	19674	17176	0,14972	-0,20	Unchanged
C6T972	bifunctional nitrilase/nitrile hydratase NIT4A	-	8	328783	374117	0,22321	0,19	Unchanged
O23960	biotin carboxylase 1, chloroplastic	-	4	55705	76305	0,08237	0,45	Unchanged
C6TIJ7	Caffeic acid 3-O-methyltransferase	-	2	422973	229646	0,46162	-0,88	Unchanged
I1JE07	caffeoyl-CoA O-methyltransferase	-	10	92078	79021	0,29582	-0,22	Unchanged
A0A0R0K6C1	calnexin homolog	-	4	91740	73527	0,16703	-0,32	Unchanged
I1LB53	Calreticulin isoform A	-	10	162498	124024	0,13704	-0,39	Unchanged
O48561	catalase-4 isoform X3	-	12	443937	575308	0,12491	0,37	Unchanged
I1JHP9	CBS domain-containing protein CBSX3, mitochondrial	-	3	39957	52933	0,38231	0,41	Unchanged
I1JPP3	cell division cycle protein 48 homolog	-	42	81932	100043	0,28276	0,29	Unchanged
I1JXA0	cell division cycle protein 48 homolog	-	37	173026	192523	0,44558	0,15	Unchanged
K7LQC6	cell division cycle protein 48 homolog	-	34	278754	234041	0,42423	-0,25	Unchanged
K7LTM9	cell division cycle protein 48 homolog	-	27	11136	12509	0,45298	0,17	Unchanged
A0A0R0K0U9	chaperone protein ClpB1	-	8	39304	48763	0,08841	0,31	Unchanged
I1JXP9	chaperone protein ClpC, chloroplastic	-	8	40689	59039	0,13372	0,54	Unchanged
A0A0R0LDJ9	chaperonin 60 subunit beta 4, chloroplastic isoform X2	-	2	24997	43418	0,09718	0,80	Unchanged
I1LCI1	chaperonin CPN60-2, mitochondrial	-	28	275506	409829	0,26221	0,57	Unchanged
I1KUU1	Chaperonin CPN60-like 2, mitochondrial	-	2	95775	80292	0,43645	-0,25	Unchanged
C6T8R7	chlorophyll a-b binding protein 215, chloroplastic	-	9	92672	139361	0,23924	0,59	Unchanged
I1M657	Chlorophyll a-b binding protein 3, chloroplastic	-	4	20953	35624	0,26578	0,77	Unchanged
P09756	chlorophyll a-b binding protein 3, chloroplastic	-	11	199298	245272	0,50535	0,30	Unchanged
A0A0R0I8Z5	chlorophyll a-b binding protein CP26, chloroplastic	-	4	19829	36175	0,50994	0,87	Unchanged
P12471	chlorophyll a-b binding protein of LHCII type 1-like	-	7	19952	39915	0,40048	1,00	Unchanged
I1M6V7	citrate synthase, glyoxysomal-like	-	3	26203	17388	0,13423	-0,59	Unchanged
A0A0R0L7Y1	clathrin heavy chain 1	-	16	65631	44169	0,02646	-0,57	Unchanged
I1MZ13	Clathrin heavy chain 1	-	24	77909	60438	0,10067	-0,37	Unchanged
I1LQ46	coatomer subunit gamma-2	-	3	26362	24544	0,30484	-0,10	Unchanged

Acesso	Descrição	Ortologo em <i>Arabidopsis</i> (STRING)	Acesso	Média Label-Free Controle PEG 6%	t-Test PEG 6%/Controle	Log₂ Fold Change PEG 6%/Controle	Acúmulo diferencial PEG 6%/Controle
K7LKJ0	copper transport protein ATX1	-	2	160144 196287	0,67875	0,29	Unchanged
K7MNM4	cysteine proteinase RD21A	-	2	89071 138200	0,14379	0,63	Unchanged
I1NC67	cysteine synthase	-	6	173211 123869	0,37801	-0,48	Unchanged
Q8W1A0	cysteine synthase	-	3	25506 27189	0,68887	0,09	Unchanged
C6SZC5	cytochrome c	-	2	127367 159775	0,26980	0,33	Unchanged
C6TIQ7	cytochrome c1-2, heme protein, mitochondrial	-	4	47843 55043	0,48772	0,20	Unchanged
I1LEI9	D-3-phosphoglycerate dehydrogenase 1, chloroplastic	-	3	84143 83236	0,88190	-0,02	Unchanged
I1NFX7	D-3-phosphoglycerate dehydrogenase 1, chloroplastic	-	3	33363 45133	0,07148	0,44	Unchanged
I1KVS6	D-3-phosphoglycerate dehydrogenase 2, chloroplastic	-	2	103017 111601	0,67580	0,12	Unchanged
K7N4U9	damage-control phosphatase At2g17340	-	2	25086 25651	0,81517	0,03	Unchanged
A0A0R0JVZ4	DEAD-box ATP-dependent RNA helicase 37-like	-	4	36869 39485	0,59839	0,10	Unchanged
A0A0R0JKX7	DEAD-box ATP-dependent RNA helicase 56	-	8	36826 49201	0,06703	0,42	Unchanged
A0A0R0J4Q6	DEAD-box ATP-dependent RNA helicase 56-like	-	7	30460 35905	0,21778	0,24	Unchanged
A0A0R0LFB4	dihydrolipoyllysine-residue acetyltransferase component 4 of pyruvate dehydrogenase complex, chloroplastic	-	3	38301 49831	0,21475	0,38	Unchanged
I1M6P9	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex 2, mitochondrial	-	3	115727 94960	0,45678	-0,29	Unchanged
I1M137	dihydroxy-acid dehydratase, chloroplastic	-	2	48785 53399	0,75566	0,13	Unchanged
I1LG73	dynamin-related protein 5A	-	2	18850 26207	0,09627	0,48	Unchanged
A0A0R0ESZ8	elongation factor 1-alpha	-	23	1009217 1120698	0,44255	0,15	Unchanged
A0A0R0FM97	elongation factor 1-alpha	-	21	30705 26838	0,65397	-0,19	Unchanged
P25698	elongation factor 1-alpha	-	21	50764 41890	0,30923	-0,28	Unchanged
I1LWB9	elongation factor 1-beta 2-like	-	5	202842 180651	0,67291	-0,17	Unchanged
I1MQS6	elongation factor 1-gamma	-	11	305857 289926	0,62440	-0,08	Unchanged
C6TNT2	elongation factor 1-gamma-like	-	10	179612 148242	0,19536	-0,28	Unchanged
I1KU21	elongation factor 2	-	38	370626 327890	0,23663	-0,18	Unchanged
I1MJ84	Elongation factor 2	-	12	80360 99220	0,01627	0,30	Unchanged
K7MDZ1	elongation factor 2 isoform X2	-	4	41191 69023	0,08168	0,74	Unchanged
I1N9E6	Elongation factor Tu, mitochondrial	-	14	80759 98878	0,24671	0,29	Unchanged
I1MC33	endoplasmin homolog isoform X1	-	12	79877 86483	0,47537	0,11	Unchanged
I1JPW5	enolase	-	24	106392 112515	0,51574	0,08	Unchanged
I1MQ89	enolase	-	22	1118881 1053034	0,38552	-0,09	Unchanged

Acesso	Descrição	Ortologo em Arabidopsis	Acesso	Média La	bel-Free	t-Test PEG	Log₂ Fold Change	Acúmulo diferencial
	-	(STRING)		Controle	PEG 6% 6	6%/Controle	6%/Controle	6%/Controle
I1NAI7	enolase	-	21	678022	692282	0,81866	0,03	Unchanged
I1LIT1	enoyl-[acyl-carrier-protein] reductase [NADH], chloroplastic	-	6	99660	104786	0,61532	0,07	Unchanged
I1JLC4	ERBB-3 binding protein 1-like	-	2	54360	67106	0,25847	0,30	Unchanged
A0A0R0FUV4	eukaryotic initiation factor 4A-10	-	11	146327	61958	0,06734	-1,24	Unchanged
A0A0R4J3G4	Eukaryotic initiation factor 4A-11	-	17	244816	244264	0,99068	0,00	Unchanged
A0A0R4J5N3	eukaryotic initiation factor 4A-15-like	-	20	107771	185121	0,05336	0,78	Unchanged
I1JWR4	eukaryotic translation initiation factor 5a-2	-	8	49958	66634	0,33202	0,42	Unchanged
I1L3P5	eukaryotic translation initiation factor 6-2	-	4	46071	53982	0,35862	0,23	Unchanged
A0A0R4J4B4	ferredoxinNADP reductase, leaf isozyme, chloroplastic	-	4	25101	57126	0,21641	1,19	Unchanged
I1JL80	ferritin-2, chloroplastic	-	2	233088	287742	0,15944	0,30	Unchanged
Q948P5	ferritin-4, chloroplastic	-	5	64903	61411	0,84179	-0,08	Unchanged
I1N5R9	formate dehydrogenase 1, mitochondrial	-	7	32166	60854	0,18227	0,92	Unchanged
C6TDF5	formate dehydrogenase 1, mitochondrial-like isoform X2	-	7	104225	74665	0,20121	-0,48	Unchanged
I1LPX6	fructose-bisphosphate aldolase 1, chloroplastic	-	6	31287	93851	0,15081	1,58	Unchanged
A0A0R0HCG5	Fructose-bisphosphate aldolase 3, chloroplastic	-	16	94607	114318	0,32817	0,27	Unchanged
I1LEQ9	fructose-bisphosphate aldolase 3, chloroplastic	-	12	149442	168732	0,45432	0,18	Unchanged
I1JPX8	fructose-bisphosphate aldolase 6, cytosolic	-	13	461745	463208	0,96353	0,00	Unchanged
I1LZG1	fructose-bisphosphate aldolase 6, cytosolic-like	-	13	106962	95451	0,22588	-0,16	Unchanged
I1JH86	Fructose-bisphosphate aldolase, cytoplasmic isozyme	-	11	363196	336640	0,34452	-0,11	Unchanged
I1MB71	fructose-bisphosphate aldolase, cytoplasmic isozyme	-	9	10150	14517	0,01787	0,52	Unchanged
I1M6D5	fructose-bisphosphate aldolase, cytoplasmic isozyme 1	-	8	75398	68658	0,46947	-0,14	Unchanged
I1JBJ2	fumarate hydratase 1, mitochondrial	-	2	44283	44268	0,99800	0,00	Unchanged
I1MRT3	Galactokinase protein	-	3	30346	36930	0,39990	0,28	Unchanged
A0A0R0H0I8	Gamma aminobutyrate transaminase 3, chloroplastic isoform A	-	6	162822	214756	0,04374	0,40	Unchanged
I1N7G1	glucose-6-phosphate 1-dehydrogenase, cytoplasmic isoform	-	4	77712	62336	0,41432	-0,32	Unchanged
I1JGY5	glucose-6-phosphate isomerase 1, chloroplastic	-	10	44074	47763	0,55756	0,12	Unchanged
I1K9N4	glucose-6-phosphate isomerase 1, chloroplastic	-	11	19891	17864	0,61431	-0,16	Unchanged
I1JTB8	glucose-6-phosphate isomerase, cytosolic	-	9	207862	189633	0,18525	-0,13	Unchanged
I1LM82	Glutamate decarboxylase 1	-	6	35260	30963	0,25316	-0,19	Unchanged
I1MBS2	glutamate decarboxylase 1	-	10	32231	28775	0,44443	-0,16	Unchanged
A0A0R0FNT7	glutamate dehydrogenase 2	-	10	88194	76632	0,17858	-0,20	Unchanged
I1J9Q7	glutamate dehydrogenase 2	-	7	17504	25126	0,20754	0,52	Unchanged
I1K0W4	glutamate dehydrogenase 2	-	12	153255	140553	0,41842	-0,12	Unchanged

Acesso	Descrição	Ortologo em <i>Arabidopsis</i> (STRING)	Acesso	Média La Controle	bel-Free PEG 6% (t-Test PEG 6%/Controle	Log₂ Fold Change PEG 6%/Controle	Acúmulo diferencial PEG 6%/Controle
P45621	glutamate-1-semialdehyde 2,1-aminomutase, chloroplastic	-	2	30086	28160	0,81567	-0,10	Unchanged
I1J547	Glutamateglyoxylate aminotransferase 2	-	2	7654	13337	0,10904	0,80	Unchanged
A0A0R0GFV1	glutamine synthetase cytosolic isozyme 2	-	6	18479	22276	0,65126	0,27	Unchanged
A0A0R4J2T4	glutamine synthetase cytosolic isozyme 2	-	6	34290	23253	0,32829	-0,56	Unchanged
I1L431	glutamine synthetase PR-2	-	4	45335	48187	0,62347	0,09	Unchanged
I1MNX4	glutathione reductase, cytosolic	-	3	101775	97644	0,70503	-0,06	Unchanged
I1N104	glutathione S-transferase F10-like	-	2	278454	268014	0,74832	-0,06	Unchanged
I1JXG9	glyceraldehyde-3-phosphate dehydrogenase	-	15	1323509	1111313	0,05397	-0,25	Unchanged
I1ML66	glyceraldehyde-3-phosphate dehydrogenase A, chloroplastic	-	7	9777	29017	0,10883	1,57	Unchanged
I1K7A8	Glyceraldehyde-3-phosphate dehydrogenase B, chloroplastic	-	5	22667	22520	0,98355	-0,01	Unchanged
I1JMB4	glyceraldehyde-3-phosphate dehydrogenase GAPCP1, chloroplastic	-	18	49902	56076	0,26290	0,17	Unchanged
C6TD56	Glyceraldehyde-3-phosphate dehydrogenase, cytosolic	-	16	59774	80261	0,01588	0,43	Unchanged
I1K135	Glyceraldehyde-3-phosphate dehydrogenase, cytosolic	-	20	787131	653299	0,08375	-0,27	Unchanged
I1MYI8	Glyceraldehyde-3-phosphate dehydrogenase, cytosolic	-	16	1273866	1240549	0,83614	-0,04	Unchanged
I1MXB2	glycine dehydrogenase (decarboxylating), mitochondrial	-	2	24030	35830	0,23646	0,58	Unchanged
K7LP96	glycine-rich RNA-binding protein GRP1A	-	3	83007	98369	0,43274	0,24	Unchanged
I1MRK1	Glyoxysomal fatty acid beta-oxidation multifunctional protein MFP-a	-	2	23181	26007	0,58163	0,17	Unchanged
A0A0R0JJA1	GTP-binding nuclear protein Ran-3	-	11	129206	150714	0,09744	0,22	Unchanged
C6TFN5	GTP-binding nuclear protein Ran-3	-	10	42468	52228	0,01450	0,30	Unchanged
C6SW20	GTP-binding protein SAR1A	-	5	53734	48424	0,60373	-0,15	Unchanged
I1NJ52	GTP-binding protein SAR1A	-	4	45694	45922	0,98065	0,01	Unchanged
I1K0U9	GTP-binding protein YPTM2	-	4	14115	14211	0,92552	0,01	Unchanged
Q39836	guanine nucleotide-binding protein subunit beta-like protein	-	10	126643	165429	0,10299	0,39	Unchanged
I1KSQ3	guanosine nucleotide diphosphate dissociation inhibitor 2	-	9	52355	66411	0,04942	0,34	Unchanged
I1L152	haloacid dehalogenase-like hydrolase domain-containing protein 3	-	4	66989	55871	0,28856	-0,26	Unchanged
I1JGR5	Heat shock 70 kDa protein	-	21	21006	27901	0,24222	0,41	Unchanged
P26413	heat shock 70 kDa protein	-	26	374720	452512	0,57503	0,27	Unchanged
l1KV87	Heat shock 70 kDa protein 14	-	11	43961	41875	0,61229	-0,07	Unchanged
I1M5L8	heat shock 70 kDa protein 15-like	-	25	61856	48053	0,23372	-0,36	Unchanged
								Ŭ.

Acesso	Descrição	Ortologo em <i>Arabidopsis</i>	Acesso	Média Label-Fro	ee t-Test PEG	Log ₂ Fold Change	Acúmulo diferencial
		(STRING)		Controle PEG 6	6%/Controle	6%/Controle	6%/Controle
I1MCN3	heat shock 70 kDa protein 15-like	-	21	312406 38226	64 0,13982	0,29	Unchanged
I1KL72	heat shock 70 kDa protein, mitochondrial	-	21	131540 9340	0 0,02780	-0,49	Unchanged
I1ME25	heat shock 70 kDa protein, mitochondrial	-	18	177737 2065	11 0,16275	0,22	Unchanged
I1JPC5	Heat shock cognate 70 kDa protein	-	31	311332 33710	0,40388	0,11	Unchanged
A0A0R0FH00	heat shock cognate 70 kDa protein 2	-	34	253119 24197	75 0,87447	-0,06	Unchanged
A0A0R4J4D6	heat shock cognate 70 kDa protein 2	-	33	215701 24299	94 0,18414	0,17	Unchanged
K7MVD3	heat shock cognate 70 kDa protein 2-like	-	33	141468 20548	39 0,01245	0,54	Unchanged
D6C4Z9	Heat shock cognate protein 80	-	31	502512 42509	93 0,11742	-0,24	Unchanged
K7L4Q3	heat shock cognate protein 80	-	16	28588 4525	1 0,25876	0,66	Unchanged
K7MXK0	heat shock cognate protein 80	-	11	894060 92189	99 0,84821	0,04	Unchanged
I1L314	heat shock protein 83	-	25	376024 39602	24 0,63577	0,07	Unchanged
I1JEL6	heat shock protein 90-5, chloroplastic	-	8	35646 3680	7 0,84016	0,05	Unchanged
I1JJQ4	heat shock protein 90-6, mitochondrial	-	7	36884 4289	3 0,38818	0,22	Unchanged
P0CG89	histone H4-like	-	5	82086 5550	1 0,30838	-0,56	Unchanged
I1LGM2	Hsp70-Hsp90 organizing protein 1	-	2	19059 1519	3 0,17995	-0,33	Unchanged
A0A0R0KG65	hypothetical protein GLYMA_04G118100v4	-	2	190868 12394	48 0,45501	-0,62	Unchanged
I1JR71	importin subunit alpha-2	-	3	19835 2783	7 0,07890	0,49	Unchanged
I1NJ48	importin subunit alpha-2-like	-	3	22952 3381	5 0,07190	0,56	Unchanged
I1LZ93	isocitrate dehydrogenase [NAD] catalytic subunit 5, mitochondrial	-	5	51223 7085	2 0,16896	0,47	Unchanged
A0A0R0HDU0	isocitrate dehydrogenase [NAD] regulatory subunit 1, mitochondrial isoform X2	-	2	98122 7979	1 0,33722	-0,30	Unchanged
Q06197	isocitrate dehydrogenase [NADP]	-	21	423539 36274	44 0,16350	-0,22	Unchanged
I1K1I6	Isocitrate dehydrogenase [NADP], chloroplastic/mitochondrial	-	10	52639 5428	6 0,93405	0,04	Unchanged
K7KSG5	Isoflavone reductase like	-	2	83756 8693	6 0,89182	0,05	Unchanged
I1LSB5	ketol-acid reductoisomerase, chloroplastic	-	5	67860 7789	6 0,38200	0,20	Unchanged
I1LPR9	L-ascorbate peroxidase 3	-	3	448629 58932	23 0,22732	0,39	Unchanged
C6TLT7	Late embryogenesis abundant protein Lea14-A isoform B	-	2	42347 3419	4 0,42955	-0,31	Unchanged
O81413	leghemoglobin reductase	-	11	122603 12886	62 0,73200	0,07	Unchanged
I1JGP8	leucine aminopeptidase 1-like	-	10	101647 7005	1 0,00842	-0,54	Unchanged
I1MT23	leucine aminopeptidase 1-like	-	10	82779 11072	27 0,05054	0,42	Unchanged
K7LPI4	linoleate 13S-lipoxygenase 2-1, chloroplastic	-	2	187201 22246	60 0,19263	0,25	Unchanged
I1MUZ7	L-lactate dehydrogenase A	-	2	67253 5140	7 0,22542	-0,39	Unchanged
I1KQU2	LL-diaminopimelate aminotransferase, chloroplastic	-	7	60059 7231	6 0,31516	0,27	Unchanged

Acesso	Descrição	Ortologo em Arabidopsis	Acesso	Média La	bel-Free	t-Test PEG	Log ₂ Fold Change	Acúmulo diferencial
	-	(STRING)		Controle	PEG 6% (6%/Controle	6%/Controle	6%/Controle
l1K670	Luminal-binding protein 5	-	33	210399	170017	0,52944	-0,31	Unchanged
I1JZP0	malate dehydrogenase, chloroplastic	-	12	139147	182069	0,00703	0,39	Unchanged
I1MTU1	malate dehydrogenase, chloroplastic	-	9	24917	37629	0,01039	0,59	Unchanged
I1JB84	malate dehydrogenase, cytoplasmic	-	14	543314	629909	0,07248	0,21	Unchanged
I1LXZ7	malate dehydrogenase, cytoplasmic	-	15	196671	258066	0,08987	0,39	Unchanged
P37228	malate dehydrogenase, glyoxysomal	-	2	39451	23504	0,16051	-0,75	Unchanged
Q9SPB8	malate dehydrogenase, mitochondrial	-	9	285384	310561	0,18680	0,12	Unchanged
I1L386	Membrane steroid-binding protein 2	-	2	49810	48347	0,82665	-0,04	Unchanged
A0A368ULC4	mitochondrial dicarboxylate/tricarboxylate transporter DTC	-	3	15233	14217	0,49234	-0,10	Unchanged
I1KGH6	Mitochondrial-processing peptidase subunit alpha	-	4	111095	139370	0,02440	0,33	Unchanged
A0A0R0HR30	Monodehydroascorbate reductase	-	5	189035	208510	0,46803	0,14	Unchanged
I1LT63	NAD(P)H dehydrogenase (quinone) FQR1	-	4	143668	109822	0,06836	-0,39	Unchanged
C6TD38	NAD(P)H dehydrogenase (quinone) FQR1-like	-	5	70111	40183	0,05483	-0,80	Unchanged
A0A0R0KKK6	NADHcytochrome b5 reductase 1	-	2	106489	68358	0,05214	-0,64	Unchanged
I1K1F4	NADH-cytochrome b5 reductase-like protein	-	3	90859	112130	0,21915	0,30	Unchanged
C6TKQ3	NADP-dependent D-sorbitol-6-phosphate dehydrogenase	-	5	79363	87021	0,45603	0,13	Unchanged
11MT35	NADP-dependent glyceraldehyde-3-phosphate	_	10	98507	121052	0 44632	0.31	Unchanged
1111135	dehydrogenase	-	19	30307	121352	0,44032	0,51	Unchanged
111/1/0/77	NADP-dependent glyceraldehyde-3-phosphate	_	17	2051/7	171533	0.26814	-0.26	Unchanged
	dehydrogenase	-	17	203147	171000	0,20014	-0,20	Unchanged
A0A0R0IMT3	NADP-dependent isocitrate dehydrogenase	-	10	142651	159863	0,62429	0,16	Unchanged
K7KRR3	NADP-dependent malic enzyme	-	8	100428	128597	0,05067	0,36	Unchanged
A0A0R0K5X0	NADP-dependent malic enzyme isoform X4	-	6	12214	12050	0,84795	-0,02	Unchanged
I1KV22	NADP-dependent malic enzyme-like	-	9	90381	53354	0,08970	-0,76	Unchanged
K7M921	NADP-dependent malic enzyme-like	-	4	16407	21208	0,04336	0,37	Unchanged
I1KLU7	OAS-TL4 cysteine synthase	-	5	96115	128951	0,32271	0,42	Unchanged
I1MNK0	oxygen-evolving enhancer protein 1, chloroplastic	-	5	35798	72133	0,15674	1,01	Unchanged
I1MMH6	pectin acetylesterase 8-like	-	3	125750	73891	0,26375	-0,77	Unchanged
I1JKR7	pectinesterase 2	-	3	98856	93117	0,82600	-0,09	Unchanged
K7KZN7	Pectinesterase 3	-	5	41307	29734	0,47773	-0,47	Unchanged
I1MRL0	pectinesterase/pectinesterase inhibitor	-	4	454744	260815	0,16205	-0,80	Unchanged
I1JAV9	Pectinesterase/pectinesterase inhibitor 18 isoform A	-	8	322570	270238	0,27778	-0,26	Unchanged
I1MK76	Pectinesterase/pectinesterase inhibitor U1	-	2	69371	51808	0,20115	-0,42	Unchanged
A0A0R0JF58	Peptidyl-prolyl cis-trans isomerase 1	-	11	205751	211915	0,87779	0,04	Unchanged

Acesso	Descrição	Ortologo em <i>Arabidopsis</i>	Acesso	Média La	bel-Free	t-Test PEG	Log₂ Fold Change	Acúmulo diferencial
	-	(STRING)		Controle	PEG 6%	6%/Controle	6%/Controle	6%/Controle
Q8W171	peptidyl-prolyl cis-trans isomerase 1	-	8	191189	267491	0,09639	0,48	Unchanged
A0A0R0HSJ5	peptidyl-prolyl cis-trans isomerase CYP20-1	-	5	27599	56994	0,14170	1,05	Unchanged
A0A0R0I194	peptidyl-prolyl cis-trans isomerase, chloroplastic	-	2	35755	20952	0,07417	-0,77	Unchanged
C6TJK9	Peptidyl-prolyl cis-trans isomerase, chloroplastic	-	3	30638	37771	0,42143	0,30	Unchanged
I1LDE1	Peroxidase 12	-	5	500360	743471	0,28952	0,57	Unchanged
I1L1B0	peroxidase 16	-	5	399350	473222	0,16761	0,24	Unchanged
I1JIB0	Peroxidase 4	-	4	334694	359227	0,60728	0,10	Unchanged
11M7N1	Peroxidase 4	-	2	137761	146470	0,62210	0,09	Unchanged
I1MVN5	Peroxidase 73	-	4	139268	114395	0,48818	-0,28	Unchanged
A0A0R0JSG7	peroxidase P7-like	-	6	95062	109757	0,06325	0,21	Unchanged
I1MRJ8	Peroxisomal fatty acid beta-oxidation multifunctional protein MFP2	-	2	44259	42790	0,94566	-0,05	Unchanged
I1J6V7	Phosphoenolpyruvate carboxykinase (ATP)	-	8	15291	21249	0,39796	0,47	Unchanged
I1JV14	phosphoenolpyruvate carboxykinase (ATP) isoform X1	-	12	120396	101071	0,57378	-0,25	Unchanged
I1L4W3	Phosphoenolpyruvate carboxykinase [ATP]	-	10	10029	18161	0,21779	0,86	Unchanged
P51061	phosphoenolpyruvate carboxylase	-	22	204242	148061	0,25105	-0,46	Unchanged
I1M3L8	phosphoenolpyruvate carboxylase 2	-	18	105683	61914	0,05673	-0,77	Unchanged
Q02909	phosphoenolpyruvate carboxylase, housekeeping isozyme	-	23	57207	48224	0,41597	-0,25	Unchanged
I1K5M9	phosphoglucomutase, cytoplasmic	-	13	131614	120687	0,54432	-0,13	Unchanged
A0A0R0IRH4	phosphoglycerate kinase, cytosolic	-	17	232699	283324	0,07215	0,28	Unchanged
A0A0R0GFW6	phosphoglycerate kinase, cytosolic-like	-	12	197838	210546	0,62179	0,09	Unchanged
A0A0R0IQ92	phospholipase D alpha 1	-	18	216320	243204	0,64244	0,17	Unchanged
I1M5T2	phospholipase D alpha 1	-	12	77285	87069	0,58222	0,17	Unchanged
K7LJM6	phosphoribosylamineglycine ligase isoform X1	-	3	52582	62777	0,34248	0,26	Unchanged
I1NJE9	photosynthetic NDH subunit of lumenal location 5, chloroplastic	-	4	30594	60495	0,20615	0,98	Unchanged
Q2PMT9	photosystem II CP43 chlorophyll apoprotein	-	4	16090	56533	0,27219	1,81	Unchanged
Q2PMQ9	photosystem II CP47 chlorophyll apoprotein	-	2	7031	20953	0,23539	1,58	Unchanged
Q2PMT8	photosystem II protein D2	-	5	15749	46549	0,24734	1,56	Unchanged
I1LVP7	plasma membrane ATPase 4	-	2	31638	14380	0,26227	-1,14	Unchanged
I1KM24	polyadenylate-binding protein 2	-	5	49725	69912	0,06622	0,49	Unchanged
K7MJX0	polyubiquitin	-	7	105681	128027	0,12164	0,28	Unchanged
I1JZR8	probable aldehyde dehydrogenase	-	5	124669	152969	0,23323	0,30	Unchanged
I1MTR0	probable aldehyde dehydrogenase	-	7	55695	52397	0,80426	-0,09	Unchanged

Acesso	Descrição	Ortologo em Arabidopsis	Acesso	Média La	bel-Free	t-Test PEG	Log₂ Fold Change BEG	Acúmulo diferencial
		(STRING)		Controle	PEG 6%	6%/Controle	6%/Controle	6%/Controle
I1KWT3	probable aldo-keto reductase 2	-	9	617371	639297	0,87219	0,05	Unchanged
I1JXH8	probable aspartyl aminopeptidase	-	3	130594	104431	0,21697	-0,32	Unchanged
I1ME21	probable cinnamyl alcohol dehydrogenase 1	-	2	44186	66233	0,12447	0,58	Unchanged
I1J4X9	probable cytosolic oligopeptidase A	-	2	37606	28407	0,63048	-0,40	Unchanged
I1LC17	probable fructokinase-5	-	2	6320	10770	0,09745	0,77	Unchanged
I1MQ49	probable fructokinase-7 isoform X1	-	4	27553	26600	0,84612	-0,05	Unchanged
A0A0R0IK92	probable lactoylglutathione lyase, chloroplastic	-	5	90879	110731	0,43727	0,29	Unchanged
K7L2A2	probable mediator of RNA polymerase II transcription subunit 37c	-	6	21556	17864	0,02964	-0,27	Unchanged
K7MVD7	probable mediator of RNA polymerase II transcription subunit 37c	-	3	18393	48472	0,10049	1,40	Unchanged
I1N1W7	probable mitochondrial-processing peptidase subunit beta, mitochondrial	-	2	61054	86452	0,27281	0,50	Unchanged
I1L1W5	probable pectinesterase/pectinesterase inhibitor 12	-	2	10233	14785	0,11414	0,53	Unchanged
I1MHL4	probable pectinesterase/pectinesterase inhibitor 12	-	2	25306	19898	0,39900	-0,35	Unchanged
I1KAS1	probable pectinesterase/pectinesterase inhibitor 34	-	4	24571	26912	0,80409	0,13	Unchanged
A0A0R0FJ96	probable xyloglucan endotransglucosylase/hydrolase protein 23	-	3	34989	37738	0,71910	0,11	Unchanged
A0A0R0GL47	probable xyloglucan endotransglucosylase/hydrolase protein 23	-	5	130328	138024	0,83393	0,08	Unchanged
A0A0R0GVM5	probable xyloglucan endotransglucosylase/hydrolase protein 23	-	10	50766	69985	0,21132	0,46	Unchanged
I1MST0	probable xyloglucan endotransglucosylase/hydrolase protein 23	-	12	348371	370039	0,78421	0,09	Unchanged
I1L437	prohibitin-1, mitochondrial	-	3	51313	46416	0,71773	-0,14	Unchanged
I1KFR0	prohibitin-3, mitochondrial	-	5	333888	318166	0,84367	-0,07	Unchanged
I1NBI4	prolinetRNA ligase, cytoplasmic	-	3	51552	49766	0,85599	-0,05	Unchanged
I1MXX5	proteasome subunit alpha type-1-A	-	5	55564	46683	0,13102	-0,25	Unchanged
I1J717	proteasome subunit alpha type-2-A	-	10	82860	121092	0,00686	0,55	Unchanged
I1KTZ5	proteasome subunit alpha type-2-A	-	10	125942	126870	0,93655	0,01	Unchanged
C6TG97	proteasome subunit alpha type-3	-	4	96290	110337	0,52995	0,20	Unchanged
I1KKK0	proteasome subunit alpha type-4-like	-	8	99898	131674	0,38914	0,40	Unchanged
Q9M4T8	proteasome subunit alpha type-5	-	12	161275	174509	0,31750	0,11	Unchanged
I1LSZ7	proteasome subunit alpha type-6	-	5	135588	165219	0,01902	0,29	Unchanged

Acesso	Descrição	Ortologo em Arabidopsis Ace		Média Label-Free		t-Test PEG	Log₂ Fold Change PFG	Acúmulo diferencial PFG
		(STRING)		Controle	PEG 6%	6%/Controle	6%/Controle	6%/Controle
I1MN39	proteasome subunit alpha type-7	-	6	124150	87473	0,20152	-0,51	Unchanged
I1KXF2	Proteasome subunit beta type-1	-	4	67177	59908	0,24857	-0,17	Unchanged
C6SW24	Proteasome subunit beta type-2-A	-	7	202782	222048	0,41545	0,13	Unchanged
A0A0R0GMQ7	Proteasome subunit beta type-3-A	-	5	92439	73867	0,19176	-0,32	Unchanged
I1JXI9	proteasome subunit beta type-5	-	12	119341	114469	0,80760	-0,06	Unchanged
I1K964	Proteasome subunit beta type-6	-	7	160741	140299	0,34320	-0,20	Unchanged
A0A0R0L8P5	proteasome subunit beta type-7-B	-	2	237390	258005	0,66985	0,12	Unchanged
I1JZ43	Protein disulfide-isomerase	-	5	299204	321593	0,50253	0,10	Unchanged
I1MA56	protein disulfide-isomerase isoform X2	-	3	206754	191354	0,80507	-0,11	Unchanged
A0A0R0H948	protein transport protein SEC31 homolog B-like	-	2	41378	45353	0,59145	0,13	Unchanged
I1KFF8	protein usf	-	2	223832	284315	0,03677	0,35	Unchanged
A0A0R0IPA5	puromycin-sensitive aminopeptidase-like isoform X2	-	8	44785	54131	0,18474	0,27	Unchanged
A0A0R0K6W2	puromycin-sensitive aminopeptidase-like isoform X2	-	9	59240	60889	0,89726	0,04	Unchanged
A0A0R0FDV1	putative 4-hydroxy-4-methyl-2-oxoglutarate aldolase 2	-	4	62122	67322	0,68362	0,12	Unchanged
K7L853	putative glucose-6-phosphate 1-epimerase	-	3	59182	55586	0,38305	-0,09	Unchanged
A0A0R0I1N0	Putative lactoylglutathione lyase	-	2	91117	115952	0,48883	0,35	Unchanged
I1KGU9	putative pectinesterase/pectinesterase inhibitor 28	-	3	16409	13386	0,43626	-0,29	Unchanged
K7MZI8	putative pectinesterase/pectinesterase inhibitor 39	-	3	4936	7208	0,10645	0,55	Unchanged
A0A0R0HMZ4	putative pectinesterase/pectinesterase inhibitor 40	-	3	201103	125933	0,08448	-0,68	Unchanged
K7K5X8	putative pectinesterase/pectinesterase inhibitor 40	-	3	63305	61141	0,89219	-0,05	Unchanged
A0A0R0IQF0	Pyrophosphate-energized vacuolar membrane proton pump	-	6	85861	37960	0,07291	-1,18	Unchanged
I1NF01	Pyrophosphate-energized vacuolar membrane proton pump	-	4	32924	24568	0,26980	-0,42	Unchanged
I1ND14	pyrophosphatefructose 6-phosphate 1-phosphotransferase	-	4	82487	53431	0,24262	-0,63	Unchanged
	subunit alpha							Ũ
I1KZW7	subunit beta	-	4	16343	26656	0,18034	0,71	Unchanged
A0A0R0KF48	Pyruvate decarboxylase 1	-	4	165231	190427	0,70346	0,20	Unchanged
I1M1V8	pyruvate decarboxylase 1	-	4	135519	111982	0,34076	-0,28	Unchanged
A0A0R4J3M4	pyruvate decarboxylase 2	-	14	740216	706773	0,69231	-0,07	Unchanged
I1KXM1	pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	-	7	48000	49842	0,75051	0,05	Unchanged
I1JBV5	pyruvate dehydrogenase E1 component subunit alpha-1, mitochondrial	-	11	143998	366414	0,13773	1,35	Unchanged

Acesso	Descrição	Ortologo em Arabidopsis	Acesso	Média La	bel-Free	t-Test PEG	Log₂ Fold Change PEG	Acúmulo diferencial PEG
		(STRING)		Controle	PEG 6%	5%Controle	6%/Controle	6%/Controle
A0A0R0G869	pyruvate dehydrogenase E1 component subunit beta, mitochondrial isoform X1	-	9	220073	186497	0,45334	-0,24	Unchanged
A0A0R4J669	Pyruvate kinase 1, cytosolic	-	13	95906	80103	0,25236	-0,26	Unchanged
K7K8T8	Pyruvate kinase 1, cytosolic	-	4	224679	176666	0,12345	-0,35	Unchanged
I1JPV5	pyruvate kinase 1, cytosolic isoform X1	-	22	321157	202635	0,13701	-0,66	Unchanged
I1KMC2	pyruvate kinase, cytosolic isozyme	-	11	67244	56548	0,39097	-0,25	Unchanged
I1N5N0	pyruvate kinase, cytosolic isozyme	-	22	406706	495657	0,15090	0,29	Unchanged
Q42806	pyruvate kinase, cytosolic isozyme	-	23	341419	308271	0,39314	-0,15	Unchanged
I1LJE5	Ras-related protein Rab7 isoform B	-	2	26751	31403	0,23305	0,23	Unchanged
I1KEV3	ras-related protein RABA1f	-	5	24806	31098	0,07096	0,33	Unchanged
I1M3P0	ras-related protein RABA1f	-	5	209726	239927	0,65425	0,19	Unchanged
I1NCP1	Ras-related protein RABA3	-	3	68390	106876	0,60680	0,64	Unchanged
G3ECQ7	ras-related protein RABA5b-like	-	3	8979	4722	0,10378	-0,93	Unchanged
I1MJT7	ras-related protein RABD1-like	-	3	36213	48579	0,50663	0,42	Unchanged
A0A0R4J5Y4	ras-related protein RABD2a	-	5	87369	95437	0,45451	0,13	Unchanged
I1K565	ribonuclease TUDOR 1	-	7	40419	32289	0,55718	-0,32	Unchanged
I1KBV2	ribonuclease TUDOR 1-like	-	8	45990	47274	0,88089	0,04	Unchanged
A0A0R0KFL3	ribulose bisphosphate carboxylase/oxygenase activase 2, chloroplastic-like	-	8	5262	87631	0,10810	4,06	Unchanged
C6T859	ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic	-	10	31752	122126	0,17080	1,94	Unchanged
I1M841	ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic-like	-	8	57954	49873	0,62814	-0,22	Unchanged
P27066	ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit	-	25	209238	258157	0,14471	0,30	Unchanged
I1LL25	ruBisCO large subunit-binding protein subunit alpha	-	11	109511	168090	0,08421	0,62	Unchanged
I1KU96	ruBisCO large subunit-binding protein subunit beta, chloroplastic	-	18	2949	2591	0,67962	-0,19	Unchanged
I1MJ28	ruBisCO large subunit-binding protein subunit beta, chloroplastic	-	18	263961	348121	0,24293	0,40	Unchanged
11LN30	S-adenosyl-L-homocysteine hydrolase	-	18	288246	264730	0,29977	-0,12	Unchanged
I1MHR0	S-adenosylmethionine synthase	-	12	109318	160621	0,38127	0,56	Unchanged
I1JQV8	S-adenosylmethionine synthase 1	-	9	21048	29875	0,40795	0,51	Unchanged

Acesso	Descrição	Ortologo em Arabidopsis	Acesso	Média La	bel-Free	t-Test PEG	Log₂ Fold Change BEC	Acúmulo diferencial
		(STRING)		Controle	PEG 6% (6%/Controle	6%/Controle	6%/Controle
I1LZ62	S-adenosylmethionine synthase 1	-	7	36218	53567	0,35418	0,56	Unchanged
C6ZJY7	serine hydroxylmethyltransferase	-	15	202539	170059	0,18768	-0,25	Unchanged
C6ZJZ0	serine hydroxymethyltransferase, mitochondrial	-	2	16808	24743	0,25914	0,56	Unchanged
I1JDU7	serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform	-	3	16366	22702	0,03164	0,47	Unchanged
I1LEY1	serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform	-	6	35939	35819	0,96902	0,00	Unchanged
I1J5H2	serine/threonine-protein phosphatase PP2A catalytic subunit	-	2	31790	20021	0,09534	-0,67	Unchanged
I1KHM5	soluble inorganic pyrophosphatase 1	-	2	54729	66159	0,20927	0,27	Unchanged
I1MJU7	stromal 70 kDa heat shock-related protein, chloroplastic	-	21	134736	163596	0,18985	0,28	Unchanged
I1JCQ7	succinate dehydrogenase [ubiquinone] flavoprotein subunit 1, mitochondrial	-	11	91236	105734	0,06063	0,21	Unchanged
I1LHR8	succinate dehydrogenase [ubiquinone] flavoprotein subunit 1, mitochondrial	-	8	69504	78618	0,23065	0,18	Unchanged
I1MQH3	succinateCoA ligase [ADP-forming] subunit alpha, mitochondrial	-	8	182736	201362	0,25426	0,14	Unchanged
I1L8G3	succinateCoA ligase [ADP-forming] subunit beta, mitochondrial	-	7	278723	304560	0,44207	0,13	Unchanged
I1LYN0	succinateCoA ligase [ADP-forming] subunit beta, mitochondrial	-	5	42494	34928	0,34505	-0,28	Unchanged
I1L1U5	sucrose synthase	-	8	194307	136775	0,10560	-0,51	Unchanged
K7MJY8	sucrose synthase	-	9	170316	123555	0,08146	-0,46	Unchanged
K7KGC7	sucrose synthase 2	-	13	426964	319580	0,18003	-0,42	Unchanged
I1LRE4	T-complex protein 1 subunit beta	-	7	58193	62350	0,54279	0,10	Unchanged
I1KQG0	T-complex protein 1 subunit delta	-	2	42611	40400	0,73848	-0,08	Unchanged
I1M7B9	T-complex protein 1 subunit eta	-	7	46269	52691	0,25094	0,19	Unchanged
I1L3P6	T-complex protein 1 subunit gamma	-	6	44071	55261	0,14142	0,33	Unchanged
I1KZK2	T-complex protein 1 subunit zeta 1	-	7	55674	71237	0,15039	0,36	Unchanged
K7LNQ6	thioredoxin reductase NTRB-like	-	2	67114	105073	0,20564	0,65	Unchanged
C6T9F8	thioredoxin-like superfamily protein precursor	-	2	100274	94020	0,52413	-0,09	Unchanged
I1MD26	threonine synthase, chloroplastic-like	-	4	50244	45584	0,77191	-0,14	Unchanged
I1N5E4	transaldolase	-	7	106129	96285	0,53993	-0,14	Unchanged
I1KZJ2	Transaldolase isoform B	-	7	40602	35584	0,39828	-0,19	Unchanged
A0A0R4J2U8	transketolase, chloroplastic	-	13	111745	131576	0,11244	0,24	Unchanged

Acesso	Descrição	Ortologo em <i>Arabidopsis</i>	Acesso	Média Label-Free		t-Test PEG	Log ₂ Fold Change	Acúmulo diferencial
		(STRING)		Controle	PEG 6%	6%/Controle	6%/Controle	6%/Controle
A0A0R4J653	transketolase, chloroplastic	-	10	100094	122568	0,07733	0,29	Unchanged
C6TK33	Triosephosphate isomerase, chloroplastic	-	4	55484	68790	0,04459	0,31	Unchanged
I1LZA5	triosephosphate isomerase, chloroplastic	-	4	6222	9111	0,13634	0,55	Unchanged
I1NAD0	triosephosphate isomerase, chloroplastic	-	4	178261	199967	0,25018	0,17	Unchanged
A0A0R0G6T3	triosephosphate isomerase, cytosolic	-	7	655269	491149	0,49147	-0,42	Unchanged
I1LQL3	tropinone reductase homolog At2g30670-like	-	3	113743	108855	0,85123	-0,06	Unchanged
A0A368UHL7	Tubulin alpha chain	-	12	26891	22922	0,38859	-0,23	Unchanged
A0A0R0HC18	tubulin alpha-2 chain	-	14	156282	186653	0,23651	0,26	Unchanged
I1KSD1	tubulin alpha-3 chain	-	16	132574	171221	0,12090	0,37	Unchanged
I1N898	Tubulin alpha-3 chain	-	14	140447	172664	0,05341	0,30	Unchanged
I1K7J4	tubulin beta chain	-	17	15822	17121	0,54294	0,11	Unchanged
P28551	tubulin beta chain	-	25	323937	331524	0,81201	0,03	Unchanged
A0A0R0IHF9	tubulin beta chain-like	-	12	4851	4933	0,86239	0,02	Unchanged
I1KPA1	tubulin beta-1 chain	-	16	17572	27607	0,05452	0,65	Unchanged
P12460	tubulin beta-2 chain	-	21	55576	79093	0,03457	0,51	Unchanged
I1LSZ2	ubiquitin carboxyl-terminal hydrolase 14	-	2	35415	52274	0,01342	0,56	Unchanged
I1NAQ2	ubiquitin isoform X2	-	6	327157	300411	0,34407	-0,12	Unchanged
K7LR00	Ubiquitin-activating enzyme E1 1	-	14	41389	41159	0,95979	-0,01	Unchanged
K7KA83	ubiquitin-activating enzyme E1 1-like	-	26	917995	941139	0,88141	0,04	Unchanged
K7M828	ubiquitin-activating enzyme E1 1-like	-	20	143994	165260	0,10472	0,20	Unchanged
K7MQ20	Ubiquitin-conjugating enzyme E2 28	-	2	80041	47927	0,17374	-0,74	Unchanged
I1LV61	ubiquitin-conjugating enzyme E2 36 isoform X1	-	3	36713	25731	0,36349	-0,51	Unchanged
A0A0R0FDT6	UDP-arabinopyranose mutase 1	-	6	173029	180383	0,72147	0,06	Unchanged
I1LWV7	UDP-arabinopyranose mutase 1-like	-	5	70247	56631	0,54335	-0,31	Unchanged
I1JWM4	UDP-arabinopyranose mutase 3	-	14	30648	34976	0,57998	0,19	Unchanged
I1KD37	UDP-arabinopyranose mutase 3	-	17	220352	217541	0,88967	-0,02	Unchanged
A0A0R0EFU3	UDP-D-apiose/UDP-D-xylose synthase 2	-	2	12022	8593	0,03168	-0,48	Unchanged
Q96558	UDP-glucose 6-dehydrogenase 1	-	15	113339	76593	0,02332	-0,57	Unchanged
A0A368UHG2	UDP-glucuronic acid decarboxylase 6	-	7	34482	32069	0,48545	-0,10	Unchanged
C6TKZ2	UDP-glucuronic acid decarboxylase 6	-	8	51097	59164	0,30241	0,21	Unchanged
A0A0R0L0W8	UTPglucose-1-phosphate uridylyltransferase	-	10	9026	7376	0,55635	-0,29	Unchanged
I1LM73	UTPglucose-1-phosphate uridylyltransferase	-	12	854663	735520	0,58210	-0,22	Unchanged
I1MBR7	UTPglucose-1-phosphate uridylyltransferase	-	12	7507	7278	0,92128	-0,04	Unchanged

Acesso	Descrição	Ortologo em <i>Arabidopsis</i>	Acesso	Média La	bel-Free	t-Test PEG	Log₂ Fold Change	Acúmulo diferencial
		(STRING)		Controle	PEG 6%	6%/Controle	PEG 6%/Controle	PEG 6%/Controle
I1KG34	V-type proton ATPase catalytic subunit A	-	21	204823	201391	0,84333	-0,02	Unchanged
I1NF84	V-type proton ATPase subunit B 2	-	19	233442	230298	0,86261	-0,02	Unchanged
A0A0R0F8Z5	xylose isomerase	-	3	51879	54212	0,76104	0,06	Unchanged
A0A0R0KW03	40S ribosomal protein S14	-	2	41794	34050	-	-	-
I1J574	ATP-citrate synthase alpha chain protein 1	-	2	18110	36190	-	-	-
I1KJS3	ATP-dependent 6-phosphofructokinase 3 isoform X1	-	3	0	116629	-	-	-
C6T3J1	Eukaryotic translation initiation factor 5A	-	5	4877	8230	-	-	-
I1NIP9	GDP-mannose 3,5-epimerase 2	-	3	0	71592	-	-	-
Q2PMN3	photosystem I subunit VII	-	4	3840	9377	-	-	-
A0A0R0GHN3	photosystem II protein D1	-	2	28436	51055	-	-	-
I1MM85	probable mitochondrial-processing peptidase subunit beta, mitochondrial	-	2	23634	27238	-	-	-
K7KGC5	probable pectinesterase/pectinesterase inhibitor 41	-	2	2000	0	-	-	-
I1NC66	proteasome subunit beta type-4	-	2	65616	74317	-	-	-
I1J771	putative pectinesterase/pectinesterase inhibitor 28	-	2	8685	7705	-	-	-